
Software Verification

Introduction
Model Checking and Temporal Logic

Ahmed Rezine

IDA, Linköpings Universitet

Vårtermin 2025

Outline

Overview

Introduction

Model checking

Further readings

Outline

Overview

Introduction

Model checking

Further readings

This course

I Introduces principals behind software verification approaches
including model checking, Hoare-style reasoning, satisfiability
modulo theory and abstract interpretation

I Uses assignments to allow for experimenting with the
introduced notions. The assignments will have a “theoretical”
part and a “practical” part. The practical part involves
hands-on assignments on representative tools of the different
verification techniques.

I Concludes with an exam

Plan

I Explicit model checking
I 2 lectures + Assignment.

I Bounded/symbolic verification
I 2 lectures + Assignment.

I Axiomatic reasoning
I 2 lectures + Assignment.

I Scalable over-approximation
I 2 lectures + Assignment.

I Exam June 2025.

Assignments

I Jonathan Hjort is the new course assistant
I There are four assignments
I Expected to work in pairs
I Register to webreg before April 3rd
I Demonstrate your solution in a scheduled lab session
I Deadline for submissions: last lab session

Outline

Overview

Introduction

Model checking

Further readings

Verification

I We want to answer whether some program behaves correctly.
We define “correctness” soon.

I For now, assume that means some erroneous configurations
are not reachable

I We say the program is safe

Safe Program Unsafe Program

The general verification problem is “very difficult”

I Deciding whether all possible executions of a program are
error-free is hard. If we could write a program that does it for
arbitrary programs to be analyzed then we would always be
able to answer whether a Turing machine halts.

I This problem is proven to be undecidable.

Problem is “very difficult”: what to do?

I Identify sub-problems on which one can decide: e.g. finite
state machines, push-down automata, timed automata, Petri
nets, well-structured transition systems.

I Proceed with approximations that will hopefully give some
guarantees.

Verification problem and approximations

I An analysis procedure takes as input a program to be checked
against a property. The procedure is an analysis algorithm if it
is guaranteed to terminate.

I An analysis algorithm is sound in the case where each time it
reports the program is safe wrt. some errors, then the original
program is indeed safe wrt. those errors (pessimistic analysis)

I An algorithm is complete in the case where each time it is
given a program that is safe wrt. some errors, then it does
report it to be safe wrt. those errors (optimistic analysis)

I In general, you have to give up on one of the three:
termination, soundness or completeness.

Verification problem and approximations

I The idea is then to come up with efficient approximations to
give correct answers in as many cases as possible.

Over-approximation Under-approximation

Program verification and the price of approximations

I A sound analysis cannot give false negatives
I A complete analysis cannot give false positives

False Positive False Negative

We will introduce the following techniques

I Explicit model checking
I represents “behaviors” explicitely. Aims for exactness on

sub-classes.
I Symbolic based techniques

I represents “behaviors” symbolically. Can be used for sound or
complete approaches.

I Axiomatic reasoning
I Uses predicates and can prove anything provable by a human,

but with human intervention.
I Scalable over-approximation

I Uses sound approximations that may lead to false positives.

Outline

Overview

Introduction

Model checking
Correctness properties

Further readings

Model checking

M
?
j= Φ

I Model checking is a push button verification approach
I Given:

I a model M of the system to be verified, and
I a correctness property Φ to be checked: absence of deadlocks,

livelocks, starvation, violations of constraints/assertions, etc
I The model checking tool returns:

I a counter example in case M does not model Φ, or
I a “proof” that M does model Φ

Model Checking in Practice

Traditional model checkers: More recent model checkers:

Model Checking: Verification vs debugging

I Model checking tools are used both:
I To establish correctness of a model M with respect to a

correctness property Φ
I More importantly, to find bugs and errors in M early during

the design

M as a Kripke structure

Assume a set of atomic propositions AP. A Kripke structure M is
a tuple (S;S0;R; L) where:

1. S is a finite set of states
2. S0 � S is the set of initial states
3. R � S � S is the transition relation s.t. for any s 2 S, R(s; s 0)

holds for some s 0 2 S
4. L : S ! 2AP labels each state with the atomic propositions

that hold on it.
Intuitively, AP are properties whose evolution (when moving from
one state to the other) we want to track. Kripke structures can be
used to capture the behavior of very different systems.

Programs as Kripke structures

1 int x = 0;
2
3 void thread (){
4 int v = x;
5 x = v + 1;
6 }
7
8 void main (){
9 fork(thread);

10 int u = x;
11 x = u + 1;
12 join(thread);
13 assert (x == 2);
14 }

Synchronous circuits as Kripke structures

v 0

0 = :v0 (1)
v 0

1 = v0 � v1 (2)
v 0

2 = (v0 ^ v1) � v2 (3)

Asynchronous circuits handled using a disjunctive R instead of a
conjunctive one like for synchronous circuits.

Synchronous circuits as Kripke structures

v 0

0 = :v0 (1)
v 0

1 = v0 � v1 (2)
v 0

2 = (v0 ^ v1) � v2 (3)

Asynchronous circuits handled using a disjunctive R instead of a
conjunctive one like for synchronous circuits.

Temporal Logics

I We are intereseted in describing sequences of transitions of
Kripke structures

I Many Reactive Systems are designed to continously react to
their environement

I An input/output description is not suitable
I Describing sequences makes more sense

� as a formula in some temporal logics

I Temporal logics are formalisms to describe sequences (hence
the notion of time) of transitions

I Temporal operators are used to express that certain properties
in AP are:
I never reached
I eventually reached
I more complex combinations of those

The CTL� Temporal Logic

Computation trees are obtained by unwinding the Kripke structure

The CTL� Temporal Logic (cont.)

I A CTL� formua is composed of path quantifiers and temporal
operators

I Path quantifiers (A, E) describe the branching of the tree.
Given a state, A (resp. E) specify that all (resp. some) path
starting at the state have some property

I Temporatl operators (X, F, G, U, R) describe properties of a
given path in the computations tree

The CTL� Temporal Logic: syntax

The following are state fromulas
I p if p 2 AP
I :f , f ^ g and f _ g if f ; g

are state formulas
I Af , Ef if f is a path formula

The following are path fromulas
I f if it is also a state formula
I :f , f ^ g , f _ g , X f , F f ,

G f , f U G and f R g if f ; g
are path formulas

CTL� is the set of state formulas generated by the above rules.

The CTL� Temporal Logic: notation

I A path � = s0s1 : : : in a computation tree (obtained from a
Kripke structure) is any infinite sequence of states with
R(si ; si+1) for each i 2 N

I Write �i to mean the path starting from si in � = s0s1 : : :

I Write M; s j= f to mean that state formula f holds at state s
in the Kripke structure M

I Write M; � j= f to mean that path formula f holds along
path � in the Kripke structure M

The CTL� Temporal Logic: semantics

f1 and f2 are state formulas, g1 and g2 are path formulas.

M; s j= p , p 2 L(s)
M; s j= :f1 , M; s 6j= f1
M; s j= f1 _ f2 , M; s j= f1 or M; s j= f2
M; s j= f1 ^ f2 , M; s j= f1 and M; s j= f2
M; s j= E g1 , there is a path � from ss.t. M; � j= g1
M; s j= A g1 , for every path � starting from s, M; � j= g1

The CTL� Temporal Logic: semantics (cont.)

f1 and f2 are state formulas, g1 and g2 are path formulas.

M; � j= f1 , if � = s0s1 : : : then M; s0 j= f1
M; � j= :g1 , M; � 6j= g1
M; � j= g1 _ g2 , M; � j= g1 or M; � j= g2
M; � j= g1 ^ g2 , M; � j= g1 and M; � j= g2
M; � j= X g1 , M; �1 j= g1
M; � j= F g1 , there exists a k � 0 s.t. M; �k j= g1
M; � j= G g1 , for all k � 0 s.t. M; �k j= g1
M; � j= g1U g2 , there exists a k � 0 s.t. M; �k j= g2

and for all 0 � j < k;M; �j j= g1
M; � j= g1R g2 , for all j � 0 if for every i < j ;M; �i 6j= g1

then M; �j j= g2

The CTL� Temporal Logic (cont.)

Assignment: Express each of the following using f ; g ;:;U;E:
I (F f) = ?
I (G f) = ?
I (A f) = ?
I (f R g) = ?

The UPPAAL model checker

Outline

Overview

Introduction

Model checking

Further readings

Further readings

R. Jhala and R. Majumdar. Software model checking. ACM Computing Surveys
(CSUR), 41(4):1–54, 2009.

R. Alur. Timed automata. International Conference on Computer Aided
Verification, pages 8–22. Springer, 1999.

E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith. Model
checking (chap 2-6). MIT press, 2018.

Further readings

A. Pnueli. The temporal logic of programs. In Foundations of Computer Science,
1977., 18th Annual Symposium on, pages 46–57, Oct 1977.

E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In D. Kozen, editor, Logics of Programs,
volume 131 of Lecture Notes in Computer Science, pages 52–71. Springer Berlin
Heidelberg, 1982.

D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of
fairness. In Proceedings of the 7th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’80, pages 163–173, New York,
NY, USA, 1980. ACM.

J. Queille and J. Sifakis. Specification and verification of concurrent systems in
cesar. In M. Dezani-Ciancaglini and U. Montanari, editors, International
Symposium on Programming, volume 137 of Lecture Notes in Computer Science,
pages 337–351. Springer Berlin Heidelberg, 1982.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM Trans.
Program. Lang. Syst., 8(2):244–263, Apr. 1986.

	Overview
	Introduction
	Model checking
	Correctness properties

	Further readings

