
TDDE25
Fö 10 

Chap 5: Algorithms 
Chap 12: Theory of Computation

https://liuonline.sharepoint.com/sites/Lisam_TDDE25_2021HT_AB

Algorithmics and Computability Part II

Patrick Doherty
Dept of Computer and Information Science 

Artificial Intelligence and Integrated Computer Systems Division

Computational 
Complexity Theory



Computational Problems

Computational Problems that CAN 
be solved by an algorithm

Computational Problems that 
CANNOT be solved by any algorithm

Computability Theory

CANNOT be solved in any practical 
sense due to excessive time/space  

requirements

Computational Problems that CAN 
be solved by an algorithm

CAN be solved in a practical 
sense with reasonable time/space  

requirements

Computational  
Complexity Theory

Tractable

Intractable Class NP

Class P

Traveling Salesman Problem

• The Traveling Salesman Problem is one of the most intensively studied problems 
in computational mathematics.  

• A traveling salesman has n number of cities to visit. He wants to know the shortest 
route which will allow him to visit all cities one time and return to his starting point.  

• Solving this problem becomes MUCH harder as the number of cities increases; 
the figure in the middle shows the solution for the 13,509 cities and towns in the 
US that have more than 500 residents. 

• The TSP problem is in the complexity class NP-Complete.



Traveling Salesman Problem

• Suppose there are n cities to visit. 
• The number of possible itineraries is (n-1)!

• For n=10 cities, there are 9!=362,880 itineraries. 
• What if n=40? For brute force methods:  

• There are now 39! itineraries to check which is greater then 1045 
• Examining 1015 tours per second, the required time would be several billion lifetimes of the 

universe (universe is estimated to be 13.8 billion years old) 
• In fact, no supercomputer, existing or projected can run this fast. 

• There are other methods though (branch-bound, progressive improvement, heuristics) that can 
compute up to 200 cities in “reasonable” time.  Current record (?): 85,900 cities for a problem instance. 

• (n-1)! grows faster than 2n. So the time it takes to solve the problem grows exponentially with the size of 
the input.

Sequential Search: Telephone Book

• Suppose a telephone book has N=1000000 entries. 
• Given the name Y, search the telephone book sequentially for Y’s telephone 

number 
• Entries <X1, T1>, <X2, T2>, ... X1000000, T1000000>
• At each iteration Y is compared with Xi

• Assume time increases relative to the number of comparisons, so we are 
counting comparison instructions. (there may be other instructions...) 

• In the worst case, 1 000 000 comparisons may have to be made. 
• Call the algorithm A. We say it has a worst case running time which is on the 

order of N.  
• A runs in time O(N) in the worst case, where N is the number of entries in the 

telephone book. 
• In other words, the time complexity of A is dependent on the size of the input.  
• A has worst case behavior which is linear in the size of the input to A.



Big-  NotationO
• We do not care whether the algorithm takes time , , , or 

even a fraction of :  
• The only thing that matters is that the running time of the algorithm 

grows linearly with .  

• In other words, there is some constant  such that the algorithm 
runs in time that is no more than  in the worst case 

• Let  be a function on  (the size of the input to an algorithm) 
then  is on the order of  if:

N 3N 100N
N N/6

N
k

k * N
T(n) n
T(n) f(n)

 is  if  for some ,  
for all 

T(n) O( f(n)) T(n) < k * f(n) k
n > n0

Asymptotic Analysis

 characterizes the running time of the  
algorithm, i.e, lines of code, # of additions, etc. 
as a function of input n. 

 usually characterizes worst case running time.

T(n)

T(n)

Linear Family of Functions

Multiplicative constants only change the slope of the curve and not its shape.



Binary Search: Telephone Book

A: Sorted List as content
t: Number to be found
n: size of list

n=7
0      1       2       3       4      5        6

Binary Search Example: Telephone Book
1 Allen

2 Baley

3 Boyer

4 Casy

5 Davis

6 Davison

7 Glen

8 Greer

9 Haley

10 Hanson

11Harrison

12 Listor

13 Mendel

14 Morgenstern

15 Patton

16 Perkins

17 Quinn

18 Reed

19 Schmidt

20 Woolf

Find Casy

Casy < Harrison Start

Casy < Davison

Casy > Boyer

Casy < Davis
Eureka!

Length = 20 
# Comparisons = 5

Size of the problem is 
reduced by half each 

comparison!

Round up on  
non whole numbers



Binary Search: 1 000 000 Entries

• Each comparison reduces the length of the input list by half. 
• The process terminates when or before the list becomes empty 
• So, the worst case number of comparisons is obtained by figuring 

out how many times a number  can be repeatedly divided by two 
before it is reduced to 0 (ignoring fractions)

N

Length =  
# Comparisons = 

20
5

Length =  
# Comparisons = ??

1000000

 is about 1000000 220

 is about log2(1000000) 20
 counts the number required to reduce  to  (not )log2(N) N 1 0

In the worst case,  # of comparisons required is ,  
or 

1 + log2(N)
O(log2(N))

N 1+ log2 N
10 4

100 7

1000 10

1000000 20

1000000000 30

1000000000000000000 60a billion billion

a billion

a million

Sequential search Binary search

Comparing Linear vs. Log



Various Runtimes of different algorithms

Linear

Quadratic

Cubic

Logarithmic

Exponential

Square
Root

O(n)

O(n2)

O(n3)

O(log2(n))

O(2n)

O(sqrt(n))

Quadratic

Cubic

Family of Quadratic / Cubic  FunctionsO(n2) O(n3)



Some Values of some Representative Functions

N= 10 50 100 300 1000
5N 50 250 500 1500 5000

N x log2 N 33 282 665 2469 9966

N2 100 2500 10000 90000 1 million 
(7 digits)

N3 1000 125000 1 million 
(7 digits)

27 million 
(8 digits)

1 billion 
(10 digits)

2N 1024 a 16 digit 
number

a 31 digit 
number

a 91 digit 
number

a 302 digit 
number

N! 3.6 million 
(7 digits)

a 65 digit 
number

a 161 digit 
number

a 623 digit 
number

unimaginably  
large

NN 10 billion 
(11 digits)

an 85 digit 
number

a 201 digit 
number

a 744 digit 
number

unimaginably  
large

The number of microseconds since the Big Bang has 24 digits

The number of protons in the known universe has 126 digits

Tractable

Polynomial

Intractable

Super Polynomial

Polynomials
The basic shape of a polynomial function is determined by the highest 
valued exponent in the polynomial (called the order of the polynomial).



Dominant Terms of a Polynomial ( O(p(n))
Only the dominant terms of a polynomial matter in the long run.   

Lower-order terms fade to insignificance as the problem size increases.

Dominant Terms of a Polynomial ( O(p(n))

As n grows



 vs. O(log2(n)) O(n3)
Polynomial curves will always overtake logarithmic curves eventually, when the 

problem size gets big enough, regardless of the multiplicative constants involved.

Sorting Algorithms
The best sorting algorithms (such as mergesort) run in  time.  

Slower ones (such as bubble sort, selection sort, and insertion sort), take 
 time.

O(n * log2(n))

O(n2)



The Class  of Computational ProblemsP
• A function  is said to be bounded from above by another function , if for all  

from a certain point on,  is no greater than . 

•  is bounded by  

•  is bounded by  

•  is bounded by  

•  is bounded by  

• For our purposes a polynomial function of  is one that is bounded from above by  for 
some fixed . 

• All other functions are super polynomial (exponential) 
• Recall definition of a polynomial function: 

• is an expression of finite length constructed from variables and constants, using only 
the operations of addition, subtraction, multiplication, and non-negative integer 
exponents. 

• An algorithm whose order-of-magnitude time performance is bounded from above by a 
polynomial function of , where  is the size of its inputs, is called a polynomial time 
algorithm ( ), where  is a polynomial function)

f(N ) g(N ) N
f(N ) g(N )

log2 N N
N * log2 N N2

2N N!
N! NN

N Nk

k

N N
O(p(N )) p

The Class of  Computational ProblemsNP
• Most exponential time algorithms are merely variations on exhaustive 

search. 
• Generate and test 
• Incrementally generate partial solution and Backtrack 

• Some examples of problems: 
• Traveling salesman problem 

• find the shortest path passing through all nodes in a graph only 
once. 

• shortest path problem 
• 3-coloring map problem 
• Is there a Hamiltonian path in a graph? 

• is there a path passing through all nodes in a graph only once. 
• Satisfiability problem



The Satisfiability Problem
• Satisfiability Problem 

• Find a truth assignment that satisfies a sentence in 
the propositional calculus 

• Existing algorithms are exponential in the size of 
the input formula. 
• But! .... 
• If one has a truth assignment for a formula, 

certifying that it is in fact a valid truth assignment 
can be checked in polynomial time. 

• Let’s call such a solution a “short” certificate (it’s 
size is bounded by a polynomial)

A:True A:False

B:True B:False B:FalseB:True

C:True C:TrueC:TrueC:TrueC:False C:FalseC:FalseC:False

A:True 
B:True 
C:True

A:True 
B:True 
C:False

A:True 
B:False 
C:True

A:True 
B:False 
C:False

A:False 
B:True 
C:True

A:False 
B:True 
C:False

A:False 
B:False 
C:True

A:False 
B:False 
C:False

A ∧ (¬B ∨ C) ∧ (¬C ∨ B)Formula to satisfy:

 Models23Short 
Certificate



The Class of  Computational ProblemsNP
• Define the following non-deterministic algorithm (for satisfiability checking): 

• Assume there is a magic coin that when flipped will always provide the right 
choice for assigning T or F to one of the variables in the input formula. 

• If only one of two choices can be extended to a complete solution, the 
magic coin will choose it (without looking ahead);  

• If both choices can be used, or neither can, it acts like a normal random 
coin 

• Whenever there is a choice, use the magic coin. 
• It can be shown that for this class of problems, each has a polynomial time 

nondeterministic algorithm! 
• It is proved by showing that the “short” certificates discussed previously 

correspond to the polynomial time “magical” executions. 
• So simply follow the instructions of the magic coin and when there is a 

complete candidate solution simply check whether it is legal. 
• Since the coin chooses the best possibility, a no is a no and a yes is a yes 

and this can be checked in polynomial time. 

P = NP?
•  stands for the class of problems that admit polynomial time solutions 

•  stands for the class of problems that admit nondeterministic polynomial 
time solutions 

• The -complete problems are the hardest problems in the class of NP 
problems 

• If one of them turns out to be “easy”, that is it is in ,  then all  problems 
are in . 

• The SAT problem and the Traveling Saleman Problem are -complete 
problems. 

• Since  is already a part of , an important unresolved question is whether 
? 

• This has been an open problem since it was posed in 1971 
• It is one of the most difficult unresolved problems in computer science and 

mathematics 

• Most computer scientists believe  is not equal to 

P
NP

NP

P NP
P

NP

P NP
P = NP

P NP



Complexity Classes

Complexity Zoo!
Over 500 classes to date!

Computational Problems

Prime Numbers
Fundamental Theorem of Arithmetic

Every integer greater than 1 is either a prime number  
or the product of prime numbers.

also called the unique prime factorization theorem

Testing whether a number is Prime 
is now known to be in P

Generating the prime factorization  
of a composite number is currently in NP



Primality Testing
The superiority of the  Fermat prime test over the 

 prime test becomes clear for really big integers.
O(log2(n))

O(sqrt(n))

Testing whether a number is Prime or not
is in class P. Providing prime factors for a 

number is currently known to be in NP, but 
it is not known if it is NP-Complete.

Primality Testing
The superiority of the  Fermat prime test over the 

 prime test becomes clear for really big integers.
O(log2(n))

O(sqrt(n))

Testing whether a number is Prime or not is in class .  

Providing prime factors for a number is currently known to be in , 
but it is not known if it is -Complete (probably not)

P

NP
NP



Cryptography
• Basic activities in cryptography are to 

• Encode (Encrypt) a message 
• Decode (Decrypt) a message 

• Done in such a way that the recipient can 
decode it, but eavesdroppers can not. 

• Two procedures of interest: 
•  

•

M* = encode(M)
M = decode(M*)

Public-Key Cryptography

• Proposed by Diffie and Hellman (1976) 
• Idea is basis for the RSA Algorithm (Rivest, Shamir, 

Adelman) 
• Messages to be sent are assumed to be sequences of digits.  
• Given a particular Party ,   

• A’s encode procedure  is associated with a public 
key, known to anyone who wants to send a message to , 
and  

• ’s decode procedure  is associated with a 
private key only known to  

• Each party has its own Public and Private Keys. 

A
encodeA

A

A decodeA
A



The Process: decodeA(encodeA(M)) = M
Meet me tonight

Meet me tonight

(Meet me tonight)encodeA

Bob encrypts 
using encodeA

Bob’s original 
message

Alice decrypts 
using decodeA

Bob’s original 
message

How can we make  
easy and  hard?

encodeX
decodeX

RSA Algorithm

• The RSA system is based on the contrast 
between testing a number for primality and 
factoring a number. 
• Generating and Testing for primality can be 

done fast using probabilistic algorithms. 
Testing is in class  

• Prime Factoring of a number is conjectured 
to be in class  and there are no known 
algorithms to do this efficiently.

P

NP



Basics of RSA
• (Each) party , secretly and at random, chooses two large prime 

numbers  and , of length around 200 digits, and multiplies them: 
. 

• Party  then chooses a relatively large random number , say 
 (public exponent) 

•  should have no common factors with the product of 
 (except for 1) 

• Finally, party  computes the number  (private exponent) to be the 
modular multiplicative inverse  of : 

• Find  such that  

• This means that  yields a remainder of  when divided by 
: 

•  

•

X
P Q

N = P * Q
X G

65537 = 216 + 1
G
(P − 1) * (Q − 1)

X K
(G−1) G mod (P − 1) * (Q − 1)

G−1 G × G−1 ≡ 1 mod ((P − 1) × (Q − 1))
G * K 1

(P − 1) * (Q − 1)
G × K ≡ 1 mod ((P − 1) × (Q − 1))
(G × K) mod ((P − 1) × (Q − 1)) = 1

mod: remainder 
after division 
x mod y = r

Basic Idea
Party X

PX

QX

GX

NX = PX * QX
 : KX GX × KX mod ((PX − 1) × (QX − 1)) = 1

 digit 
Primes

300

Random
Number

(Should be odd, 
preferably prime. Need

not be too large.
Ex: 65,537)

,NX GX

Public Key

Private Key

PX, QX, KX

M

Party Y
Uses

encodeX

NX, GX

Party X
Uses

decodeX

PX, QX, KX
M* M

61
53

17

3233 = 61 * 53

 : 2753 (17 × 2753) mod ((61 − 1) × (53 − 1)) = 1

3233, 17

, , 61 53 2753

3233, 17 61, 53, 2753

(17 × 2753) mod (60 × 52) = 1



Encoding and Decoding

M

Party Y
Uses

encodeX

NX, GX

Party X
Uses

decodeX

PX, QX, KX
M* M

 
 

encodeX(M) =
MGX mod NX = M*

 decodeX(M*) =
M*KX mod NX = M

If an adversary  could factor large numbers efficiently: 
Since  is public, it could be factored into  

Since  is public,  could be used to compute  
 the secret key!  

Z
NX PX, QX

GX PX, QX, NX, GX
KX

 M17 mod 3233 = M* M*2753 mod 3233 = M

15 3031 15

1517 mod 3233 = 3031 30312753 mod 3233 = 15

Digital Signatures
• Can a message be “signed” by the sender, so that: 

• the receiver can be sure that the sender alone would have 
sent it 

• the sender can not later deny sending a message 
• and, the receiver having received the message, can not 

sign any message in the sender’s name? 
• Digital signatures are important for money orders, electronic 

contracts, business transactions, etc. 
• The Main idea: Make the  and  functions 

commutative
encode decode

decodeX(encodeX(M)) = M encodeX(decodeX(M)) = M

M = MGX*KX(mod NX)



The Process: Signed Encrypted Message

Meet me tonight

Meet me tonight

( (Meet me tonight))encodeA decodeB

Bob’s original
message

Bob’s original
message

Bob decrypts his 
message using decodeB

(Meet me tonight)decodeBBob encrypts his 
message using encodeA

Alice decrypts his 
message using decodeA

(Meet me tonight)decodeB

Alice decrypts his 
message using encodeB

( (Meet me tonight)encodeB decodeB

Only Bob could have produced
(Meet me tonight)decodeB

No message would result when subjected to 
 unless the message was (Meet me tonight)encodeB decodeB

Bob should also put Alice’s name and a date in the 
message before using , so Alice 

can’t encode it herself and send it to a 3rd party
decodeB

Conclusions on RSA
• All approaches suggested so far in attempting to break the RSA system have been shown to 

require fast solutions to the factoring problem too. 
• Since Factoring is strongly conjectured to have no fast algorithm, not even a probabilistic 

algorithm, RSA is considered safe under certain assumptions! 
• The size of the number (# of digits) should be large! 

• 1999: a 140 digit number was factored using several hundred computers running for several 
months. 

• 2000:  An optical device called Twinkle (not built but specified) would be able to factor 160 
digit numbers  in a few days if 12 were used. 

• RSA used 512 bit numbers (between 154 -155 digit numbers) 
• 512 bit numbers are no longer considered safe! 

• 2020: The largest publicly known factored RSA number was 829 bits (250 decimal digits). 
• It was factored by a state-of-art distributed implementation taking 2700 CPU years. 
• Minimum recommendations for keys are now 2048 bits. 

• Slightly different version of the RSA system (Rabin) exists whose security is provably equivalent to 
fast factoring. 

• good to have if there are other ways to break the system that do not appear to require fast 
factoring.  After analysis, they will be shown to require ff.



Quantum Computing
• If a computer could be built based on the the laws of quantum physics rather than 

classical physics, one might get an exponential speedup for some types of computations 
• Quantum analog of a bit is a qubit 

• the direction of photon polarization (vertical or horizontal) 
• nuclear spin (a special two-valued quantum observable) 
• energy level of an atom (ground or excited) 

• Basis states of a qubit:   
• a qubit can be in both states simultaneously with certain probabilities (which can 

even be negative or imaginary) 
• the resulting combination state is a superposition 

• two basis states at the same time.  
• but once we take a look, all probabilities disappear and it is in one state or 

another.  
• Combination states of qubits:  

• Some can be entangled: observing one and fixing its state causes the other to 
lock into its state simultaneously: instant communication!

∣ 0 > or ∣ 1 >

∣ 0101 >

Quantum Computing cont’d

• Full, general purpose quantum computing subsumes 
classical computation 
• can emulate any classical computation without loss of time 

• A classical computer can simulate any quantum computation 
• but it may result in an exponential loss of time 

• Church/Turing Thesis remains intact 
• Quantum computing can only compute computable 

functions.  
• Is there a computational problem with exponential lower 

bound in classical models of computation that has a 
polynomial-time quantum algorithm?



Big Surprise for the Future

• SHOR’s Algorithm 
• Invented by Peter Shor in 1994 
• Quantum algorithm for integer factorization:  

• Given an integer N, find its prime factors. 

• Theoretically, Shor’s algorithm runs in polynomial time  on a quantum computer, (if one 
can build a quantum computer!) 

• The algorithm requires a huge amount of quantum gates: -bit number requires roughly  
(4,947,802,324,992) quantum gates. 

• Gates required increase with  as .  
• 2012: factorization of 21 succeeded ( 10 qubits required) on a quantum computer (simulator?) 

• needed prior knowledge of the solution 
• 2012: factorization of 143 succeeded (4 qubits required) using a new algorithm: minimization. 

• did not need prior knowledge of the solution.  (simulator?) 
• 2020: factorisation of 1028171 using quantum annealing (D-Wave) 

• Algorithm is different from Shor’s algorithm 
• D-Wave’s is a “quantum annealer” which is more of a simulator than a computer. (2000Q: 2000 qubits)

O((log2(N ))3)

4096 5 * 1012

N (log2(N ))3


