Software Verification

Model checking CTL, Biichi acceptance for LTL
The Spin Model Checker

Ahmed Rezine

IDA, Linképings Universitet

Vartermin 2023

Outline

The CTL* Temporal Logic
Model Checking CTL
LTL and Biichi acceptance

Spin: flagship LTL explicit model checking

Outline

The CTL* Temporal Logic

The CTL* Temporal Logic: syntax

The following are state fromulas The following are path fromulas

> pif pe AP » f if it is also a state formula
> ~f, fAgand fVvgiff,g > —f, fAg fVvg Xf,Ff,

are state formulas Gf,fUGand fRgiff,g
» Af, Ef if f is a path formula are path formulas

CTL* is the set of state formulas generated by the above rules.

The CTL* Temporal Logic: notation

» A path T = sps; ... in a computation tree (obtained from a
Kripke structure) is any infinite sequence of states with
R(si, si+1) for each i € N

» Write 7' to mean the path starting from s; in T = sps . ..

» Write M, s |= f to mean that state formula f holds at state s
in the Kripke structure M

» Write M, |= f to mean that path formula f holds along
path 7 in the Kripke structure M

The CTL* Temporal Logic: semantics

fi and £, are state formulas, g1 and g» are path formulas.

M,s = p & pelL(s)

M,s = -fi & M,slEfh

M,sE=hAVvh & M,sEforMskEh

M,sEhANfh & M,sl=f and M,s|=f

M,s=E g & thereis a path 7 from ss.t. M, 7 =g
M,sl=A g & for every path 7 starting from s, M, 7 = g1

The CTL* Temporal Logic: semantics (cont.)

fi and f, are state formulas, g1 and g» are path formulas.

M,m = fi & fm=sps1... then M,sp = f

M, = g1 & Mg

MrEg Ve & MrlEg o M7Eg

Mmtl=g1Ng & M,ml=g1 and M, 7 |= g

M, 7= X g 54 M,?Tl):gl

M,m = F g & there exists a k > 0s.t. M, 7% = g

M7Tl=Gg & forallk>0st M,7kEg

M,n = giU g» ¢ thereexistsa k > 0st. M,7v =g
and for all 0 < j < k, M,/ = g1

M,m=giR g < forallj >0 if for every i < j, M, 7 £ g

then M, 7/ |= &

The CTL* Temporal Logic (cont.)

Assignment: Express each of the following using f, g, =, U, E:
» (Ff) =7
» (Gf) =7
» (Af) =7
» (fRg) =7

Outline

Model Checking CTL

Branching Time Logic (CTL)

Each of X, F, G, U, R is immediately preceded by E or A.

The following are state fromulas The following are path fromulas

> pif pe AP > f if it is also a state formula
> ~f, fAgand fVvgiff,g > ~f, fAg, fVvg Xf, Ff,
are state formulas Gf, fUGand fR gif f,g are

> Af, Ef if f a path formula path-formulas state formulas

Branching Time Logic (CTL)

Each of X, F, G, U, R is immediately preceded by E or A.

The following are state fromulas The following are path fromulas

> pif pe AP > f if it is also a state formula
> ~f, fAgand fVvgiff,g > ~f, fAg, fVvg Xf, Ff,
are state formulas Gf, fUGand fR gif f,g are
» Af, Ef if f a path formula path-formulas state formulas
The most used operators are:
> M,50|:EFg, > /\//,So):EGg,

> M,sp = AF g, > M,so =AG g

CTL

S a0
\Ox.__-- <
© o 1

O/ s

Oi-

O
o o B
Nao@ - g

N =

Oi-

M,So):AGg

Model checking CTL properties

start oven open door
open door cluse door cooK
done Cluse
Heat
4

open door close door

start oven start cooking
eset

SIRIT
Cluse Warmup

» AX(Heat) = ~(EX(—Heat))
» EG(Error) = ~(AF(—Error))
» AG(Start =— AF(Heat)) = —~(EF(Start A EG(—Heat)))

The UPPAAL model checker

- upPARL
Ele Edit View Tools J.n.m Help ¥
LEIE K@/~ [
[Editor | simutator | —\m.r.«
brag out
28 out [Frain(o) [Frain(D [Train(2)
S]z...m.amm.n..; - - -
ppriOl: Train(0) > Gate Al |Gatedisti2] - 0 eavel0]! cavel 11! cavel21!
e S Mt Safe eavelOliay cross safe eavellliay cross safe eavel2) gy cross
apprlal: Train(a) > Gate s x<=5 x<=5
leavel2]: Train2) > Gate
appriOl! apprl1l! appri2l!
0 x=0 x=0
Appr Appr Appr
x<=20 x<=15 || x<=20 x<=15 || x<=20 x<=15
x<=10 x<=10 x<=10
stopl0]? stopl1]? stopl2]?
[Train(a).x = Traino).; wonlol tont otz
stop stop Stop
Simulation Trace _ _
(Safe, safe, Safe, Safe, Safe, Free) — RS Gate
appr2]: Train(2) > Gate =3 Free
(Safe, Safe, Appr, Safe, Safe, Occ) Sate leaveldlt) ¢ o o
apprl3l: Train(3) > Gate x<=5
(Safe, Safe, Appr, Appr, Safe, -)
stopltall(: Gate --> Train(3) appri4]! en >0 en e ==Tfront(
(safe, Sate, Appr, Stop, Safe, 0cc) x=0 golfront(]t | apprie]? [leavele?
Train(2) enqueue(e) | dequeue()
(Safe, safe, Cross, Stop, Safe, Occ)
Appr
x<=20 x<=15
id t
B apprie]? stopltail(]!
stopl41? aueuele)
Stop

g

frectean)

Outline

LTL and Biichi acceptance

Linear Time Logic (LTL)

LTL formulas are of the form Af where f is a path formula where
the only allowed state formulas are atomic propositions, i.e., path
formulas are of the form:

» f if stateformula in AP

> of fAg, fvg, XFf,Ff,Gf, fUGand fRgif f,g are
path formulas

LTL examples

./4

invariance: G(—Error)

guarantee: F(Ok)

response: Req = F(Ack)

precedence: Req = (Busy U Ack)

progress: GF(Move)

stability: FG(Stable)

weak fairness: GF(—Enabled V Executed)

strong fairness: GF(Enabled) = GF(Executed)

vVvVvyvVvyvVvyVvyyYyypy

Linear Time Logic (LTL)

LTL formulas are of the form Af where f is a path formula where
the only allowed state formulas are atomic propositions, i.e., path
formulas are of the form:
P> f if stateformula in AP
> of fAg, fvg, XFf,Ff,Gf, fUGand fRgif f,g are
path formulas

@) O

v
e o e
@) OOO . o0 O

. ® 060 6
AG(EF p)isin CTL but A(FGp) is in LTL but not
not LTLThere is always a ~ CTL. Stability: there is a

path to a state where p point after which p always
holds (e.g. reset). hold.

Buchi automata

A Biichi automaton is a tuple (Q, X, A, qo, F):
» Q a finite set of states
> 3 a finite alphabet
> ACQXxXxQ a transition relation
P> o an initial state

» F C Q defines the acceptance condition: only those runs with
at least one of the states in F appearing infinitely often.

b e %
gy

LTL and Biichi acceptance

vVvVvyVvVvyspy

1€cr0C true Q E(\AQ
& NN
ek
€cue
true Srallo
(2 nowe C())Q fove “ O
>
e O
Move

invariance: G(—Error)

guarantee: F(Ok)

progress: GF(Move)

stability: FG(Stable)

weak fairness: GF(—En V Ex)

strong fairness: GF(En) — GF(Ex)

Outline

Spin: flagship LTL explicit model checking

Promela Models

© O N o Uhr W N R

e e O <
® N o U hr W N R O

mtype = {MSG, ACK};
chan toS = .

chan toR =

bool flag;

proctype Sender (){
/* Process body */

}
proctype Receiver () {
}

init{
/* process creation */

A promela model consists of:
P type declarations
» channel declarations
» variable declarations
» init process

The model has to correspond to a fi-
nite kripke structure (usually a very large
one). This means:

» bounded data,
» bounded channels,
» bounded number of processess

» bounded process creation

Promela Models (cont.)

A process:

P is defined by a proctype definition

P executes concurrently with all other processeses, irrespective
of their relative speed

» communicate with other processes using shared variables and
channels

P there can be several processes of the same type

P each process has its own local state defined by its process

counter and values of its local variables

Promela Models (cont.)

© 0 N O A W N

=R
N o= O

P> A process is created with the run statement which returns the
process id

P processes can be created by other processes
P a created process starts executing after the the run statement

P processes can also be created by adding active in front of
proctype

proctype Sender (chan a){

}
init{
chan ¢ = [1] of {bit};
int pid2 = run Sender (c);
}

active [3] proctype Writer (){

}

Promela Models (cont.)

A process (proctype) in promela consists of:
» a name
P a list of formal parameters
P declarations of local variables

» body of the process: a sequence of statements

1 | proctype Sender (chan in; chan out){

2 bit sndB, rcvB; /* local variables */
3 do

4 out ! MSG, sndB ->

5 in = ACK, rcvB;

6 if

7 ::sndB == rcvB -> sndB = 1 - sndB
8 else -> skip

9

10 fi

11 od

12 |}

Variables and Types

-

COWONOOEWN -

/*basic typesx*/
bit turn=1;
bool flag;

byte counter;
short s;

int msg;

/*arrays*/
byte al[27];
bit flags[4];

©O~NOUAWNR

/*records*/

typedef Record{
short f1;
byte £2;

}

Record rr;

rr.fl=...

Statements

v

Depending on the global state of the systems, a statement is
either:

P executable: can be executed immediately

P blocked: cannot be executed immediately
assignments are always executable
expressions are executable if they evaluate to non-zero:

P> 2 < 3 always executable
P> x < 27 executable if x is smaller than 27
P> 3+ x executable if x # -3

skip is always executable

run is executable if a new process can be created

Statements (cont.)

> assert(<expr>) is always executable

P if expr evaluates to zero, SPIN exits and reports the assertion
has been violated

P> Used to check validity of properties

proctype monitor (){
assert(n <= 3);

}
proctype receiver (){

toReveiver ? msg;
assert (msg != ERROR);

CWOoO~NOU A WNF

i

Interleaving Semantics

v

Processes execute concurrently
Non-deterministic scheduling of the processes

Executions of the processes are interleaved: one statement
executes at a time except for the rendez-vous communication

All statements are atomic, i.e. executed without interleaving

with other processes’ statements

Sometimes, the same process can choose among several
executable actions. One of them is chosen
non-deterministically

if-statement

~NoOUAWN R

if
1t choicey -> staty1; stat;o; ...
1t choicey -> staty1; statpo; ...

1t choicen -> statp1; statpo; ...
(:: else -> statp1; statp2; ...)
fi;

P if at least one of the choice; is executable, then SPIN non
deterministically chooses on of them

» if none of the choice; is executable, the if statement is blocked

> “->"is used to separate the guards from the statements that
follow it (actually equivalent to “;").

do-statement

do
11 choicey -> statj1; statyp; ...
1 choice; -> staty1; statpp; ...

1t choicep -> statpy; statpo; ...
od;

U AWN =

P similar to the if statement except for repetition

P break exits the do-loop

Communication

chan <name> = [<dim>] of {<t;, <tp >, ...};

1

2

3 | chan ¢ = [1] of {bit};

4 chan toR = [2] of {mtype, bit};

» Channels are used for communication

P using bounded buffers channels for message passing
P using “channels of size 0" for rendez-vous or handshake

Communication

P> Sending: puts a message into a channel:

1 ‘ch ! <expr1>, <expra>, ... <exprp>;

P Receiving: fetching a message from a channel:

/* message passing */

ch ? <vari>, <varp>, ... <varp>;

/* message testing */

ch ? <const;>, <consty>, ... <constp>;

ENERNNIN

The atomic Statement

1 ‘atomic {staty; staty; stat,}

P used to group statements into an atomic sequence that
executes without interleaving from other processes

P> executable if stat; is executable

» if stat;, for i > 1, is blocked, then atomicity is temporarily lost
and other processes may do a step

The d_step Statement

1 ‘d_step {staty; statr; stat,}

» more efficient than atomic: no intermediate states
» only deterministic statements allowed

P error if stat;, for i > 1, blocked

Examples of Promela constructs

assignment always exec.
expression exec. if true (non zero)
basic send (ch!) exec. if ch not full
statements || receive (ch?) exec. if ch not empty
assert (<expr>) | always exec.
printf always exec.
expression skip always exec.
statements || timeout true if no other statement is exec.
if exec. if at least one guard is exec.
compound || do exec. if at least one guard is exec.
statements || atomic exec. if first statement is exec.
d_step exec. if first statement is exec.
control goto jump to label

flow break exit do-statement

(i)Spin Architecture

LTL translator

'

= spin

simulator verifier generator

C program

|

counter example -+=—— checker

Mutex: First Attempt

1 | bit flag; /* signal entering/leaving the CS x*/
2 | byte mutex; /* number of processes in the CS x/
3

4 | proctype P(bit i){

5 flag !'= 1;

6 flag = 1;

7 mutex++;

8 mutex —--—;

9 flag = 0;

0 |}

11

12 | proctype monitor (){

13 assert (mutex!=2);

14 |}

15

16 | init{

17 atomic{ run P(0); run P(1); run monitor();}

18 |}

Mutex: Second Attempt

1 |bit x, y; /* signal entering/leaving the CS */
2 | byte mutex; /* number of processes in the CS %/
3

4 |active proctype A(){
5 x = 1;

6 y == 0;

7 mutex++;

8 mutex —--;

9 x = 0;

0 |}

11

12 |active proctype B(){
13 y = 1;

14 x == 0;

15 mutex++;

16 mutex--;

17 y = 0;

18 |}

19

20 | proctype monitor (D{
21 assert (mutex!=2);
22 |}

Mutex: Dekker's Algorithm

1 |bit x, y; /* signal entering/leabin the CS x/
2 | byte mutex; /* number of processes in the CS x/
3 |mtype {A_TURN, B_TURN}; /* who’s turn is it?x/

4 | byte turn;

1 |active proctype AQO{ 1 |active proctype B(O{

2 x = 1; 2 y = 1;

3 turn = B_TURN; 3 turn = A_TURN;

4 y == 0 4 x == 0

5 || (turn == A_TURN);s |1 (turn == B_TURN);
6 mutex++; 6 mutex++;

7 mutex --—; 7 mutex --;

8 x = 0; 8 y = 0;

9 |} 9 |}

1 | proctype monitor (){

2 assert (mutex!=2);

3|}

Mutex: Bakery Algorithm

1 | byte turn([2]; /* who’s turn is it? x/
2 | byte mutex; /* number of processes in the CS x/
3

4 | proctype P(bit i){

5 | do

6 | :: turnl[i] = 1;

7 turn[i] = turn[1-i] + 1;

8 (turn[1-i] == 0) || (turn[i] < turn[1-i]);
9 mutex++;

10 mutex --;

11 turn[i] = 0;

12 | od

13 |}

14

15 | proctype monitor (){

16 assert (mutex!=2);

17 |}

18

19 | init {

20 atomic{run P(0); run P(1); run monitor ()}
21 |}

Alternating Bit Protocol

mtype = { msg0, msgl, ack0, ackl };

chan sender = [1] of { mtype };

}

active proctype Sender ()
{
do
phase (msgl, ackl, ack0)
phase (msg0, ackO, ackl)
od
s
active proctype Receiver ()
{
do
recv(msgl, ackl, msgO,
recv(msg0, ackO, msgl,
od
}

H

ack0);
ackl)

chan receiver = [1] of { mtype };
inline phase(msg, good_ack, bad_ack)
{
do
sender?good_ack -> break
sender?bad_ack
timeout ->
if
receiver!msg;
skip /* lose message */
fi;
od
}
inline recv(cur_msg, cur_ack,
lst_msg, lst_ack)
{
do
receiver?cur_msg -> sender!cur_ack;
break /* accept */
receiver?lst_msg -> sender!lst_ack
od;

Properties

Safety property: Liveness properties:
» "nothing bad ever happens” » "something good eventually
» invariants: x is never 0 happens”
> deadlock freedom: the system P termination: the system eventually

never reaches a state where no terminates

actions are enabled P response: whenever X occrus, Y

. . eventually occurs
» SPIN finds a trace leading to the

bad state. If no traces exist, the » SPIN finds a reachable loop in
safety property holds which the good property does not
happen. If no such loop is
reachable, then the property holds.
invariance G(p) 1t1 {[] p}
response G(p = F(q)) 1t1 {[[(p => <> q)}
precedence G(p = (qUr)) 1t1 {[] (p=> (a U 1))}
objective G(p = F(ql|r)) UL{] (p=><>(a]l1)}

never Claims

LTL formulas can be captured using Biichi automata
SPIN uses never claims to capture Biichi automata
capture finite behaviors and w-acceptance cycles

the kripke structure and the never claim execute in lockstep

vvyyVvyyvwvyy

if the claim automaton does not have an enabled transition,
the serach backtracks

v

can be used to filter the execution or to establish an LTL
property is verified

Assignment: puzzling frogs

Build a model and a property whose counter-example (in SPIN) is
a sequence of moves that allows all frogs to switch side®.

P> 6 or 8 frogs, at most one on each rock, initially each half
facing the other side from where it is sitting.

P can jump one step to the next rock if empty,

P can jump over a rock if occupied and following is empty.

1
https://data.bangtech.com/algorithm/switch_frogs_to_the_opposite_side htm

https://data.bangtech.com/algorithm/switch_frogs_to_the_opposite_side.htm

	The CTL* Temporal Logic
	Model Checking CTL
	LTL and Büchi acceptance
	Spin: flagship LTL explicit model checking

