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Artificial Intelligence

Presentation originally by Patrick Doherty (modified)
Department of Computer and Information Science

Artificial Intelligence and Integrated Computer Systems Division
Linkdping University
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Hard or Easy?

Solving a system of linear equations may seem “hard” to us...

svstem of Linear Equation

2.0r +4.0y + 6.0z =18
4.0r +5.0y + 6.0z =24
J0r +1y —20z=4

Matrix representation

20 40 6.0 Cox ] | ;i-g |
A= 40 50 60| X=| ¥ | b= 4-'] |
3.0 10 -20 z AU

...but distinguishing between cats and dogs
is "easy”|

LINKOPING
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Hard or Easy? (2)

Because solving equation systems was “hard”,
we explicitly had to think about all the details
=» can easily program a step-by-step solver

Svstem of Linear Equation

2.0r +4.0y + 6.0z =18
4.0x +5.0y + 6.0z = 24
J0r+1y—20z=4

...but we don’t really know how

we distinguish between cats and dogs!
=» Hard to define an algorithm

=>» “Requires intelligence!”

LINKOPING
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Alan Turing (1912-1954)

October, 1950
YoL wix. No, 2346.] | Detober, 1950

MIND

A QUARTERLY REVIEW

I

PSYCHOLOGY AND PHILOSOFHY

1 -COMPUTING MACHINERY AND
INTELLIGENCE

By A M Tvmixg

| propose to consider the question,
“Can machines think?”

Since the meaning of both “machine” and “think” is ambiguous,
Turing replaces the question by another.

A behavioural test: The Turing test
oo



Turing test

During the Turing test, the human questioner asks a series of questions to both respondents.

After the specified time, the questioner tries to decide which terminal is operated by the
human respondent and which terminal is operated by the computer.

B QUESTION TO RESPONDENTS W ANSWERS TO QUESTIONER

mun Mln
Computer Human Human
respondent questioner respondent

R T TECHWTARGET. ALL RRGHES BEROANT

LINKOPING
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Controversial but still highly relevant

Human behavior Intelligent behawor

Not considered:

Vision
Motion
Intelligent behavior that Movement
oo humans do! Perception




The Dartmouth Workshop (1956)

intelligence be carried out durmg the summer of 1956 at
Dartmouth College in Hanover, New Hampshire. The study is to
proceed on the basis of the conjecture that every aspect of
learning or any other feature of intelligence can in principle be so
precisely described that a machine can be made to simulate it.

An attempt will be made to find how to make machines use
language, form abstractions and concepts, solve kinds of
problems now reserved for humans, and improve themselves. We
think that a significant advance can be made in one or more of
these problems if a carefully selected group of scientists work on
it together for a summer.

plus more..

LINKOPING :
Ilo" UNIVERSITY Herb Simon Allen Newell



Did early Al solve any problems?

“As soon as it works, no one calls it Al anymore.”

John McCarthy

LINKOPING
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Different Views
on Artificial Intelligence
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Different Views on Al

Artificial Narrow Intelligence (VWeak Al)

Al that specialises in one area — more and more successful

Example: Playing Chess

Difficult for us, seemed to require human intelligence

= 1951: First chess-playing program (Turing)

= 1980s: Garry Kasparov: "Al will never defeat human grandmasters”

= 1990s: IBM’s Deep Blue won against Kasparov

= 2020s:

Far better than human grandmasters,
running on a phone...

LINKOPING
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Different Views on Al

Example: Playing Chess

Specialized Al techniques

= Example: Search through the space of all possible moves

Succeeds through hardcoded adaptations to playing chess

Can’t reason about anything else

LINKOPING
I I." UNIVERSITY



Different Views on Al
Example: IBM’s Watson (2011)

F"

I." b'HK,%E'Q% 200 million pages of info (incl Wikipedia) / 90 IBM Power 750 servers, 32 threads/server



Different Views on Al

Artificial General Intelligence (Strong Al)

Smart as a human across the board

Human-level Intelligence with common sense
-- Passing the Turing Test
-- Obtaining a college degree

“Human-level Al will be achieved, but new ideas are almost certainly needed,
so a date cannot be reliably predicted—maybe five years, maybe five hundred years.
I'd be inclined to bet on this 21st century.” -- John McCarthy

Considerably slower progress — far from the goal

LINKOPING
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Different Views on Al

Artificial Super Intelligence (ASI)

Al that surpasses humans

Let an ultraintelligent machine be defined as a machine that can far surpass all the intellectual
activities of any man however clever. Since the design of machines is one of these intellectual
activities, an ultraintelligent machine could desigh even better machines; there would then
unquestionably be an "intelligence explosion", and the intelligence of man would be left far
behind. Thus the first ultraintelligent machine is the last invention that man need ever make. —
l. J. Good [1965]

We are on the edge of change comparable
to the rise of human life on Earth. — Vernor Vinge [1993]

In his 2014 book Superintelligence: Paths, Dangers, Strategies, Nick Bostrom
reasoned that a computer with near human-level general intellectual ability
could initiate an intelligence explosion on a digital time scale with the resultant
rapid creation of something so powerful that it might deliberately or accidentally
destroy humanity.

R TR Nick Bostrom
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Artificial Intelligence:
The Present



What is Artificial Intelligence?

A Definition:

“the scientific understanding of the
mechanisms underlying thought and
intelligent behavior and their
embodiment in machines.” (AAAI)

The Grand Goal:

“a freely moving machine with the intellectual
capabilities of a human being.” (Hans Moravec)

UNKOPING TR ol
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Modern Foundations of Artificial Intelligence

@PUTATION |
i] F~ ATHEMATICS
Probability

LINKOPING
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Physical Symbol System Hypothesis

Computer Science as Empirical Enquiry: Symbols and Search
Newell and Simon (1976)

A physical symbol system, also called a formal system:
= Takes physical patterns (symbols) ' o g

= Combines them into structures (expressions)
= Manipulates manipulating them (using processes)...
= ... to produce new expressions.

= Examples: _ :
= Formal logic ("and”, “or”, "not”, “for all”; logic formuls; dduction)
= Algebra ("+”, ”1”, ”2”; equations; rules of algebra)
= Computers (values in memory; machine operations; the CPU)

= Chess (pieces; chess board configurations; legal chess moves)

LINKOPING
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Physical Symbol System Hypothesis (2)

The physical symbol system hypothesis:

= "A physical symbol system has the necessary and sufficient means for general
intelligent action.”

= = Human thinking processes symbols
(because the PSS is necessary)

= =» Machines can be intelligent
(because the PSS is sufficient)

= Core part of Al research;
also controversial, strongly criticized by some
(do we need symbols for vision?)

LINKOPING
I Io" UNIVERSITY


https://en.wikipedia.org/wiki/Sufficient

Intelligent Agents

An agent is anything that can be viewed as perceiving
its environment through sensors and acting upon
that environment through actuators.

/Agent Sensors M

An agent’s behavior can Stimuli
be described formally as
an agent function Percepts
which maps any percept
sequence to an action

An agent program (7
implements

an agent function

JUWIUOIIAUY

Commands

Actions

A Rational Agent is one that does the right thing
II.U LINKOPING. relative to an external performance metric




Humans as Intelligent Agents

/Agent Sensors

Stimuli

Percepts 4

JUAWIUOITAUH

Humans interact with the environment through sensors and actuators

Humans use internalised models of the environment to reason and act intelligently

LINKOPING
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Robots as Intelligent Agents

(A

gent Sensors
| Stimuli

Percepts

JULWUOITAUY

‘T e Actions

Robots interact with the environment through sensors and actuators

Robots use internalised models of the environment to reason and act intelligently

LINKOPING
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Agent

( Condition-action rules

S

Sensors

What the world
is like now

JUAUWIUOITAUH

What action [

should do now

Actuators —

Agent Types

Ve L mm—s

~

-~

4 ~
Gy N
AY

\

~ Sensors -

)

(Hnw the world evolves p

What my actions do

( Condition-action rules

Agent

A

[ What the world
is like now

What action [
should do now

JudWUOIIAUH

Actuators

-—
=

(How the world evolves

What my actions do

KAgent

-
Sensors
~

What the world
is like now

What it will be like
if I do action A

What action [
should do now

Actuators

JUAWIUOITAUH

Simple reflex
agent

Model-based reflex
agent

Goal-based
agent

Performance standard

p

-
-~
-

:

(

S~ Sensors Critic e SENSOTS
What the world
CHOW the world evolves is like now Foreriliaels
; 2 L L S
- What it will be like =
What my actions do : ot =. changes - =.
C 4 if Ido action A = Learning #==1 Performance 8
* 8 element element =
How happy 1 will be =; . knowledge %
in such a state a learning =
* = goals Y =
What action [
should do now Problem
+ generator '
\Agent Actuators > Actuators =

KAgent

Utility-based
agent

Learning
agent
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Simple Reflex Agent

|

Agﬁﬂt SEensors - .
; Stimulus-Response

What the world

1s like now Age nt

Y

e 1 What action [
( Condition-action rules )—.— should do now

+

Actuators -

. N

JULWUOITAU]

® Reacts to immediate stimuli in their environment

® No internal state

® Uses current state of the environment derived from
sensory stimuli

LINKOPING
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Grey Walter’s Tortoise

Analog Device

2 sensors:
e directional photcell
* bump contact sensor

2 actuators
2 nerve cells (vacuum tubes)

Skills:

* Seek weak light

 Avoid strong light

* turn and push (obstacle avoid.)
» Recharge battery

Figure 1.5
Grey Walter’s tortoise, recently restored to working order by Owen Holland. (Photo-
graph courtesy of Owen Holland, The University of the West of England.)

LINKOPING
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Gengis Il: A Robot Hexapod

Brooks —
Subsumption-Based
Architectures.

Founded iRobot

(B) -

Figure 3.6

(A) Original Genghis. (Photograph courtesy of Rodney Brooks.) (B) Genghis II—a
robotic hexapod, commercial successor to the original Genghis. (Photograph courtesy
of IS Robotics, Somerville, MA.)

LINKOPING
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A Goal-Based Agent

"hh‘ *
~

What the world
(Hnw the world evolves

1s like now

CWhat my actions do

What action 1
m should do now

Agents with Purpose!

LINKOPING
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-
/ ’ -~ - a £ \
R Sensors

What it will be like
if I do action A

\Agent Actuators m

Planning and Reasoning
Agents

JULWUOITAUH

Goal-based Agents:

® Rich internal state

® Can anticipate the effects of their actions

® Take those actions expected to lead toward
achievement of goals

® Capable of reasoning and deducing properties of
the world




Trade-offs between Deliberation and Reaction

Robot Control System Spectrum (Arkin)

Deliberative : Reactive
-_
Purely Symbolic | Reflexive
Speed of Respons

Eedictive Capabilities

ccurate, Complete World Models

Representation-dependent ' Representation-free

Slower Response . Real-time Response

High-Level Intelligence (cognitive) Low-level Intelligence

Variable Latency Simple Computation (stimulus/response)

LINKOPING
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Integrated Al Architectures

Software Architectures that support efficient real-time/soft real-time
interaction between control, reactive, and deliberative processes

A
@
lz
d
o
Q
=2
o
o
S e High-level
o é Task Specification Trees )
-]
3 & Low-level £
(7] = @
3 0
=} o
c Q (=]
- = a
— prer] -
3 Q °
5| S :
1 )
& Platform Server E
= <))
£ S _ _ ] High-level =
E @ Hierarchical Concurrent State Machines @
= o Low-level
'_
£
g Control Kernel
&)
Visual Landing Traj Following

HDRC3: A Distributed Hybrid Deliberative/Reactive Architecture for Unmanned Aircraft Systems
P. Doherty, J. Kvarnstrom, M. Wzorek, P. Rudol, F. Heintz, G. Conte
Handbook of Unmanned Aerial Vehicles, K.P. Valavanis, G.J. Vachtsevanos (eds.), Springer Science

LINKOPING or . .
II." UNIVERSITY 1st edition 2014, revised 2nd edition 2017.



Rationality/Rational Agents

Ideal Rational Agent is one that does the right thing!

For each possible percept sequence, an ideal rational agent should do
whatever action is expected to maximize its performance measure, on the
basis of the evidence provided by the percept sequence and whatever built-
In knowledge the agent has.

What is a
good state?

How should |
actto bein
that good state?

How do |
avoid bad states?

LINKOPING
UNIVERSITY



The Essence of Artificial Intelligence?

Building systems that learn to make,
and do make, good decisions!

Let’s begin with making good decisions

Given: The things we can do and their effects:

P(result(action) = state’ | action, env)

What are the repercussions of acting in a context?

Given: An estimate on the utility or goodness of states:

Utility(state;) for any state,state;

__ What states are good for me?
oo



The Essence of Artificial Intelligence

What is my expected utility/goodness when executing an action?

EU(action| e) =
Y P(result(action) = state’ | action,e)U(state’)

state’
Take the weighted average of the utilities for states an action can cause

Choose: The action that maximises utility in any context!
é N

best—action = argmax,.¢;onEU(action | e)
. J

Percepts

Decision Theoretic Agent

JUWIUOIIAUH

Best-action

e |
1

LINKOPING
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Utility-based Agent

S Sensors Decision Theory
N +
What the world Probabilities
CHDW the world evolves is like now
CWhElt my actions do Wi};cﬂlt(ljt;zgtligi Lllke Maximizing Expected

Utility of an action

( Utility ) How happy I will be
in such a state

JUQWUOIIAUF

Internalization of

What action 1 Performance measure
should do now

¥
Agent Actuators
\ g 7_( )

Utility-based Agent

® Use of utility function that maps state

(or state sequences) into real numbers

® Permits more fine-grained reasoning about what
can be achieved, what are the trade-offs, conflicting
goals, etc.

LINKOPING
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Learning Agent

)

Bayesian Learning
Clustering

Classification
Reinforcement Learning
NN / Deep learning

JUWIUOITAUH

Performance standard / \
Critic |- Sensors s
feedback
changes L
Learning ™= Performance
element |ag element
knowledge
learning /
goals
Problem
generator '
@ g ent Actuators

LINKOPING
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Previously the
entire agent

Learning Agent:

® Has the ability to modify behavior for the better based
on experience.

® |t can learn new behaviors via exploration of new
experiences



ARTIFICIAL
INTELLIGENCE

Early artificial intelligence

stirs excitement. M AC H I N E
L EARNING

DEEP

' LEARNING
K K
VYN M VN

1950's 1960's 1970's 1980's 1990’s 2000’s 2010’s

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence - first machine learning, then
deep learning, a subset of machine learning - have created ever larger disruptions.




The Essence of Learning?

Original unclustered data Clustered data .
Simple Neural Network Deep Learning Neural Network T Fe 7 T = internal state x\reward
: : \ of s 1 environment
3 } ‘ ‘ 3t (N
GG [ ) | —
0 u ,._f'.f ..':-' c.’ 3 0 ::Sg:ilgtzi;;ature B
gl T B y discount rate
. Input Layer O Hidden Layer . Output Layer N N
743 =7 -1 0 1 . 2 3 4 5 6 -3 2 -1 0 1 . 2 3 4 5 6 Obser\/at|on
Function Identifying L
Patterps or optimizing
Approxirgation/ Tren State-action
Classification v blicies
(Data with labels) (Datg without labels) (States and actions)
Input put Input

Reinforcement
learning

Unsupervised

Supervised learning e

Error
10443

Reinforcement
signal

'

Output Output Output
(Mapping) (Classes) (State/action)

Critic

Critic
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Did you ever watch a baby learn to walk?

LINKOPING
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The Emergence of Locomotion

Seti
Simulated Environment :

Riii

Action Reward State

Ry St

oooooooooooooooooooooooooooooo

A ; 2 1 actuators Reinforcement signal

. provided by nature: :

.

Simulated Agent

| only get a reward if | move forward!

LINKOPING
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The Emergence of Locomotion

hu e Google Deep Mind

UNIVERSITY



Flipping Pancakes

Robot Motor Skill
Coordination with EM-based
Reinforcement Leaming

Petar Kormushev, Sylvain Calinon,
and Darwin G. Caldwell

ltalian Institute of Technology

LINKOPING
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RL and Utility: Learning and Maximizing Expected Utility

RL results in a trajectory: SO»

Given an experience:  S¢, A¢, 141, St+1 Update its value to the agent

| =0Q[sp,ar] +ax* (s +y*x max Qsgyq,a]) — Qs

a€A(St+1)
Previous New Utility of best action Previous
Utility Reward to fire in naw state B Uti

Temporal Difference

Learning Discount

II uLINKOPING Rat Factor
[ UNIVERSITY



“Deep” Learning?

A deep neural network has more than one hidden layer

¥ a

= Basic ingredients described in 1962

= “Deep learning” term introduced 1986 (Rina Dechter) )
= Problem: Computational power! i
Progress: GPU-based systems j S
Later: Explicit hardware for neural network ops LI,
Apple A11: 0.6 TOPS (trillion ops/second) »:in | ;
Apple A16: 17 TOPS 5
Simple Neural Network Deep Learning Neural Network

i

S

il
:.."-'E" ':'f.ﬁ' ..-.‘Il s

e JOARE T rhANM
\@/ @l
£t

2]
i

jl Jt\.
e el O

.? \

Input Layer () Hidden Layer @ Output Layer
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Advances and Advantages of Deep Learning

Deep learning

Major advantage of deep learning: scalability.

Performance Deep Learning algorithms

Many previous methods

Data & Computation

Adam Coates

Large amounts Large amounts
Data Processing

Power
R



Major Applications: Image Processing

e i o 4 g G o
LEL PR PO
BYr-alE §5 5N oumy
D B R
e [ i () s = < @
PN/ AL R Sl
o > 1=, JPEE]  TTLET oy BRG]
EfBE s
smfismamByE ia
Hd 'plirane=mal
ExRpe=faan - fse
BEnummRuosmie o3

Big Data: ImageNet

The Deep Learning “Computer Vision Recipe”

Deep Convolutional Neural Network

Deep MNeural Metwork

Input Layer

Hidden Layer 1

Hidden Layer 2 Hidden Layer 3

Cutput Layer

: ) ‘ "._'_::'
S - :
\\{TT\? iy ;. \\ ) 1'-‘
\\ o 01 ! ITH
Ma ) 178 Max
pooling poaling

edges
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combinations of edges

object models

Backprop on GPU




Major Applications: Natural Language Processing

Classical NLP

Modeling Output

Ergliah
. |

E | Translaticn | E
1

Tt File

leut Flla

Dense Hidden Layer Cutput Units

Alexa

LINKOPING
Il.u Google Translate
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Major Applications: Game

-
based on:  Silver, D. et al. Nature Vol 529, 2016
copyright:  Bob van den Hoek, 2016

N 5 ”
Expert Games Supervised Learning
Policy Network L Poliey
y ;EOMCICIO gran?gs Position --> Next Move
ositions Accuracy: 56%
THE INTERMATIONAL WEEXLY JOURNLL OF 5
Expert Games Supervised Learning
Fa_st Po] ] cy Network 140 000 Patterns Fast Policy
130 000 Games Pattern --> Next Move
30M  Positions Accuracy: 24%
N
i - Self-Play Games Reinforcement Learning
Reinforcement Learning
1 E 1.3 M Games by RL Policy —()—
POI | cy Network various versions Position > Next Move
of RL Policy Wins 80% vs. SL Policy
Input Board Position
as 19 x 19 Image
48 Feature Planes
< At last — a computer program that
Seff-Play Games Reinforcement Learning can beat a champion Go player PAGE484
- . _ . Monte Carlo
Value Network 30 M Positions Position > Win Probability
by fixed version 15 000 times faster than Tree Seal'Ch
of RL Policy MCTS Rollouts evaluations
.,

action

state PV

reward
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Al and Robotics



Robotics- Boston Dynamics: ATLAS & HANDLE

Integration

» 4
u St
od
Y. LT g 5
2 % = l
3 | b |

Boston Dynamics
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SPOT’s got an Arm!
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A Possible Future



Ray Kurzweil - Law of Accelerating Returns

"21st century will achieve 1000 times the progress of the 20th century”

Human Progress

Trajectory taking
exponential growth Correct

into account \ < prediction

Present ’ Bad predictions
Day i :(underestimating
- \ : the future)
Trajectory based on 'l

past growth rate

6

Trajectory based on
present growth rate

Date in

T| me the future

waitbutwhy.com



Kurzweil’s View of Computational Power

Exponential Growth of Computing

Twentieth through twenty first century
Logarnithmic Plot

Enabling Factor: Processing Power

Alf Human Brains
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Enabling Factor: Lots of Data

The Digital Universe: 50-fold Growth from the Beginning of
2010 to the End of 2020

40,000

1 Exabyte = 10'° Bytes
30,000 — 109 ng-abytes (GB)

(Exabytes) 20,000

10,000
The Cambrian Explosion...of Data

2009 2010 20M 2012 2013 2014 2015 2016 2017 2018 2019 2020
This IDC graph predicts exponential growth of data from around 3 zettabytes in 2013 to approximately 40 zettabytes
by 2020. An exabyte equals 1,000,000,000,000,000,000 bytes and 1,000 exabytes equals one zettabyte. Source: IDC’s
Digital Universe Study, December 2012, http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-

in-2020.pdf.
S
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Summary / Overview

Artificial
Intelligence
Machine
Learning
Neural Nets
Dozens of
different ML Deep
methods

Lea_r_ning
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