
TDDE25 Seminar 7: Algorithms and Computability
Victor Lagerkvist

In this lecture note we give an overview to algorithms and computabil-
ity. This corresponds to Chapter 5 and Chapter 12 in the course book 1 1 J.G. Brookshear and D. Brylow. Com-

puter Science: An Overview. Pear-
son Education, Limited, 2018. ISBN
9781292263427

but uses different examples and introduces three models of computa-
tion in order of increasing strength rather than just presenting Turing
machines. Chapter 5 uses material from the course Introduction to al-
gorithms, MIT, and Chapter 12 is partially based on slides by Christer
Bäckström and Gustav Nordh from TDDD14/TDDD85.

Algorithms

Assume that we are working with arrays containing natural num-
bers. We use the notation [a1, . . . , an] to denote an array with n ele-
ments a1, . . . , an. For example, [0, 1, 2] denotes an array with the three
elements 0, 1, and 2. Additionally, let us use the notation A[i] to de-
note the ith element in an array A. We are are then interested in the
following property.

Definition 1. Let A be an array with n ≥ 1 natural numbers. If n = 1
then A[1] is a peak. For n ≥ 2 and 1 ≤ i ≤ n say that A[i] is a peak if

1. A[i − 1] ≤ A[i], A[i] ≥ A[i + 1] (for 2 ≤ i ≤ n − 1) 2 2 Put simply: an element is a peak if it
not strictly smaller than its left or right
neighbor...2. A[1] ≥ A[2] (for i = 1) 3

3 ... Unless it is the first element, where
we just require that it is not smaller
than the second element...

3. A[n] ≥ A[n − 1] (i = n). 4

4 ... And unless it is the last element,
where we just require that it is not
smaller than the element to the left.

Example 1. Consider the array A = [0, 3, 7, 7, 1, 10]. It contains the peaks
A[3] = 7, A[4] = 7, and A[6] = 10.

The natural problem that we want to solve is then to find a peak
in a given array (note that a peak according to Definition 1 always
exists). We typically refer to such problems as computational problems
and explicitly formulate them as follows.

Peak finder

Instance: An array A with n natural numbers (n ≥ 1).
Output: An element A[i] such that A[i] is a peak (1 ≤ i ≤ n)

A Simple Solution

Now, our objective is to construct an algorithm which solves this prob-
lem. Here, we follow the informal definition in the course book and
simply view an algorithm as a sequence of sufficiently unambiguous
steps. Naturally, any correct solution in a programming language

tdde25 seminar 7: algorithms and computability 2

(e.g., Python) would constitute an algorithm, but it is almost always
easier to begin by outlining the main algorithmic ideas in language
agnostic pseudo code.

Scan the array from left to right

If the current element is a peak then return it

Whether this pseudo code fragment is sufficient is up to interpre-
tation. One the one hand, it is not explicitly stated exactly how we
should "scan" the array, how we should access the current element, or
how to test the peak condition. On the other hand, it is clear to any
programmer that scanning the array can be easily implemented in
any programming language by using a loop construct (e.g., a while
loop or a for loop) or via a recursive function, and that the peak
condition can easily be tested by a sequence of if statements mirror-
ing the logic in Definition 1. Thus, when presenting pseudo code
we typically only require that it is precise enough to in principle be
converted to a more precise solution when the need arises. How-
ever, before turning to an actual implementation — which would be
straightforward in this case but in general be very time consuming
compared to spewing out a few lines of pseudo code — it is a very
good idea to analyze the solution and see to which extent it can be
improved. The solution is clearly correct since it performs the peak
test over all possible elements in the array, so all that remains to ver-
ify is whether it is sufficiently fast. Here, one is typically interested
how well the algorithm performs on the worst possible input since we
then obtain a bound valid for any possible type of input5. For our 5 However, in this case the so-called

average case is also not difficult to
compute.

algorithm it is easy to see that an array of the form [1, 2, 3, . . . , n] is
going to require roughly n arithmetical operations, meaning that we
in the worst case always have to consider every element in the array.
We sometimes say that an algorithm of this form requires linear time.

A Faster Solution Using Divide and Conquer

It certainly feels like the algorithm in the previous section cannot be
improved substantially. However, intuition is not always correct, and
we can in fact construct a solution which is much faster. To achieve
this we will apply the principle of divide and conquer: split the original
problem into subproblems and solve the general problem by using
the solution of one or more subproblem. This strategy is perhaps best
known in the context of binary search where one splits a sorted input
array in the middle and then decides whether to continue searching
in the left or right part depending on the size of the current element.
However, a very important difference in the current setting is that we
do not assume that the input is sorted. Despite this, let us consider

tdde25 seminar 7: algorithms and computability 3

a divide and conquer approach based on comparing the middle
element to the elements to the left and right. Here, it is important to
keep in mind that a peak always exists and that our task is simply to
find it.

Let m = Ceil(n/2)

If A[m] < A[m - 1] then search for a peak in the left subarray

Else if A[m] < A[m+1] then search for a peak in the right subarray

Else return A[m]

Let us try to argue that this approach is correct. We assume that
the array contains at least three elements and that a middle element
exists. Then we are always going to (1) find a peak in the left subar-
ray, (2) right subarray, or (3) conclude that the middle element is a
peak. No other cases can occur since a peak always exists.

To further convince us that we have a correct solution it is in this
case a good idea to make the pseudo code more precise. Here, we
provide a sketch of a recursive solution, where we also handle the
case when n is not an even number.

Function Peak(A, n):

Let m = Ceil(n/2)

If n =< 2 then ... // How to implement the base case?

Let A1 = [A[1], ..., A[m-1]]

Let A2 = [A[m+1], ..., A[n]]

If A[m] < A[m-1] then return Peak(A1, m-1)

Else if A[m] < A[m+1] then return Peak(A2, n-m)

Else return A[m]

This code, while more precise than the previous fragment, still
leaves a little bit to the imagination. For example, we do not describe
exactly how the two subarrays A1 and A2 should be computed. In
Python this could very simply be implemented by slicing the list via
the built in colon operator.

Logarithmic Versus Linear Time

How much faster is then the divide and conquer based algorithm
compared to the simplistic solution? In each application we split the
current input in half and then solve either the left subtask, the right
subtask, or conclude that the middle element is a peak. This implies
that the number of arithmetical operations is going to be dominated
by a logarithmic function log2(n). This is a major improvement com-
pared to a linear number of operations. For example, if the input
array contains a million elements, then the divide and conquer algo-
rithm is going to require at most 20 (!) iterations in the worst possible
case, while the simple solution might have to go through the array
element by element.

tdde25 seminar 7: algorithms and computability 4

Computability

In the previous section we argued that many computational prob-
lems are best solved by high level pseudo code which outlines the
main algorithmic ideas, which can then be converted into an actual
solution in a specific programming language when the need arises.
Thus, we ignore certain details since we know that they can be im-
plemented in a number of straightforward ways. However, there is
something unsatisfactory about this mindset. Could it be the case
that it can be implemented on one type of computer but not on an-
other? What if we do not agree an the basic assumptions we should
make on our computing device? For example, should we allow ran-
domness? Should we have a fixed size on the amount of memory
that a program can use or can it (in principle) be infinite? What about
quantum bits? Do we require that our computational model is com-
pletely deterministic or could there sometimes be multiple choices?
What, exactly, should our assumptions be on the underlying compu-
tational model?

The field of computer science which study different models of
computation and their relationship to each other is known as com-
putability theory. For example, what can we compute with very lim-
ited memory, and what can we compute with an unbounded amount
of memory? Consider e.g. the difference between a machine which
recognizes a 4-digit numerical PIN code (Figure 1) and a full-blown
personal computer (Figure 2). Is there a fundamental difference be-
tween these two devices?

Figure 1: A simple computer?

While the simple machine in Figure 1 in principle could be imple-
mented by a small, universal computer, it is not a great leap of faith
to imagine that there might exist a simpler model of representation
for the PIN code machine since it at any stage only needs to read a
single digit as input and proceed accordingly, without needing to
care about any past attempts. For example, suppose that the correct
code is “1234”. Then the machine may immediately reject the current
attempt if it reads a symbol outside the set {1, 2, 3, 4}, and reset the
memory state. Similarly, if the machine is in its initial state, reads the
symbol “1”, then it may immediately reject if the next symbol is not
“2”.

Figure 2: A more universal computer?

In contrast, a universal computer certainly seems more compli-
cated since it e.g. has access to additional memory which may be
used to aid the computation. Another striking difference is that the
PIN code machine — at least in principle — always terminates with
a definite answer, but that it is certainly possible to write a computer
program which does not terminate. We now briefly describe three

tdde25 seminar 7: algorithms and computability 5

models of computation before we zoom in on the most powerful one.

A Crash Course in Formal Languages

In the theory of computation it is common to view a computational
device as a machine which takes a string as input and returns either
yes or no depending on whether the machine accepts the string
or not. The string could, for example, be a binary string consisting
only of zeroes and ones, but it is sometimes convenient to allow any
predefined "alphabet" to obtain a slightly more general theory. For
the peak finder problem considered in the previous section, an input
string could consist of a binary string describing the number of array
elements, n, followed by a binary encoding of the array elements. To
simplify the description we could also separate the array elements by
some suitable symbol so that we know exactly where each element
begins and ends. Thus, we are working in a simplified setting where
machines only return yes or no answers, but if we want to obtain
e.g. a numerical answer (such as in the peak finder problem) we can
simply inspect the string once the machine has halted, or the state of
the internal memory of the machine.

Definition 2. A language is a set of strings over a predefined alphabet.

Our main interest in the rest of this lecture note is when a lan-
guage encodes a computational problem, and the goal is then to
construct a machine which answers yes if the string is included in
the language and no otherwise.

Finite Automata
Control unit

Read-only input tape

4 7 1 1 ...

Figure 3: A visualisation of a finite
automaton.

A finite automata represents the simplest possible model of compu-
tation which is still powerful enough to result in interesting applica-
tions. This device consists of a finite number of “states” representing
different stages of the computation, and for each symbol in the in-
put string proceeds to a new state through a set of transition rules.
If there are no symbols left to read and the automaton reaches a
so-called accept state then the machine answers yes, and otherwise
no. Crucially, a finite automaton has very little memory of the past,
may not modify the input string in any form, and always terminates.
See Figure 3 for a visualisation of a finite automaton. The PIN code
machine from Figure 1 is an example of a finite automaton.

Pushdown Automata
Control unit

Read-only input tape

4 7 1 1 ...

Stack4

7

1

Figure 4: A visualisation of a pushdown
automata.

The pushdown automaton is a generalisation of finite automata
where the machine is equipped with additional memory in the form

tdde25 seminar 7: algorithms and computability 6

of a stack, where symbols may be pushed and pulled. Thus, a push-
down automaton can store an unbounded amount of items, but only
within the confinements of a stack (e.g., we only have access to the
topmost element). For example, assume that we in the context of a
parser want to be able to recognise whether a given string of paren-
theses is balanced, i.e., each left parenthesis (has a matching right
parenthesis) later in the string. This language is known to not be
recognizable by any finite automaton but can easily be recognised by
a pushdown automaton by pushing and pulling in an appropriate
way depending on whether the current input symbol is (or). See
Figure 4 for a visualisation of a pushdown automaton.

Turing Machines
Control unit

Read-write tape

4 7 1 1 ...

Figure 5: A visualisation of a Turing
machine.

The most powerful model of computation that we consider is the
Turing machine, named after the British mathematician Alan Turing.
The difference between a Turing machine and the two previously
mentioned classes of automata is that a Turing machine may not
only inspect the input string, but also (1) modify it and (2) make
it longer so that the Turing machine in effect also has unbounded
memory (see Figure 5). This seemingly minor modification results in
a significantly increased expressive strength, and a Turing machine
is believed to be able to compute everything that can be computed,
a conjecture known as the Church-Turing thesis. Modern computers,
including smartphones and similar devices, all operate in a fashion
similar to Turing machines. The main advantage of studying Turing
machines instead of concrete computers is that they are much simpler
to describe and reason with, which in turn makes it easier to prove
mathematical properties.

Formal Definitions

A Turing machine takes an input string as argument, to which it can
both read, write, and extend in any direction if it needs additional
memory. In addition the Turing machine satisfies the following speci-
fication.

1. The input string is visualized as a tape consisting of cells. Those of you not familiar with magnetic
tapes can simply view a magnetic tape
as a doubly-linked list where each
node, corresponding to a cell, knows
the cell to the left and to the right, but
nothing else. Hence, just as in a doubly
linked list, we can move sequentially
both to the left and to the right, but
do not have “random access” to the
memory.

2. Cells on the tape either contains a symbol from the alphabet or a
special blank symbol, which we denote by B.

3. The Turing machine has a “head” which can read, write, move
left, and move right, on the tape, but does this in a sequential
manner.

tdde25 seminar 7: algorithms and computability 7

4. The Turing machine cannot move any further left once it has
reached the leftmost position of the tape.

5. However, the tape is effectively unbounded in size, meaning that
the Turing machine cannot reach the (right) end of it. Conceptu-
ally, the tape at a single moment in time is always finite, but if the
Turing machine reaches the rightmost cell then we “stretch” the
tape by adding additional blank cells.

The formal definition of a Turing machine is then surprisingly
undramatic if one is used to mathematical definitions.

Definition 3. 6 A Turing machine is a 7-tuple (Q, Σ, Γ, δ, q0, qaccept, qreject) 6 The formal definition is included here
only for completeness. Do not worry
about the details!

where:

• Q is the finite set of states,

• Σ is the finite input alphabet not containing the blank symbol B,

• Γ is the finite tape alphabet where B ∈ Γ and Σ ⊆ Γ,

• δ : Q × Γ → Q × Γ × {L, R} is the transition function, where L and R
stands for “left” and “right”, respectively,

• q0 ∈ Q is the start state,

• qaccept ∈ Q is the accept state, and

• qreject ∈ Q is the reject state.

However, since this is an introduction to computability we are
happy with merely knowing that there exists a concise, formal def-
inition, and will not refer to the above definition again. A Turing
machine then operates as follows.

1. The “input string” is written to the “left” of the tape.

2. The Turing machine moves its head to the first cell of the tape and
begins in its initial state.

3. The Turing machine reads a single symbol at the current position
of its head, writes a symbol at the cell, transitions to the state
specified by the transition function, and moves its head left or
right.

4. The machine accepts (immediately) if it reaches the accept state,
and rejects (immediately) if it reaches the reject state, and in both
cases the machine is said to halt.

5. If the machine does not reach an accept state or the reject state
then it continues forever and is said to loop.

tdde25 seminar 7: algorithms and computability 8

The operational semantics of a Turing machine can be formally
described by configurations, consisting of the current state, the current
position of the head, and the current content of the tape. A Turing
machine then accepts a string if the start configuration leads to a
configuration containing the accept state, and rejects the string if it
leads to a configuration containing the reject state.

Definition 4. A language (or computational problem) is decidable if there
exists a Turing machine which accepts all strings in the language and rejects
all strings that are not in the language.

We sometimes also say that a language is computable by a Turing
machine. Let us conclude this section with an example.

Example 2. Let us construct a Turing machine which decides the language
{0n1n2n | n ≥ 0}. Consider a Turing machine which operates according to
the following description.

1. Scan the input from left to right and make sure it is of the form 0∗1∗2∗,
i.e., any number of zeroes followed by any number of ones, followed by
any number of twos (if it is not, then reject).

2. Return the head to the left end of the tape.

3. If there is no 0 on the tape, then scan right and check that there are no
1’s and 2’s on the tape and accept (should a 1 or 2 be on the tape, then
reject).

4. Otherwise, cross of the first 0 and continue to the right crossing of the
first 1 and the first 2 that is found (should there be no 1 or no 2 on the
tape, then reject).

5. Go to Step 2.

When describing a Turing machine our main interest is typically
not to describe the precise number of states or how the transition
function should be defined. All that matters is that the high-level de-
scription is unambiguous and precise enough so that we in principle
could describe the states and the resulting transition function.

The Church-Turing Thesis

The Turing machine seems powerful, but how strong is it, really?

Example 3. Assume that we want to describe a Turing machine which,
given a binary number on its tape, adds 1 to this number and accepts. The
machine could then shift the input one step to the right and proceed to the
last symbol of the string. If this symbol is 0 then it simply replaces it by 1. If

tdde25 seminar 7: algorithms and computability 9

this number is 1 then it replaces it by 0, remembers that it has 1 in “carry”,
goes to the left, and repeats this as long as necessary.

We do not bother with describing the exact number of states or the tran-
sition function, since it is clear that we can accomplish the procedure with
a finite number of states. Even better: if we can add 1 to a binary number,
then we could certainly also compute the addition of two arbitrary binary
numbers simply by repeatedly adding 1 to the sum. However, if we can do
addition, then we can also do multiplication as repeated addition. Simi-
larly, we could describe a Turing machine which given two binary numbers
writes 1 if the first number is strictly smaller than the second number, and
0 otherwise. But if we can implement addition, multiplication, all normal
arithmetical operations and relations, then we could certainly implement e.g.
“for loops”, and so on. We can easily continue in this fashion and describe
more sophisticated constructs from programming languages and describe
their implementation in term of Turing machines.

Once we have the idea of implementing more and more compli-
cated data structures and concepts by shuffling strings around on the
tape then it becomes more and more reasonable that a Turing ma-
chine can compute anything in this manner. Naturally, if we tried to
build a Turing machine following Definition 3 then it would turn out
to be awfully slow in practice, but since the Turing machine is a the-
oretical model of computation we do not care about this deficiency.
The conjecture that Turing machines can compute everything that can
be computed is known as the Church-Turing thesis. The “Church” part of the conjecture is

named after the American mathemati-
cian Alonzo Church who discovered
an equivalent notion of computability
called the lambda calculus.

Conjecture 1. (The Church-Turing thesis) Everything that is “computable”
can be computed by a Turing machine.

There exist several variants of the Church-Turing thesis but the
above claim is good enough for our purposes. Note that the Church-
Turing thesis is not a proper mathematical conjecture since we have
not provided a proper definition of “computable”. We will not delve
deeper into the problematic nature of giving a general definition of
“computation” and take a very pragmatic view: every reasonable
model of computation that has been discovered thus far can be sim-
ulated by a Turing machine. In particular, no matter how we try to
generalise a Turing machine (e.g., by adding more memory, or more
features), the resulting machine is still not more powerful than a
Turing machine. Now, observe that if we have e.g. a programming
language which is expressive enough to "simulate" a given Turing
machine on any given input string, then the language can (in prin-
ciple) be used to solve any computable problem by simulating a
suitable Turing machine.

Definition 5. (Informal) A programming language is said to be Turing
complete if it can simulate any Turing machine.

tdde25 seminar 7: algorithms and computability 10

This property is naturally very desirable since it implies that the
programming language can be used to solve any task which we be-
lieve is computable.

On the Existence of Undecidable Problems

If Turing machines are so powerful, could it even be the case that
they can compute any type of computational problem? Or does there
exist problems which are not decidable by any Turing machine, and,
thus, via the Church-Turing thesis, cannot be computed at all? Con-
sider the following example which closely mirrors the actual proof of
the existence of undecidable problems.

Example 4. Assume that you have just finished writing a nice meta-
interpreter for your favourite programming language. This interpreter
takes a program, represented as a string, and an input string, as arguments,
and returns the resulting of interpreting the given program with the given
input string. Naturally, after this feat of engineering you immediately start
looking for applications for your shiny new toy. Would it be possible to
answer some meta questions about programs? For example, could we de-
termine whether a program terminates or not? This would be a rather nice
application since it would make debugging much easier. Hence, you decide
to extend the meta-interpreter so that it returns 1 if a given program halts
with respect to the given input string, and 0 if it loops. The easy part is of
course if the program terminates: you then simply run the interpreter with
the given input, and once it terminates you return 1. To handle the case
when the program does not seem to terminate you implement some “clever”
loop-detection scheme and are completely satisfied with the test programs
that you tried. To make it user-friendly you call the function halt and you
let it take a single argument consisting of the program in question (which
contains some type of main function containing some test data).

However, how can you be sure that halt actually works? Could it be
possible to come up with a counter example? Consider the following. We
define a new function (in the same programming language) halt′ which
takes a program P as argument and

1. calls halt(P),

2. if the result is 0 then it returns 1, and if the result is 1 then it loops.

Hence, the new program does exactly the opposite of halt. But now, what
happens if we call halt′ with itself as input? That is, a string encoding of
the source code of halt′. We have the following possibilities.

1. Case 1: halt returned 0, meaning that halt′ loops. But according to the
definition of halt′ it should return 1, not loop.

tdde25 seminar 7: algorithms and computability 11

2. Case 2: halt returned 1, i.e., that halt′ does not loop. But then halt′ will
loop, which is exactly the opposite of what halt reported.

Since neither outcome is possible we conclude that the claimed properties of
halt cannot be possible, and that it cannot correctly deduce whether every
given program halts or not.

Deciding whether a program (or a Turing machine) halts on a
given input is typically called the Halting problem. The formal
proof of the undecidability of the Halting problem closely follows
the intuition outlined above and can be formally proved as a mathe-
matical theorem.

Theorem 1. The Halting problem is undecidable.

Many problems are known to be undecidable. Curiously, essen-
tially all non-trivial meta properties of Turing machines are undecid-
able. Importantly, if the Church-Turing thesis is true, then no other
reasonable model of computation can resolve these problems either.
This suggests that certain problems are inherently uncomputable.

References

J.G. Brookshear and D. Brylow. Computer Science: An Overview. Pear-
son Education, Limited, 2018. ISBN 9781292263427.

	Algorithms
	Computability

