
TDDE25 Project:
Capture the flag game

Cyrille Berger

November 3, 2017

The goal of this project is to develop a game. The game you are going to de-
velop is a variation of a classical capture the flag (http://en.wikipedia.org/wiki/
Capture_the_flag), implemented in Python. In this version of the game, the players
control a tank, whose goal is to capture the flag and to bring it back to the base. There
are obstacles on the fields and also the tanks are capable of shooting: either to destroy
objects or to get the flag back from other tanks.

We are providing you with a very basic framework for the game (mostly to handle
graphics and the 2D physics engine), a set of artwork (tanks, bases, flag, obstacles,
sounds), a very basic artificial intelligence (AI) and a small tutorial that will lead you
to develop the basic components of the game: displaying the tanks and other objects,
adding walls, making it possible to control the tank using a controller or an AI, capturing
the flag and destroying enemies.

The game will look similar to the following screenshot:

1

http://en.wikipedia.org/wiki/Capture_the_flag
http://en.wikipedia.org/wiki/Capture_the_flag

Contents

1 Requirements 3

2 Game Concept 3

3 Project outline 4

4 External libraries 4
4.1 Running on the University Solaris stations . 4

5 Artwork and other assets 4

6 Game programming techniques and concepts 5
6.1 Classes and object oriented programming . 5
6.2 Display engine . 5
6.3 Physics engine . 6

7 Overview of libraries 6
7.1 pygame . 6
7.2 pymunk . 7

8 Tutorial 7
8.1 Code Structure . 7
8.2 Run the game . 8
8.3 Structure of the code . 8
8.4 Coordinates systems . 10
8.5 Display the background . 10
8.6 Maps . 12
8.7 Create boxes . 12
8.8 Show objects . 13
8.9 Create tanks . 13
8.10 Create flags . 14
8.11 Keyboard control . 15
8.12 Grab the flag . 16
8.13 Create base . 16
8.14 Victory condition . 16
8.15 AI . 16
8.16 Prevent objects to move out of the screen . 16
8.17 Shooting . 17
8.18 What next? . 19

9 Writing a User Manual 19

10 Features ideas 19
10.1 Easy . 19
10.2 Medium . 20
10.3 Hard . 22
10.4 Be creative . 24

2

1 Requirements

To pass the course, you are required to have completed:

• the tutorial

• 10 points of features

• to have written a user manual

• to have actively participated during the Friday review meeting

2 Game Concept

This section describes the concepts for the game. Each player controls a single tank.
There is a single flag shared by all players, and to win the game a player needs to bring
the flag back to his base. The flag is captured simply by moving a tank onto the flag
icon. Since the flag is heavy, a tank that carries the flag should move slower.

Tanks are equipped with a cannon that can shoot at objects or other tanks. Some
objects are destroyed when shot at, while others are unaffected. When a tank is hit by
a shot, it should drop the flag and be teleported back to its base. When a tank shoots,
it needs to wait 10 seconds before being able to shoot again. Also, it is expected that
the tank is affected by the recoil of the shot, and moves in the opposite direction of the
shot.

The field contains several types of objects:

• walls which cannot be moved or destroyed

• steel boxes which can be moved when a tank pushes it but not destroyed (however,
if a tank shoots at a steel box, it would be a good idea to consider that the impact
of the ammunition should move the box slightly)

• wood boxes which can be moved or destroyed

• tanks which are controlled by the players

3

• bases, with one base as a starting point for each tank, also serving as a goal where
the player must return with the flag

• a single flag which tanks need to capture

3 Project outline

The development part of your project lasts for six weeks. During these weeks you are
expected to follow the steps of a tutorial that will guide you through the development of
the basic aspects of your game. After completing the tutorial, you are expected to imple-
ment new features that will enhance your game. In that phase you will be free to pick
the features you want to implement and how you want the features to be implemented.

4 External libraries

For this project, you are going to be using two external libraries:

• The Python Game framework (http://www.pygame.org/) is used for managing
the display, inputs and sounds

• The pymunk library (http://code.google.com/p/pymunk/) is used to handle
the physics aspect of the game, such as collisions between two objects

4.1 Running on the University Solaris stations

If you are developing on Solaris, the required libraries have already been compiled for
you. All you need to do is run the following commands in a shell:

module add /home/TDDE25/modulefiles/ctf

module initadd /home/TDDE25/modulefiles/ctf

5 Artwork and other assets

Since the focus of the course is on programming, it is important that if during the devel-
opment of your features you feel the need to use graphics that are not already provided,
either keep it simple, or use images found on the internet. Here is a sample list of free
repositories for 2D graphics and assets that you can use:

• http://www.lostgarden.com/2006/07/more-free-game-graphics.html

• http://funplosion.com/free-assets.html

• http://www.reinerstileset.de/

• http://www.freesound.org/

4

http://www.pygame.org/
http://code.google.com/p/pymunk/
http://www.lostgarden.com/2006/07/more-free-game-graphics.html
http://funplosion.com/free-assets.html
http://www.reinerstileset.de/
http://www.freesound.org/

6 Game programming techniques and concepts

The goal of this section is to introduce you to some of the techniques and concepts
that are useful when developing a new 2D game. This a non-exhaustive section and
we refer you to the Internet (especially http://www.google.com and http://www.

wikipedia.com) to learn about the theories behind game development.

6.1 Classes and object oriented programming

For this project you need to be familiar with a very small subset of object oriented pro-
gramming (OOP). The two main concepts of OOP are objects and classes. An object has
properties (for instance color, size...) and can have methods that can be called (move_to,
explode...). A class is a template that is used to define the properties and methods of
objects.

In python a class is created this way:

1 class Furniture(object):

2 def __init__(self, color):

3 self.color = color

4 self.size = 3

5 def explode(self):

6 self.color = "red"

In this example, the Furniture class defines two properties color and size and one
method explode.

An object is actually a specific instance of a class, in Python they are created as follow:

1 blue_furniture = Furniture("blue")

2 green_furniture = Furniture("green")

Both objects have the same methods (in this case explode), the same properties, but
the values of the properties are different.

In Python, to call a method you can simply do:
1 blue_furniture.explode()

This will call the method explode and the color property will be set to red.
The last OOP concept that you need for this course is called inheritance, classes can

inherit from each others, for instance, in real life a chair is a type of furniture and it
inherits the common properties, such as color or size. In python inheritance is done like
this:

1 class Chair(Furniture):

2 def __init__(self, color):

3 super(color)

4 self.legs = 4

6.2 Display engine

Double buffering The most straight-forward way of drawing objects on the screen
would be to clear the video memory and then draw directly inside that memory. How-

5

http://www.google.com
http://www.wikipedia.com
http://www.wikipedia.com

ever, since you will for example draw a background and then draw objects on top of it,
this can introduce flickering where the monitor intermittently displays a screen that is
only partly updated.

The solution to that problem is to use a double buffering technique. With double
buffering, instead of drawing in the video memory, programs will write in a separate
buffer, and once the drawing is completed, the separate buffer is then copied into the
video memory. With such a system, no intermediate results will be sent to the screen,
and the flickering disappears.

Source: Wikipedia (http://en.wikipedia.org/wiki/Multiple_buffering)

Tiles and sprites The game you are developing is a tile-based game. This mainly
means that the game area consists of smalls square graphic images (like grass or the
boxes). Objects that move are called sprites.

You can read more about tile-based games on Wikipedia: http://en.wikipedia.
org/wiki/Tile-based_video_game.

6.3 Physics engine

A physics engine provides a simulation of physical interaction among objects. While it is
possible for a physics engine to emulate all kinds of interaction among objects, including
gravity, we will mostly use the physics engine to handle collisions between two objects.

You can read more about physics engines on Wikipedia: http://en.wikipedia.
org/wiki/Physics_engine.

7 Overview of libraries

Before you get started, it is strongly advised that you have a look at the documentation,
tutorials and examples of the Python game framework we are using.

7.1 pygame

The pygame library is used for display, input, sounds, its documentation is available
online http://www.pygame.org/docs/.

For this game we mainly use three classes:

• display for configuring the screen (http://www.pygame.org/docs/ref/display.
html)

• surface for showing the games graphics (background and sprites) on the screen
(http://www.pygame.org/docs/ref/surface.html)

6

http://en.wikipedia.org/wiki/Multiple_buffering
http://en.wikipedia.org/wiki/Tile-based_video_game
http://en.wikipedia.org/wiki/Tile-based_video_game
http://en.wikipedia.org/wiki/Physics_engine
http://en.wikipedia.org/wiki/Physics_engine
http://www.pygame.org/docs/
http://www.pygame.org/docs/ref/display.html
http://www.pygame.org/docs/ref/display.html
http://www.pygame.org/docs/ref/surface.html

• event to handle the keyboard (http://www.pygame.org/docs/ref/surface.
html)

7.2 pymunk

The pymunk library is used to handle the physics aspect of the game, mainly to han-
dle collisions, its documentation is available online: http://code.google.com/p/

pymunk/wiki/Documentation.
In pymunk an object in the game is represented as a body, bodies have a position

and a speed. A shape is attached to the body, the shape represents the boundaries of the
object, in this game we mostly use the rectangular shape.

• body: http://pymunk.googlecode.com/svn/tags/pymunk-2.0.0/docs/

api/pymunk.Body-class.html

• shape: http://pymunk.googlecode.com/svn/tags/pymunk-2.0.0/docs/
api/pymunk.Shape-class.html

8 Tutorial

The goal of this tutorial is to get you through the early step of the development of the
game. The early steps of the tutorial should be done very quickly, the following steps
require more development time.

It is strongly recommended that you do not copy/paste samples from this
tutorial, but retype them, and check the documentation for each function
that is used and write your own comments. Also, some of the code snippets
contain visible bugs and compilation errors that you are invited to fix on
your own.

We have created for you a skeleton of the game, which contains artworks, some
helper classes and a very basic AI. You can get the archive for the files on the Solaris
server:
/home/TDDE25/projects/capturetheflag/ctf.tar

You can unpack it in your home directory, using the following commands:
cd

tar -xf /home/TDDE25/projects/capturetheflag/ctf.tar

8.1 Code Structure

The first step of your work should be to look at the existing files and read through the
codes and comments and understand what they are offering.

7

http://www.pygame.org/docs/ref/surface.html
http://www.pygame.org/docs/ref/surface.html
http://code.google.com/p/pymunk/wiki/Documentation
http://code.google.com/p/pymunk/wiki/Documentation
http://pymunk.googlecode.com/svn/tags/pymunk-2.0.0/docs/api/pymunk.Body-class.html
http://pymunk.googlecode.com/svn/tags/pymunk-2.0.0/docs/api/pymunk.Body-class.html
http://pymunk.googlecode.com/svn/tags/pymunk-2.0.0/docs/api/pymunk.Shape-class.html
http://pymunk.googlecode.com/svn/tags/pymunk-2.0.0/docs/api/pymunk.Shape-class.html

Once you have done that, your first task is to write a small description of the
existing functionalities. For each Python file in the skeleton, you are expected
to write a small paragraph describing the content of that file, and what features
are available. Once this is done, you should bring the text to the Friday project
report.

8.2 Run the game

To run the game you simply need to go in the source code directory and run the following
command:
python3 ctf.py

If you do it now, you should get a black screen that you can simply exit by pressing
the ESCAPE key.

8.3 Structure of the code

The ctf.py file is divided into two sections, the Initialisation and the Main loop. Both
sections already contains some code.

Initialisation In the first part of this section, the two game libraries (pygame and
pymunk) are initialised. We also initialise a clock that will be used to control the frame-
rate of the game. This is also in that section that we will create the objects needed for
the game.

Main loop In the main loop, we check for input events, and then update the physics
engine and display the result on the screen. We have already added the key for exiting
the game (ESCAPE), and the call to update the physics and to refresh the screen. At the
end of the loop, we call the function clock.tick to control the frame rate of the game, this
is to make sure that the game flow at the speed no matter what computer you are using
(it is set at 50 frame per seconds).

8

1 #-- Control whether the game run

2 running = True

3
4 skip_update = 0

5
6 while running:

7 #-- Handle the events

8 for event in pygame.event.get():

9 # Check if we receive a QUIT event (for instance, if the

10 # user presses the close button of the window) or if the

11 # user presses the escape key.

12 if event.type == QUIT or (event.type == KEYDOWN \\

13 and event.key == K_ESCAPE):

14 running = False

15 #-- Update physics

16 if(skip_update == 0):

17 # Loop over all the game objects and update their speed in

18 # function of their acceleration.

19 for obj in game_objects_list:

20 obj.update()

21 skip_update = 5

22 else:

23 skip_update -= 1

24
25 # Check collisions and update the objects' position

26 space.step(1 / framerate)

27
28 # Update object position that depends from an other

29 # object position (for instance a flag carried by a tank)

30 for obj in game_objects_list:

31 obj.post_update()

32
33 #-- Update Display

34
35 #<INSERT DISPLAY BACKGROUND>

36
37 #<INSERT DISPLAY OBJECTS>

38
39 # Redisplay the entire screen (see double buffer technique)

40 pygame.display.flip()

41
42 # Control the game framerate

43 clock.tick(framerate)

9

8.4 Coordinates systems

One of the most common bugs in the display part of a 2D game is to lose track between
the coordinate systems. For this game, we will use two coordinate systems, one that
represents the index of a tile in the map array, and the other one used for display and
by the physics engine.

The video game you are developing is tile-based (http://en.wikipedia.org/
wiki/Tile-based_video_game), meaning that the playing area consists of small
square areas (called tiles) laid out adjacently to each other in a grid. You can think
of it as a chess game, but instead of white and black tiles, there are grass tiles, box tiles,
and so on.

If we consider a map of dimension (width, height), the top left tile has index (0, 0)
and bottom right (width − 1, height − 1). While for display, the top left coordinate is
(0, 0) and the bottom right is (width, height). And if you have a tile at index (i, j) it will
be centered on the canvas coordinates (i + 0.5, j + 0.5).

The figure below shows the two coordinate systems:

(0,0)

(0,6) (7,6)

(7,0)

(0,1)

(0,2)

(0,3)

(0,4)

(0,5)

(1,0) (2,0) (3,0) (4,0) (5,0) (6,0)

(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)

(7,1)

(7,2)

(7,3)

(7,4)

(7,5)

(6.5,0.5)

(3.5,3)

(1,1.5)

[0][0] [0][1] [0][2] [0][3] [0][4] [0][5] [0][6]

[1][0] [1][1] [1][2] [1][3] [1][4] [1][5] [1][6]

[2][0] [2][1] [2][2] [2][3] [2][4] [2][5] [2][6]

[3][0] [3][1] [3][2] [3][3] [3][4] [3][5] [3][6]

[4][0] [4][1] [4][2] [4][3] [4][4] [4][5] [4][6]

[5][0] [5][1] [5][2] [5][3] [5][4] [5][5] [5][6]

The left figure shows the coordinate system used for the position of objects in the
game. Basically, if the map has a dimension of 6x5, the top left coordinate would be
(0, 0), while the top left tile is centred on the (0.5,0.5) coordinate, and the bottom right
coordinate is (7,6) and the bottom right tile is centred on (6.5,5.5).

The right figure shows the index used to access tile in the map array, note that the
x and y coordinates are switched. When accessing the coordinates on the canvas, we
use the order x first and y second, but to access information in the map, the order is
switched. For instance, the tile (2,3) is centred on (2.5,3.5) of the canvas, but in the
array representing the map, you would need to use [3][2] to access its information, or
even better, use the helper function in the map class.

While tiles and walls are always centred on a cell of the coordinates grid, tanks, flags
and boxes (steel and wood) can be at any arbitrary position on that grid.

8.5 Display the background

The first step is going to be to display the background. For this game, it is simply a
repetition of the grass tile pattern to cover the entire screen.

The first step is then to generate the background image, you need to replace the
comment with <INSERT GENERATE BACKGROUND> with the following code:

10

http://en.wikipedia.org/wiki/Tile-based_video_game
http://en.wikipedia.org/wiki/Tile-based_video_game

1 #-- Generate the background

2 background = pygame.Surface(screen.get_size())

3
4 # Copy the grass tile all over the level area

5 # The map has dimension a width of "current_map.width" and a

6 # height of "current_map.height".

7 # The first loop will iterate "x" between "0" and "width-1"

8 # And the second loop will iterate "y" between "0" and

9 # "height-1"

10 for x in range(0, current_map.width):

11 for y in range(0, current_map.height):

12 # The call to the function "blit" will copy the image

13 # contained in "images.grass" into the "background"

14 # image at the coordinates given as the second argument

15 background.blit(images.grass, (x*images.TILE_SIZE, y*images.TILE_SIZE))

At the beginning of each display cycle, the first step is to display the background, you
will do that by replacing the comment with<INSERT DISPLAY BACKGROUND> with the
following code:

1 # Display the background on the screen

2 screen.blit(background, (0, 0))

If everything went right, you should see the following screen:

Explain in one or two sentences, why do you think it is a good idea to generate
a static image of the background. Once this is done, you should bring the text
to the Friday project report.

11

8.6 Maps

The game you are creating should be able to use different maps to provide variety for
the players. The game skeleton contains a class called Map that defines the information
for each different map. It defines the size (width, height expressed in the dimension
of a tile) as well as the position of the flag (flag_position), the start position of robots
(start_positions) and the position and type of the boxes (boxes).

The variable current_map contains an instance of the Map class for the map that is
going to be used in the game.

8.7 Create boxes

The position and type of boxes is actually defined by an array of dimension height×width
where a value of 0 means no box, 1 means rock box (also called walls), 2 means wood
box and 3 means steel box. Therefore the creation of the box is done by reading the
calling the boxAt(x,y) function from the current_map variable, and then using the value
of the array, we can know which type of box need to be created and where is the initial
position.

You need to replace the comment with<INSERT CREATE BOXES> with the following
code:

1 #-- Create the boxes

2 # The initial position and type of boxes is contained in the

3 # "current_map.boxes" array, which is an array that has

4 # the size of the map, and whose cells contain the box type

5 # (0 means no box, 1 means wall, 2 means wood and 3 means

6 # steel).

7 #

8 # As for the background we create two loops over the size of

9 # the map.

10 for x in range(0, current_map.width):

11 for y in range(0, current_map.height):

12 # Get the type of boxes for the current cell(y, x)

13 box_type = current_map.boxAt(x, y)

14 # We need to get the python object that correspond to the

15 # model

16 box_model = boxmodels.getmodel(box_type)

17 # If the box model is non null, create a box

18 if(box_model != None):

19 # Create a "Box" using the model "box_model" at the

20 # coordinate (x,y) (an offset of 0.5 is added since

21 # the constructor of the Box object expects to know

22 # the centre of the box, have a look at the coordinate

23 # systems section for more explanations).

24 box = gameobjects.Box(x + 0.5, y + 0.5, box_model, space)

25 game_objects_list.append(box)

You should try to run the program, however, you will not notice any difference. Since

12

we have created the objects, but we are not displaying them.

8.8 Show objects

In the main loop, we need to call the update_screen function of each object, so that they
can draw themselves on the screen.

You need to replace the comment with <INSERT DISPLAY OBJECTS> with the fol-
lowing code:

1 # Update the display of the game objects on the screen

2 for obj in game_objects_list:

3 # For each object, simply call the "update_screen" function

4 obj.update_screen(screen)

If everything went right, you should see the following screen:

Is this the most optimal solution for displaying all the different type of boxes?
And if it is not, what do you think should be done to improve the performance?
Once you have given thought about this, you should bring your answer to the
Friday project report.

8.9 Create tanks

Tank creation is similar to the creation of boxes, except that the information on the
initial location of the tanks is stored in the start_positions member of the current_map
variable. start_positions is simply an array of positions.

You need to replace the comment with<INSERT CREATE TANKS> with the following
code:

13

1 #-- Create the tanks

2 # Loop over the starting poistion

3 for i in range(0, len(current_map.start_positions)):

4 # Get the starting position of the tank "i"

5 pos = current_map.start_positions[i]

6 # Create the tank, images.tanks contains the image representing the tank

7 tank = gameobjects.Tank(pos[0], pos[0], pos[2], images.tanks[i], space)

8 # Add the tank to the list of objects to display

9 game_objects_list.append(tank)

10 # Add the tank to the list of tanks

11 tanks_list.append(tank)

Since tanks are added to the game_objects_list, there is no need to modify the main
loop. And if everything went right, you should see the following screen:

8.10 Create flags

The coordinates for the position of the flag is contained in the flag_position member of
the current_map variable.

This is the first bit of code that you are going to write fully on your own. Your code
should replace the <INSERT CREATE FLAG> comment.

The following function can be used to create a flag:
1 # This function call create a new flag object at coordinates x, y

2 gameobjects.Flag(x, y)

And you can access the position of the flag using the flag_position property of the
current_map variable. And after creating a flag object, do not forget to add it to the list
of game objects: game_objects_list, check how it was done for creating boxes and tanks.

14

If everything went right, you should see the following screen:

8.11 Keyboard control

Now, you need to make it possible for the player to move the robot. It should work like
this, when the player presses:

• the up key, the tank accelerates forward

• the down key, the tank accelerates backward

• the left key, the tank turns left

• the right key, the tank turns right

And when the player releases the keys the tank stops moving.
If you look in the ctf.py file, at the beginning of the main loop, there is a section called

event handler. This is basically a loop that allow you to handle the events received by
the game, and when a user presses or releases a key, it triggers an event that can be
caught in this loop.

If you look at what is in the file, you should see the following code:
1 #-- Handle the events

2 for event in pygame.event.get():

3 if event.type == QUIT or (event.type == KEYDOWN and event.key == K_ESCAPE):

4 running = False

This code checks if it receives the QUIT event (defined by the pygame framework),
or if the player presses the ESCAPE key. If either condition is true, the game exits. You
just need to add new tests to see whether the K_UP, K_DOWN, K_LEFT and K_RIGHT
keys have been pressed or release, and if so, call the correct function of the tank object.

15

To control the speed of a tank, you should check the functions accelerate, decelerate,
turn_left, turn_right, stop_moving and stop_turning of the gameobjects.Tank class.

From now on, you will not get any indication of where you are supposed
to put the code. You will need to think about it and experiment.

8.12 Grab the flag

Now you can move the tank to the flag, but the flag is not automatically picked up as it
should be. This is because you need to add code that does this if a tank is near the flag
and no other tanks have already grabbed the flag. Incidentally, there is a function in the
Tank class called try_grab_flag that checks if a tank can grab the flag and then if a tank
is near the flag, it grabs it.

8.13 Create base

If a tank has taken the flag, it is supposed to move back to its base. However, there is
currently no indication of where this base is located in the map. In practise, the base is
at the starting point of the tank. So you will need to display an indicator of the base on
the starting point of a robot.

To display the base, you can use the gameobjects.GameVisibleObject class and the
images.bases images.

8.14 Victory condition

Once a tank reaches its home base with the flag, the tank has won the game. You can
use the has_won function of the Tank class to check whenever a tank has won and then
exit the game.

8.15 AI

Right now, the game is rather boring: Only the player tank is moving, while the other
three tanks stay at their base. They are supposed to be controlled by an artificial intel-
ligence.

The first step you need to do is to associate an AI to each of the computer tanks. We
suggest that you have a look at the class ai.SimpleAi, which contains a very simple AI
implementation. This should tell you how to associate an AI to a tank. Also, in the main
loop, do not forget to call the decide function for each of the AIs.

8.16 Prevent objects to move out of the screen

In the current implementation, objects can move out of the screen. To see for yourself,
try to move the tank toward the edge of the game. This is a bug that needs to be fixed.
One possible idea is to add some kind of barrier that goes around the border of the

16

map in the physics engine. You should check the Body and Segment class in the pymunk
library.

8.17 Shooting

Tanks are supposed to be able to shoot. For this you will need to:

• implement the Tank.shoot function in the gameobjects.py file. This function is
called when a player wants to shoot: If it is a human player, when a key is pressed,
and if it is an AI, when the AI decide to fire.

• implement recoil when a tank fires, meaning that the tank receives an acceleration
that goes in the opposite direction as the tank fires. The recoil effect should be
strong enough so that the tank starts moving in the opposite direction. It is not
enough that the tank slows down.

• show the bullets on screen and make them move

• check if bullets hit an enemy or a wooden box

– if the bullet hits an enemy, then that enemy is teleported back to its home
base, and it loses its flag (which should stay at the current position)

– if a wooden box is hit twice by a bullet, then it gets destroyed

• when the player presses a key (for instance, enter), the tank should fire a bullet
by calling the Tank.shoot function

You can use the physics engine to detect collision between the bullet and objects in
the scene. Also, the physics engine should be used to set the speed of the bullet, and
then you can read the current position of the bullet in the physics engine to update the
position on the screen.

For practical purposes, to implement the shooting of the bullet, you should imple-
ment a class that subclasses GamePhysicsObject, since this class will take care of display-
ing the bullet on the screen and registering it in the physics simulation. All you would
need to implement is giving the initial speed of the bullet and detect when the bullet
has collided with an other object.

Collision detection For this feature, you will need to use the collision handler from
the physics engine.

This part can be a bit tricky to implement, and it is recommended that you read the
documentation and examples before starting your implementation:

• To use the collision handler you will need to use add_collision_handler function:
http://pymunk.googlecode.com/svn/tags/pymunk-2.0.0/docs/api/pymunk.

Space-class.html#add_collision_handler as well as set the collision type
http://pymunk.googlecode.com/svn/tags/pymunk-2.0.0/docs/api/pymunk.

Shape-class.html#collision_type on the shapes

17

http://pymunk.googlecode.com/svn/tags/pymunk-2.0.0/docs/api/pymunk.Space-class.html#add_collision_handler
http://pymunk.googlecode.com/svn/tags/pymunk-2.0.0/docs/api/pymunk.Space-class.html#add_collision_handler
http://pymunk.googlecode.com/svn/tags/pymunk-2.0.0/docs/api/pymunk.Shape-class.html#collision_type
http://pymunk.googlecode.com/svn/tags/pymunk-2.0.0/docs/api/pymunk.Shape-class.html#collision_type

• You can find an example of the use of that collision handler in the breakout ex-
ample of the pymunk library: http://code.google.com/p/pymunk/source/
browse/trunk/examples/breakout.py (search for add_collision_handler).

The general idea is that you will associate a collision type for each type of game
object, the collision type is a number, so for instance, the bullet will have a collision type
of 0, and a tank will have a collision type of 1. So in the constructor of a bullet, you will
need to set the collision type on the shape:

1 self.shape.collision_type = 0

You do the same for the tank constructor, but with a collision type of 1.
Then in your ctf.py, you can call the add_collision_handler function, whose first two

arguments are the collision types that you are interested to handle, the third argument
would be a function to call when the collision happens. For instance:

1 space.add_collision_handler(0, 1,

2 pre_solve = collision_bullet_tank)

pre_solve indicates that we are interested in handling the collision when two objects
are touching each other. collision_bullet_tank is a function that you need to implement:

1 def collision_bullet_tank(space, arb)

2 ...

3 return 0

arb is an object of the class Arbiter (http://pymunk.googlecode.com/svn/tags/
pymunk-2.0.0/docs/api/pymunk.Arbiter-class.html). The most interesting
member of arb is shapes, as arb.shapes[0] will give you access to the shape of the bullet
and arb.shapes[1] will give you access to the shape of the tank.

In the function collision_bullet_tank, you will need to remove the bullet and the
tank from the game, which involves removing them from game_objects_list. However,
arb.shapes[0] gives you the shape object, and what you need is the Bullet and Tank
objects. The trick is that in Python, you can dynamically add a property to any object.
So when the Shape is created in Bullet or Tank, you can add a property to the Shape
object that will point to your Bullet or Tank. For instance, you can do:

1 self.shape = pymunk.Poly(...)

2 self.shape.parent = self

And then arb.shapes[0].body.parent will give you access to the Bullet object.
Removing the objects from game_objects_list will make the objects disappear from

the screen, but they will still be registered in the physics engine, to remove the bullet,
you will need to use the add_post_step_callback function:

1 space.add_post_step_callback(space.remove, arb.shapes[0],

2 arb.shapes[0].body)

Do not forget that the tank need to be respawn on their base, and once you have im-
plemented collision_bullet_tank, you should be able to implement the collision handling
for the other type of objects.

18

http://code.google.com/p/pymunk/source/browse/trunk/examples/breakout.py
http://code.google.com/p/pymunk/source/browse/trunk/examples/breakout.py
http://pymunk.googlecode.com/svn/tags/pymunk-2.0.0/docs/api/pymunk.Arbiter-class.html
http://pymunk.googlecode.com/svn/tags/pymunk-2.0.0/docs/api/pymunk.Arbiter-class.html

8.18 What next?

First you should check that your code works for other maps – until now, you have been
using the maps.map0. Check in the maps.py file to see the other maps, and test whether
your code works if you use a different map. If not, fix the bugs!

And now, you are free to develop your own features. The next section gives you
some ideas.

9 Writing a User Manual

Though the main focus in this project is on writing code, you will also write a short and
pragmatic user manual. In this manual you will not have to repeat generic information
that is already known from the basic background of the project. Instead the focus should
be on providing enough information for someone to be able to both start and actually
use your software without too much previous knowledge.

The manual should be written incrementally during the project and continuously
kept up to date with your current progress in terms of programming and software de-
velopment. The current version will be sent to your assistant ahead of each progress
report session as discussed above. If you are uncertain about the proper contents of
the user manual, please make sure you make use of this opportunity to get continuous
feedback.

10 Features ideas

After completing the tutorial, you are expected to complete as many additional features
as you can. The feature requests below are tagged according to their difficulties. It is
highly advised that you start with the easiest first.

10.1 Easy

Counting score (1pt). Currently, when you play the game, when one of the player has
won, the game exits. Instead you should make it so that the game is played indefinitely,
and that the score of each player is recorded, and printed in the console output once a
player has managed to successfully bring the flag back to the base.

The console output would look like this:
Player 1: 3

Player 2: 0

Player 3: 2

Player 4: 5

Make steel boxes slow down after they are hit by a shot (1pt). In the current im-
plementation, when a steel box is hit by a shot, it will start moving until it hits a wall.
The goal of this feature is to implement some kind of friction, so that the box slow down
until it stops moving.

19

Sounds (1pt). If you intend to implement sounds in your game, you should first check
that sound is properly working on your system, try playing a sound using a media player.

The goal of this feature is to play a sound when an event occurs in the game:

• when a player has captured the flag

• when a tank is shooting

• when a tank or a wooden box is destroyed

Also the second part of the feature is to play music in the background.
Have a look at http://www.freesound.org/ to get some sounds samples that

you can use in your project.

Hot seat multiplayer (1pt). In hot seat multiplayer, two human players are playing
on the same computer. In the single player mode, the human player is using the keys
up, down, left, right and enter to control his tank. In hot seat multiplayer, you should
make it so that a second player can control his tank using the keys w (to accelerate), a
(to turn left), s (to decelerate), d (to turn right) and space (to shoot).

It should be possible to select the mode, between “single player” and “hot seat mul-
tiplayer”. At this point, we suggest using a command line option, so that typing the
following command start in single player mode:

python3 ctf.py --singleplayer

And to start in hot seat multiplayer:
python3 ctf.py --hot-multiplayer

Hit points (1pt). In the current implementation, when a shot hits an other tank or
wooden box, it gets destroyed instantly, it would be fun to make it harder to destroy
an other tank by implementing “hit points” and require a tank or wooden box to be hit
several time before it get destroyed.

respawn protection (1pt). Right now, when a tank is respawned, it can get destroyed
again immediately, the idea of this feature is to introduce a small delay during which a
newly respawned tank cannot be destroyed.

10.2 Medium

Before starting implementing features in this section, you should have implemented at
least two of the easy features.

Read maps from a text file (2pts) Currently maps are stored in a Python file. The
idea of this feature is to create a small text file format that will contain all the infor-
mation for a map. Think of it as a serialization (http://en.wikipedia.org/wiki/
Serialization) of the class Map. Then you could have a command line argument to
load the map:

20

http://www.freesound.org/
http://en.wikipedia.org/wiki/Serialization
http://en.wikipedia.org/wiki/Serialization

python3 ctf.py --map my_map.txt

Welcome screen (2pts) Currently, when the game is started, it starts right away in
play mode. The idea of this feature is to show a welcome screen that allows a map to
be selected. Much freedom is given on the look and feel of that welcome screen, but it
is expected to have a title, showing the name of the game: “Capture the flag”. Also the
map selector should show the name of the map, as well as a small icon showing how
the map looks (it should be generated using boxes variable from the map class).

If you have implemented hot seat multiplayer, it is also expected to make it possible
to choose the game mode in the welcome screen.

Score screen (2pts) You should implement the score feature first. The idea of this new
feature is that instead of showing the scores in the console, every time a tank brings a
flag back to its base, you will replace the game screen and show on screen the score of
each player.

Implement fog of war (3pts) With fog of war, only part of the screen is visible to the
player. See the screenshot below to see how it should look:

Explosion (2pts) When a tank or a box is destroyed, it just disappears, to add more
fun to your game, you could show an explosion effect. Either by showing a simple sprite
for a few seconds, or a more complicated version would be to use particles.

Levels editor (3pts) You should implement the Read maps from a text file feature first.
Right now, if someone wants to create a level, he needs to write a text file by hand. The
idea of that feature is to create a visual editor that will generate the text file.

21

This editor should be started using the following command:
python3 ctf-editor.py [width] [height]

Where [width] and [height] are parameters pass by the user which defines the size
of the map, for instance, if a user wants to create a 10x12 map, he will use the following
command:

python3 ctf-editor.py 10x12

Then the user is presented with a screen that shows the map. The map is initialised
to show only grass and not boxes. When the user clicks on a tile, it cycles through the
boxes, for instance, the first click change the tile to the stone box, the second click to
the wooden box and the third click to the steel box and a fourth click brings back the
grass. So if a user wants to put a wooden box, he needs to click twice.

Once the user is done with putting the boxes, he needs to press enter. In that mode,
the user select the starting position of the flag, the editor should refuse to put the flag
on a box, and only accept the flag to be on grass. To select the position of the flag, the
user clicks on a tile (if the flag has already been set, a new click will move the flag to
the new position).

Once the user is done with choosing the flag starting position, the next step is to
decide where to put the base. Once again, the editor should only accept to put a base
on a grass tile, where there is no flag and no other base. When the user clicks, it should
put a base on a tile, and if the user clicks a second time it put an other base for an other
player. And if the user presses the u key, it should cancel the last base that was added.

Once the user is done with setting the bases position, he presses enter, the text
corresponding to the map is displayed in the console window and can be copied to a
text file using a text editor.

Advance scoring (3pts) You should implement the score feature first. Currently the
only way to get points is to bring the flag to the base. The idea behind this feature is
that completing other actions will bring points.

Here is a suggested scoring table:

• bringing the flag to the base gives a 100 points

• destroying an enemy that carries the flag gives 10 points

• destroying an enemy gives 5 points

• destroying a wooden box gives 1 point

10.3 Hard

Before starting implementing features in this section, you should have implemented at
least two of the medium features.

AI Improvements (6pts). The current implementation of the AI is very simplistic. It
basically works by looking at the current position of the flag and trying to reach it using
the following algorithm:

22

• If there is a tank in firing range, shoot.

• If there is no blocking object in front, move forward.

• If there is a blocking object in front:

– If the object can be destroyed (wooden box), shoot.

– If the object cannot be destroyed, turn left or right, in the direction of the
flag.

This is very basic. A possible improvement is to implement an algorithm that will
find the optimal path between the tank and the position of the flag, for instance, by
using A* http://en.wikipedia.org/wiki/A*_search_algorithm.

You should assume that the AI has perfect and full knowledge of the world. Also,
you should assume that wooden tiles are passable, after all, the tank just have to shoot
to destroy them. As for steel box, you might want to consider them as “fixed” obstacles.

While implementing A* is going to give the optimal trajectory to reach the flag, it is
still possible for an enemy to outsmart the AI and reach its base. Further improvement
should focus on trying to block the player that carries the flag. One possible idea is for
the AI to compute the optimal path from the tank which carry the flag to its base, and
then to try to find on that path a point that would be more accessible.

The following figure explains the problem:

The white path is the optimal path for the white tank to reach the flag, while the
orange path shows the optimal path for the orange tank to reach its home base. Even
though the orange tank is going slower because it is carrying the flag, there is still a
high chance that the orange tank will escape the white tank and reach its base and then
score. It would be better for the white tank to follow the blue path and then be able to
intercept the orange tank.

23

http://en.wikipedia.org/wiki/A*_search_algorithm

As a final improvement, when the AI tank is carrying the flag, you would need to
find and implement a good strategy for the AI to escape the pursuit from the other tanks.

Many other improvements can be done to the AI. If you are interested, feel free to
think about further improvements and discuss them with your advisor before starting
an implementation.

Networked multiplayer (7pts) The goal of this feature is to allow players to play the
game using different computers.

This feature is very hard to implement correctly, and you should have
implemented all other of the suggested features before trying to im-
plement this one. You should also start by getting yourself familiar
with the TCP/IP network protocols (http://en.wikipedia.org/wiki/
Internet_protocol_suite).

To implement this feature it is suggested to use a client / server architecture (http:
//en.wikipedia.org/wiki/Client-server_model). On the welcome screen of
your game, you should add two new modes “network multiplayer (host)” and “network
multiplayer (client)”.

When the user select “network multiplayer (host)”, it starts the game as a server,
and it shows a screen with a start button, when the user clicks on the button, the game
is started with the players who have connected.

When the user select “network multiplayer (client)”, it should show an input text
box (see http://www.pygame.org/pcr/inputbox/index.php) where the user can
input the address of the host (you can use the unix command hostname on the server to
figure out the address of the server), then a connect button.

A naive approach to implementing multiplayer would be to keep running the entire
game in both the host and the client. This would allow to reuse most of the code and
only exchange acceleration and turn commands. However, it is extremely likely that
the two instances of the game will run out of sync. The only way to solve that problem
is to make sure that only the server handles the physics engine and computes object
positions, while the client gets the state of the world from the server and displays it.

On the practical implementation, the server can use the same game implementation
as the current single player mode. However, the client will have to be rewritten. On
the client, you will not need to use the physics library, only to display the objects on the
screen and send input to the server.

To implement this feature you can use TCP API from Python (http://wiki.python.
org/moin/TcpCommunication and http://docs.python.org/library/ipc.html)
and you will need to define a simple protocol.

10.4 Be creative

Surprise us with your creativity and imagination to develop an exclusive feature. The
feature should not be trivial, talk with your senior supervisor beforehand (cyrille.beger@liu.se),
and he will decide on the number of points that you are idea would get upon completion.

24

http://en.wikipedia.org/wiki/Internet_protocol_suite
http://en.wikipedia.org/wiki/Internet_protocol_suite
http://en.wikipedia.org/wiki/Client-server_model
http://en.wikipedia.org/wiki/Client-server_model
http://www.pygame.org/pcr/inputbox/index.php
http://wiki.python.org/moin/TcpCommunication
http://wiki.python.org/moin/TcpCommunication
http://docs.python.org/library/ipc.html

	Requirements
	Game Concept
	Project outline
	External libraries
	Running on the University Solaris stations

	Artwork and other assets
	Game programming techniques and concepts
	Classes and object oriented programming
	Display engine
	Physics engine

	Overview of libraries
	pygame
	pymunk

	Tutorial
	Code Structure
	Run the game
	Structure of the code
	Coordinates systems
	Display the background
	Maps
	Create boxes
	Show objects
	Create tanks
	Create flags
	Keyboard control
	Grab the flag
	Create base
	Victory condition
	AI
	Prevent objects to move out of the screen
	Shooting
	What next?

	Writing a User Manual
	Features ideas
	Easy
	Medium
	Hard
	Be creative

