
Software Verification

Model checking CTL, Büchi acceptance for LTL
The Spin Model Checker

Ahmed Rezine

IDA, Linköpings Universitet

Vårtermin 2023

Outline

The CTL� Temporal Logic

Model Checking CTL

LTL and Büchi acceptance

Spin: flagship LTL explicit model checking

Outline

The CTL� Temporal Logic

Model Checking CTL

LTL and Büchi acceptance

Spin: flagship LTL explicit model checking

The CTL� Temporal Logic: syntax

The following are state fromulas
I p if p 2 AP
I :f , f ^ g and f _ g if f ; g

are state formulas
I Af , Ef if f is a path formula

The following are path fromulas
I f if it is also a state formula
I :f , f ^ g , f _ g , X f , F f ,

G f , f U G and f R g if f ; g
are path formulas

CTL� is the set of state formulas generated by the above rules.

The CTL� Temporal Logic: notation

I A path � = s0s1 : : : in a computation tree (obtained from a
Kripke structure) is any infinite sequence of states with
R(si ; si+1) for each i 2 N

I Write �i to mean the path starting from si in � = s0s1 : : :
I Write M; s j= f to mean that state formula f holds at state s

in the Kripke structure M
I Write M; � j= f to mean that path formula f holds along

path � in the Kripke structure M

The CTL� Temporal Logic: semantics

f1 and f2 are state formulas, g1 and g2 are path formulas.

M; s j= p , p 2 L(s)
M; s j= :f1 , M; s 6j= f1
M; s j= f1 _ f2 , M; s j= f1 or M; s j= f2
M; s j= f1 ^ f2 , M; s j= f1 and M; s j= f2
M; s j= E g1 , there is a path � from ss.t. M; � j= g1
M; s j= A g1 , for every path � starting from s, M; � j= g1

The CTL� Temporal Logic: semantics (cont.)

f1 and f2 are state formulas, g1 and g2 are path formulas.

M; � j= f1 , if � = s0s1 : : : then M; s0 j= f1
M; � j= :g1 , M; � 6j= g1
M; � j= g1 _ g2 , M; � j= g1 or M; � j= g2
M; � j= g1 ^ g2 , M; � j= g1 and M; � j= g2
M; � j= X g1 , M; �1 j= g1
M; � j= F g1 , there exists a k � 0 s.t. M; �k j= g1
M; � j= G g1 , for all k � 0 s.t. M; �k j= g1
M; � j= g1U g2 , there exists a k � 0 s.t. M; �k j= g2

and for all 0 � j < k;M; �j j= g1
M; � j= g1R g2 , for all j � 0 if for every i < j ;M; �i 6j= g1

then M; �j j= g2

The CTL� Temporal Logic (cont.)

Assignment: Express each of the following using f ; g ;:;U;E:
I (F f) = ?
I (G f) = ?
I (A f) = ?
I (f R g) = ?

Outline

The CTL� Temporal Logic

Model Checking CTL

LTL and Büchi acceptance

Spin: flagship LTL explicit model checking

Branching Time Logic (CTL)

Each of X, F, G, U, R is immediately preceded by E or A.

The following are state fromulas
I p if p 2 AP
I :f , f ^ g and f _ g if f ; g

are state formulas
I Af , Ef if f a path formula

The following are path fromulas
I f if it is also a state formula
I :f , f ^ g , f _ g , X f , F f ,

G f , f U G and f R g if f ; g are
path formulas state formulas

The most used operators are:
I M; s0 j= EF g ,
I M; s0 j= AF g ,

I M; s0 j= EG g ,
I M; s0 j= AG g

Branching Time Logic (CTL)

Each of X, F, G, U, R is immediately preceded by E or A.

The following are state fromulas
I p if p 2 AP
I :f , f ^ g and f _ g if f ; g

are state formulas
I Af , Ef if f a path formula

The following are path fromulas
I f if it is also a state formula
I :f , f ^ g , f _ g , X f , F f ,

G f , f U G and f R g if f ; g are
path formulas state formulas

The most used operators are:
I M; s0 j= EF g ,
I M; s0 j= AF g ,

I M; s0 j= EG g ,
I M; s0 j= AG g

CTL

M; s0 j= EF g M; s0 j= AF g

M; s0 j= EG g M; s0 j= AG g

Model checking CTL properties

I AX(Heat) = :(EX(:Heat))
I EG(Error) = :(AF(:Error))
I AG(Start =) AF(Heat)) = :(EF(Start ^ EG(:Heat)))

The UPPAAL model checker

Outline

The CTL� Temporal Logic

Model Checking CTL

LTL and Büchi acceptance

Spin: flagship LTL explicit model checking

Linear Time Logic (LTL)

LTL formulas are of the form Af where f is a path formula where
the only allowed state formulas are atomic propositions, i.e., path
formulas are of the form:
I f if state formula in AP
I :f , f ^ g , f _ g , X f , F f , G f , f U G and f R g if f ; g are

path formulas

LTL examples

I invariance: G(:Error)
I guarantee: F(Ok)
I response: Req =) F(Ack)
I precedence: Req =) (Busy U Ack)
I progress: GF(Move)
I stability: FG(Stable)
I weak fairness: GF(:Enabled _ Executed)
I strong fairness: GF(Enabled) =) GF(Executed)

Linear Time Logic (LTL)

LTL formulas are of the form Af where f is a path formula where
the only allowed state formulas are atomic propositions, i.e., path
formulas are of the form:
I f if state formula in AP
I :f , f ^ g , f _ g , X f , F f , G f , f U G and f R g if f ; g are

path formulas

AG(EF p) is in CTL but
not LTLṪhere is always a
path to a state where p

holds (e.g. reset).

A(FGp) is in LTL but not
CTL. Stability: there is a
point after which p always

hold.

Büchi automata

A Büchi automaton is a tuple (Q;Σ;∆; q0;F):
I Q a finite set of states
I Σ a finite alphabet
I ∆ � Q � Σ� Q a transition relation
I q0 an initial state
I F � Q defines the acceptance condition: only those runs with

at least one of the states in F appearing infinitely often.

LTL and Büchi acceptance

I invariance: G(:Error)
I guarantee: F(Ok)
I progress: GF(Move)
I stability: FG(Stable)
I weak fairness: GF(:En _ Ex)
I strong fairness: GF(En) =) GF(Ex)

Outline

The CTL� Temporal Logic

Model Checking CTL

LTL and Büchi acceptance

Spin: flagship LTL explicit model checking

Promela Models

1 mtype = {MSG , ACK };
2 chan toS = ...
3 chan toR = ...
4 bool flag;
5
6 proctype Sender (){
7 /* Process body */
8 ...
9 }

10
11 proctype Receiver () {
12 ...
13 }
14
15 init {
16 /* process creation */
17 ...
18 }

A promela model consists of:
I type declarations
I channel declarations
I variable declarations
I init process

The model has to correspond to a fi-
nite kripke structure (usually a very large
one). This means:
I bounded data,
I bounded channels,
I bounded number of processess
I bounded process creation

Promela Models (cont.)

A process:
I is defined by a proctype definition
I executes concurrently with all other processeses, irrespective

of their relative speed
I communicate with other processes using shared variables and

channels
I there can be several processes of the same type
I each process has its own local state defined by its process

counter and values of its local variables

Promela Models (cont.)

I A process is created with the run statement which returns the
process id

I processes can be created by other processes
I a created process starts executing after the the run statement
I processes can also be created by adding active in front of

proctype
1 proctype Sender (chan a){
2 ...
3 }
4
5 init {
6 chan c = [1] of {bit };
7 int pid2 = run Sender (c);
8 }
9
10 active [3] proctype Writer (){
11 ...
12 }

Promela Models (cont.)

A process (proctype) in promela consists of:
I a name
I a list of formal parameters
I declarations of local variables
I body of the process: a sequence of statements

1 proctype Sender (chan in; chan out){
2 bit sndB , rcvB; /* local variables */
3 do
4 :: out ! MSG , sndB ->
5 in = ACK , rcvB;
6 if
7 :: sndB == rcvB -> sndB = 1 - sndB
8 :: else -> skip
9
10 fi
11 od
12 }

Variables and Types

1 /* basic types */
2 bit turn =1;
3 bool flag;
4 byte counter ;
5 short s;
6 int msg;
7
8 /* arrays */
9 byte a [27];

10 bit flags [4];

1 /* records */
2 typedef Record {
3 short f1;
4 byte f2;
5 }
6
7 Record rr;
8
9 rr.f1 =...

Statements

I Depending on the global state of the systems, a statement is
either:
I executable: can be executed immediately
I blocked: cannot be executed immediately

I assignments are always executable
I expressions are executable if they evaluate to non-zero:

I 2 < 3 always executable
I x < 27 executable if x is smaller than 27
I 3 + x executable if x 6= �3

I skip is always executable
I run is executable if a new process can be created

Statements (cont.)

I assert(<expr>) is always executable
I if expr evaluates to zero, SPIN exits and reports the assertion

has been violated
I Used to check validity of properties

1 proctype monitor (){
2 assert (n <= 3);
3 }
4
5 proctype receiver (){
6 ...
7 toReveiver ? msg;
8 assert (msg != ERROR);
9 ...
10 }

Interleaving Semantics

I Processes execute concurrently
I Non-deterministic scheduling of the processes
I Executions of the processes are interleaved: one statement

executes at a time except for the rendez-vous communication
I All statements are atomic, i.e. executed without interleaving

with other processes’ statements
I Sometimes, the same process can choose among several

executable actions. One of them is chosen
non-deterministically

if-statement

1 if
2 :: choice1 -> stat1;1; stat1;2; ...
3 :: choice2 -> stat2;1; stat2;2; ...
4 ...
5 :: choicen -> statn;1; statn;2; ...
6 (:: else -> statn;1; statn;2; ...)
7 fi;

I if at least one of the choicei is executable, then SPIN non
deterministically chooses on of them

I if none of the choicei is executable, the if statement is blocked
I “->” is used to separate the guards from the statements that

follow it (actually equivalent to “;”).

do-statement

1 do
2 :: choice1 -> stat1;1; stat1;2; ...
3 :: choice2 -> stat2;1; stat2;2; ...
4 ...
5 :: choicen -> statn;1; statn;2; ...
6 od;

I similar to the if statement except for repetition
I break exits the do-loop

Communication

1 chan <name > = [<dim >] of {<t1, < t2 >, ...};
2
3 chan c = [1] of {bit };
4 chan toR = [2] of {mtype , bit };

I Channels are used for communication
I using bounded buffers channels for message passing
I using “channels of size 0” for rendez-vous or handshake

Communication

I Sending: puts a message into a channel:
1 ch ! <expr1 >, <expr2 >, ... <exprn >;

I Receiving: fetching a message from a channel:
1 /* message passing */
2 ch ? <var1 >, <var2 >, ... <varn >;
3 /* message testing */
4 ch ? <const1 >, <const2 >, ... <constn >;

The atomic Statement

1 atomic {stat1; stat2; statn }

I used to group statements into an atomic sequence that
executes without interleaving from other processes

I executable if stat1 is executable
I if stati , for i > 1, is blocked, then atomicity is temporarily lost

and other processes may do a step

The d_step Statement

1 d_step {stat1; stat2; statn }

I more efficient than atomic: no intermediate states
I only deterministic statements allowed
I error if stati , for i > 1, blocked

Examples of Promela constructs

assignment always exec.
expression exec. if true (non zero)

basic send (ch!) exec. if ch not full
statements receive (ch?) exec. if ch not empty

assert(<expr>) always exec.
printf always exec.

expression skip always exec.
statements timeout true if no other statement is exec.

if exec. if at least one guard is exec.
compound do exec. if at least one guard is exec.
statements atomic exec. if first statement is exec.

d_step exec. if first statement is exec.
control goto jump to label
flow break exit do-statement

(i)Spin Architecture

Mutex: First Attempt

1 bit flag; /* signal entering / leaving the CS */
2 byte mutex ; /* number of processes in the CS */
3
4 proctype P(bit i){
5 flag != 1;
6 flag = 1;
7 mutex ++;
8 mutex --;
9 flag = 0;
10 }
11
12 proctype monitor (){
13 assert (mutex !=2);
14 }
15
16 init {
17 atomic { run P(0); run P(1); run monitor ();}
18 }

Mutex: Second Attempt

1 bit x, y; /* signal entering / leaving the CS */
2 byte mutex ; /* number of processes in the CS */
3
4 active proctype A(){
5 x = 1;
6 y == 0;
7 mutex ++;
8 mutex --;
9 x = 0;
10 }
11
12 active proctype B(){
13 y = 1;
14 x == 0;
15 mutex ++;
16 mutex --;
17 y = 0;
18 }
19
20 proctype monitor (){
21 assert (mutex !=2);
22 }

Mutex: Dekker’s Algorithm

1 bit x, y; /* signal entering / leabin the CS */
2 byte mutex ; /* number of processes in the CS */
3 mtype {A_TURN , B_TURN }; /* who ’s turn is it?*/
4 byte turn;

1 active proctype A(){
2 x = 1;
3 turn = B_TURN ;
4 y == 0
5 || (turn == A_TURN);
6 mutex ++;
7 mutex --;
8 x = 0;
9 }

1 active proctype B(){
2 y = 1;
3 turn = A_TURN ;
4 x == 0
5 || (turn == B_TURN);
6 mutex ++;
7 mutex --;
8 y = 0;
9 }

1 proctype monitor (){
2 assert (mutex !=2);
3 }

Mutex: Bakery Algorithm

1 byte turn [2]; /* who ’s turn is it? */
2 byte mutex ; /* number of processes in the CS */
3
4 proctype P(bit i){
5 do
6 :: turn[i] = 1;
7 turn[i] = turn [1-i] + 1;
8 (turn [1-i] == 0) || (turn[i] < turn [1-i]);
9 mutex ++;
10 mutex --;
11 turn[i] = 0;
12 od
13 }
14
15 proctype monitor (){
16 assert (mutex !=2);
17 }
18
19 init {
20 atomic {run P(0); run P(1); run monitor ()}
21 }

Alternating Bit Protocol

mtype = { msg0 , msg1 , ack0 , ack1 };

chan sender = [1] of { mtype };
chan receiver = [1] of { mtype };

inline phase (msg , good_ack , bad_ack)
{

do
:: sender ? good_ack -> break
:: sender ? bad_ack
:: timeout ->

if
:: receiver !msg;
:: skip /* lose message */
fi;

od
}

inline recv(cur_msg , cur_ack ,
lst_msg , lst_ack)

{
do
:: receiver ? cur_msg -> sender ! cur_ack ;

break /* accept */
:: receiver ? lst_msg -> sender ! lst_ack
od;

}

active proctype Sender ()
{

do
:: phase (msg1 , ack1 , ack0);

phase (msg0 , ack0 , ack1)
od

}

active proctype Receiver ()
{

do
:: recv(msg1 , ack1 , msg0 , ack0);

recv(msg0 , ack0 , msg1 , ack1)
od

}

Properties

Safety property:
I "nothing bad ever happens”
I invariants: x is never 0
I deadlock freedom: the system

never reaches a state where no
actions are enabled

I SPIN finds a trace leading to the
bad state. If no traces exist, the
safety property holds

Liveness properties:
I "something good eventually

happens”
I termination: the system eventually

terminates
I response: whenever X occrus, Y

eventually occurs

I SPIN finds a reachable loop in
which the good property does not
happen. If no such loop is
reachable, then the property holds.

invariance G(p) ltl {[] p}
response G(p) F (q)) ltl {[](p => <> q)}
precedence G(p) (qUr)) ltl {[] (p=> (q U r))}
objective G(p) F (qjjr)) ltl {[] (p => <>(q || r))}

never Claims

I LTL formulas can be captured using Büchi automata
I SPIN uses never claims to capture Büchi automata
I capture finite behaviors and !-acceptance cycles
I the kripke structure and the never claim execute in lockstep
I if the claim automaton does not have an enabled transition,

the serach backtracks
I can be used to filter the execution or to establish an LTL

property is verified

Assignment: puzzling frogs

Build a model and a property whose counter-example (in SPIN) is
a sequence of moves that allows all frogs to switch side1.
I 6 or 8 frogs, at most one on each rock, initially each half

facing the other side from where it is sitting.
I can jump one step to the next rock if empty,
I can jump over a rock if occupied and following is empty.

1
https://data.bangtech.com/algorithm/switch_frogs_to_the_opposite_side.htm

https://data.bangtech.com/algorithm/switch_frogs_to_the_opposite_side.htm

	The CTL* Temporal Logic
	Model Checking CTL
	LTL and Büchi acceptance
	Spin: flagship LTL explicit model checking

