
Exam Software Verification (TDDE34)

August 18, 2021

Examiner: ahmed.rezine@liu.se

• Time kl 08.00 - 12.00

• Submit a “main” pdf, word or text file. If you join pictures, reference
them from the main file.

• This is an open book exam. You can access internet.

• It is however strictly forbidden to contact and discuss the exam, during
the exam period, with any person other than the examiner, whether the
person is related to the course or not.

1

1 Branching time (6p)

Assume Req and Ack are atomic propositions. Express the following CTL prop-
erties using (boolean combinations of) EG, EU and the atomic propositions
above:

• AF(Ack) (1p)

• AG(!Req) (1p)

• AG(EF(Ack)) (2p)

• AG(Req)⇒ AG(Ack) (2p)

2 Mutual exclusion (16p)

Assume the following description of a simple mutual exclusion algorithm for
two processes p and q. State p0 (resp. q0) is the initial state of process p
(resp. process q). Process p (resp. process q) moves to state p1 (resp. state
q1) in case it wants to access its critical section. State p2 (resp. q2) is the
critical section of process p (resp. process q). Variable lock is shared by the
two processes and can only be manipulated with the primitives acquire and
release. It is initially free. When acquired, the lock becomes busy and cannot
be acquired again until it is first released. Transitions are either lock acquisitions
(e.g. acquire(lock) for transition t2) or lock releases (e.g. release(lock) for
transition s3) or just change of state with no operations (e.g. transition t1).

2.1 Part A: (10p)

In the following, we use @pi to mean the proposition stating process p is at
state pi. We do the same for process q. For instance, the proposition @q2
is true in a configuration when process q is at its critical section. We use the
following set of atomic propositions:

• Location propositions: {@pi | 0 ≤ i ≤ 2} ∪ {@qi | 0 ≤ i ≤ 2}

• Values’ propositions: {lock = v | v in {free,busy}}

Answer the following questions:

• The LTL formula G(!(@p2 ∧ @q2)) states that mutual exclusion is always
respected. Does it hold? argue or give a run violating it (2p)

2

• Write an LTL formula corresponding to the starvation freedom of p, i.e.,
each time p wants to access its critical section it eventually succeeds. (2p)

• Write an LTL formula ϕp:alone that states that it is always the case that if
process q stays at q0, then each time p wants to access its critical section
it eventually succeeds. (3p)

• Give a Büchi automaton for the formula ϕp:alone. Explain it. (3p)

2.2 Part B: (6p)

We assume the transitions are atomic. Transitions from different processes can
be interleaved (a scheduler schedules one process at a time to execute a number
of transitions). Transitions corresponding to lock acquisition are enabled if
the corresponding process is at the start of the transition (e.g., @q1 holds for
s2) and the lock is free (i.e., lock=free). Transitions corresponding to lock
release are enabled if the corresponding process is at the start of the transition
(e.g., @p2 holds for t2) and the lock is busy (i.e., lock=busy). Transitions
that are not enabled cannot be fired. We write En(t) to mean transition t is
enabled. We write Ex(t) to mean transition t is indeed executed. For instance
Ex(s2) is true if En(s2) and process q moves from q1 to q2. It is common to
assume schedulers behave “reasonably”. A way to account for this assumption
is to restrict runs to those satisfying “reasonable” constraints. Consider the
following constraint:

Φ: for all transition u different from p1 of process p and different from q1 of
process q: GF(!En(u) or Ex(u))

• Is restricting scheduler’s behavior to Φ enough to ensure starvation free-
dom of process p? argue or give a counter-example. (3p)

• Is restricting scheduler’s behavior to Φ enough to ensure ϕp:alone? argue
or give a counter-example. (3p)

3 Symbolic representation (8p)

1. Assume integer variables x1, x2 and x3. A pure function f that associates
integers to integers (assume the domain of f contains all integers). An
integer-indexed array Arr containing integer values (assume the size of
Arr is infinite and all integers are valid indices). The following formula
involves expressions in Linear Integer Arithmetic (LIA), Equality over
Uninterpreted Functions (EUF) and Arrays (A) fragments. (0 < x1 ∧ x1 < 4 ∧ 1 < x2 ∧ x2 < 3 ∧ x1 + 1 = x2)

∧
((f(x1) = f(1))⇒ (rd(wr(Arr, x2, x3), x1) = (x1 + x3)))


Give a model (i.e., values for the variables) for the formula if it is satisfi-
able, otherwise argue why it is not satisfiable. (4p)

3

2. Consider the formula f(v0, v1, v2, v3) defined as ((v0⊕v1⊕v2) = v3) where
v0, v1, v2 and v3 are boolean variables and ⊕ stands for the exclusive or
binary operator. Give a BDD for f assuming the order v0 < v1 < v2 < v3
(i.e., starting from the root, variable v0 appears first, then variable v1, ...
etc). If it makes the submission simpler, you can draw the BDD on paper,
take a picture and join it to your submission. (4p).

4 Partial and total correctness (10p)

Consider the following simple program:

{Q : x = 0 ∧ y = 0 ∧ i = n ∧ 0 ≤ n}
do 0 < i → i := i− 1;x := x + 3; y := y − 2
od
{R : x + y = n}

• Find a suitable invariant and use it to show that if the loop terminates after
starting from a state satisfying Q then it terminates in a state satisfying
R (6p)

• Find a suitable variant function and use it to show the loop terminates.
(4p)

4

