Computer networking (TDDE25): Part 2 ...

Niklas Carlsson, Senior Associate Professor
https://www.ida.liu.se/~nikca89/

Network stack with protocol and
address examples

Example Protocols I

VoI TERGLRA\SE HTTP, SMTP, DNS

Transport (TL) TCP, UDP
Network (NL) IPv4, IPv6
Link (LL) Ethernet, WiFi (802.11)

link
physical

Switch

link

network

physical

router

Roadmap: Application layer

Principles of Network Applications

— Application Architectures

— Application Requirements

Web and HTTP

FTP

Electronic Mail

— SMTP, POP3, IMAP

DNS

P2P Applications

Socket Programming with UDP and TCP

Some Network Applications

e-mail + voice over |P (e.g., Skype)
web + real-time video

text messaging conferencing

remote login + social networking

P2P file sharing + search

multi-user network games %+ ---

streaming stored video * o

(YouTube, Hulu, Netflix)

Creating a Network App

write programs that:

% run on (different) end systems
% communicate over network
&

e.g., web server software
communicates with browser
software

no need to write software for
network-core devices

+ network-core devices do not
run user applications

+ applications on end systems
allows for rapid app
development, propagation

Application Architectures

possible structure of applications:
+ client-server

+» peer-to-peer (P2P)

Client-Server Architecture

&
&
&

B

#
o

sServer.

always-on host
permanent |P address
data centers for scaling

clients:

communicate with server

may be intermittently
connected

may have dynamic [P
addresses

do not communicate directly
with each other

+*

P2P Architetcure

no always-on server peer-peer

arbitrary end systems
directly communicate

peers request service from
other peers, provide service
in return to other peers

= self scalability — new
peers bring new service
capacity, as well as new
service demands

peers are intermittently
connected and change [P
addresses

= complex management

Processes communicating

Process: program running
within a host.

* processes in different hosts
communicate by
exchanging messages

Client-server paradigm

client process: process that
initiates communication

server process: process that
waits to be contacted

Sockets

+ process sends/receives messages to/from its socket
+ socket analogous to door
= sending process shoves message out door

= sending process relies on transport infrastructure on

other side of door to deliver message to socket at
receiving process

controlled by
app developer

ai ilicatinn

[~

application socket
™

controlled
by O

,

Internet

Addressing Process

+ tO receive messages,
process must have identifier

+ host device has unique 32-

bit I[P address

+ Q: does |P address of host
on which process runs
suffice for identifying the
process?

* A: no, many processes
can be running on same
host

]
»

L]
e

]
»

]
5

identifier includes both IP
address and port numbers
associated with process on
host.

example port numbers:
= HTTP server: 80
= mail server: 25

to send HT TP message to
gaia.cs.umass.edu web
server:
= |P address: 128.119.245.12
= port number: 80

more shortly...

&
o

*
=3

*
=3

*
=

App-Layer Protocol Defines:

types of messages
exchanged,

" e.g., request, response
message syntax:

= what fields in messages
& how fields are
delineated

mess4age semantics

* meaning of information
in fields

rules for when and how
processes send & respond
to messages

open protocols:

b
_e
*
-
#
=

defined in RFCs
allows for interoperability
e.g., HTTP, SMTP

proprietary protocols:

e
i*i

e.g., Skype

What Transport Service does an App Need?

data integrity throughput
+ some apps (e.g., file transfer, % some apps (e.g.,
web transactions) require multimedia) require
|00% reliable data transfer minimum amount of
throughput to be

+ other apps (e.g., audio) can

“effective”
tolerate some loss

other apps ("“elastic apps”)
make use of whatever

h
o

timing
throughput they get
+ some apps (e.g., Internet
telephony, interactive :
security

games) require low delay _ ' _
to be “effective’ < encryption, data integrity,

Transport Service Requirements: Common Apps

application data loss throughput time sensitive
file transfer no loss elastic no
e-mail no loss elastic no
Web documents no loss elastic no

real-time audio/video

stored audio/video
interactive games
text messaging

loss-tolerant

loss-tolerant
loss-tolerant
no loss

audio: S5kbps-1Mbps ves,

video:10kbps-5Mbps 100" s msec

same as above

few kbps up yes, few secs

elastic Yes (and no),
100’s msec

Internet Transport Protocol Services

Transport Control Protocol

User Datagram Protocol

TCP service:

EX

reliable transport between
sending and receiving

Process

¥
flow control: sender won t
overwhelm receiver

congestion control: throttle
sender when network
overloaded

does not provide: timing,
minimum throughput
guarantee, security

connection-oriented: setup
required between client and
server processes

UDP service:

% unreliable data transfer
between sending and
receiving process

does not provide:
reliability, flow control,
congestion control,
timing, throughput
guarantee, security,
orconnection setup,

]
o

Q: why bother? Why is
there a UDP?

Internet apps: application, transport protocols

Application Underlying
Application layer protocol transport protocol
e-mail SMTP [RFC 2821]
remote terminal access Telnet [RFC 854]
Web HTTP [RFC 2616]
file transfer FTP [RFC 939]
streaming multimedia proprietary

(e.g., RealNetworks, youtube, netflix, spotify)

Internet telephony

proprietary
(e.g., Dialpad, skype)

16

Internet apps: application, transport protocols

Application Underlying
Application layer protocol transport protocol
e-mail SMTP [RFC 2821] TCP
remote terminal access Telnet [RFC 854] TCP
Web HTTP [RFC 2616] TCP
file transfer FTP [RFC 959] TCP
streaming multimedia proprietary TCP (or UDP)
(e.g., RealNetworks, youtube, netflix, spotify)
Internet telephony proprietary UDP or TCP

(e.g., Dialpad, skype) typically UDP

17

Securing TCP

TCP & UDP

% NO encryption

+ cleartext passwds sent
into socket traverse
Internet in cleartext

SSL/TLS

+ provides encrypted
TCP connection

+ data integrity

+ end-point
authentication

SSL is at app layer

% Apps use SSL libraries,
which “talk” to TCP

SSL socket API

+ cleartext passwds sent
into socket traverse
Internet encrypted

Roadmap

Principles of Network Applications

— App Architectures

— App Requirements

Web and HTTP

FTP

Electronic Mail

— SMTP, POP3, IMAP

DNS

P2P Applications

Socket Programming with UDP and TCP

The Web and HTTP

HTML: Hypertext Markup Language

First, a review...

#

#
E
o

&

web page consists of objects

object can be HTML file, JPEG image, Java applet,
audio file,...

web page consists of base HTML-file which
includes several referenced objects

each object is addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif

— e ——
i B

host name path name

URL: Uniform Resource Locator

Hypertext Links & URLs

Linking to other URL’s: |

my
resume

Acquiring Images:

<IMG src="http://www.ninthwonder.com/~miko/counter.gif?name=idocsguide"
ALT="counter'">

Executing Applets:

<APPLET
CODE="http://www.ida.liu.se/tutorial/MyApplet.class"
WIDTH=200 HEIGHT=50>

<PARAM NAME=TEXT VALUE="Hi There">

<P>Hi There!<P>
</APPLET>

http://www.ninthwonder.com/~miko/counter.gif?name=idocsguide
http://resumepage.html
http://ida.liu.se/tutorial/MyApplet.class

HTTP Overview

HTTP: hypertext
transfer protocol

+ Web' s application layer
protocol

4+ client/server model

" client: browser that
requests, receives,
(using HTTP protocol)
and displays Web
objects

= server: YWeb server
sends (using HTTP
protocol) objects in
response to requests

PC running
Firefox browser

c® server

running

Apache Web
server

iphone running
Safari browser

HTTP Overview

uses TCP:

+ client initiates TCP
connection (creates socket)
to server, port 80

+ server accepts TCP
connection from client

«+ HTTP messages
(application-layer protocol
messages) exchanged
between browser (HTTP
client) and Web server

(HTTP server)

4 1 CP connection closed

HTTP is “stateless”

4+ server maintains no
information about
past client requests

— aside
prc::‘mculsnthat maintain
state are complex!

» past history (state) must be
maintained

» if server/client crashes, their
views of “state’ may be
inconsistent, must be
reconciled

Network View: HTTP and TCP

 TCP is a connection-oriented protocol

SYN

D : SYN/AC
— ACK " -
/\

GET URL i
—~ VTN

o - o

—FIN- FIN/ACK _

ACK

4
.

24

HTTP Connections

non-persistent HI TP persistent HI' TP
+ at most one object + multiple objects can
sent over TCP be sent over single
connection TCP connection
» connection then between client, server
closed

% downloading multiple
objects required
multiple connections

HTTP Request Message

+ two types of HT TP messages: request, response

+ HTTP request message:
= ASCII (human-readable format)

. line-feed character
request line

(GET, POST, ™ GET /index.html HTTB/1.1\r\n

HEAD com mands} Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n

Accept: text/html,application/xhtml+xml\r\n
‘ Accept-Language: en-us,en;g=0.5\r\n

lines Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;g=0.7\r\n
carriage return, Keep-Alive: 115\r\n

line feed at start | Connection: keep-alive\r\n

of line indicates \r\n
end of header lines

header

HTTP Request Message: General Format

Jl
L]

entity body

method |sp| URL sp| version |cr|lf
header field name value |cr|If

header field name value |cr| If

cr| If

request

1 line

header
lines

body

Uploading “Form” Input

POST method:

+ web page often includes
form input

« input is uploaded to
server in entity body

URL method:
% uses GET method

% input is uploaded in URL
field of request line:

Wwww.somesite.com/animalsearch?monkeys&banana

Method Types

June 1997
HTTP/1.0: HTTP/I.I:
« GET + GET, POST, HEAD
« POST + PUT
+ HEAD - Ep!:i::ads ﬁleli1n Entitf)‘r ;
» asks server to leave ody to path specifie
requested object out in URL field
of response + DELETE
* deletes file specified in
HTTP/2 the URL field

2015: RFC published + supported by major browsers
Similar basic features as HTTP 1.1, but also performance

related enhancements, including (but not limited to):

- Server push
- Multiplexing (to avoid head-of-line blocking)

- Header compression

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

Opens TCP connection to port 80

(default HTTP server port) at www.eurecom.fr.
Anything typed in sent

to port 80 at www.eurecom.fr

telnet www.eurecom.fr 80

2. Type ina GET HTTP request:

By typing this in (hit carriage
return twice), you send
this minimal (but complete)

| GET request to HTTP server

GET /~ross/index.html HTTP/1.0

3. Look at response message sent by HT TP server!

30

HTTP Response Message

status line

(protocol ~_

status code “HTTP/1.1 200 OK\r\n

status phrase) Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n

Server: Apache/2.0.52 (CentOS)\r\n

Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT
\r\n

header ETag: "17dc6-aS5c-bf716880"\r\n
lines Accept-Ranges: bytes\r\n
Content-Length: 2652\ r\n
Keep-Alive: timeocut=10, max=100\r\n
Connection: Keep-Aliwve\r\n
Content-Type: text/html;

charset=IS0-8859-1\r\n
__\r\n
’#ﬁfﬁf#data data data data data

data, e.g.
requested
HTML file

HTTP Response Status Codes

1XX: Informational (def’d in 1.0, used in 1.1)

100 Continue, 101 Switching Protocols

2XX: Success

200 OK, 206 Partial Content

3XX: Redirection

301 Moved Permanently, 304 Not Modified

4XX: Client error
400 Bad Request, 403 Forbidden, 404 Not Found

5XX: Server error

500 Internal Server Error, 503 Service
Unavailable, 505 HTTP Version Not Supported

32

HTTP Response Status Codes

1XX: Informational (def’d in 1.0, used in 1.1)

100 Continue, 101 Switching Protocols

2XX: Success

200 OK, 206 Partial Content

3XX: Redirection

301 Moved Permanently, 304 Not Modified

4XX: Client error
400 Bad Request, 403 Forbidden, 404 Not Found

5XX: Server error

500 Internal Server Error, 503 Service
Unavailable, 505 HTTP Version Not Supported

33

Web caches (proxy server)

Goal: satisfy client request without involving origin server

user sets browser: Web origin
server

accesses via cache

browser sends all HTTP
requests to cache

— object in cache: cache
returns object

— else cache requests object
from origin server, then
returns object to client

origin
server

Application 2-34

Content distribution networks (CDNs)

origin server

|) Amer
* The content providers are the in North America

CDN customers. @
Content replication l
 CDN company installs hundreds of

CDN servers throughout Internet CDN distribution node

— in lower-tier ISPs, close to @

users
* CDN replicates its customers’ l

content in CDN servers. When @
provider updates content, CDN
updates servers CDN server
: in S. America CDN server
Different approaches ... CDN server in asiq

in Europe

35

Cookies: keeping “state”

Many major Web sites use
cookies

Four components:

1) cookie header line in the
HTTP response message

2) cookie header line in HTTP
request message

3) cookie file kept on user’s host
and managed by user’s
browser

4) back-end database at Web
site

Example:

— User visits a specific e-
commerce site ...

36

Cookies: keeping “state” (cont.)

client server
Cookie file | usual http request ms a
P req 9 ., server
usual http response + creates ID %, 74,
ebay: 8734 + Set-cookie: 1678 | 1678 for user ¢ é%d

Cookie file D
amazon: 1678
ebay: 8734

37

Cookie file

Aay: 8734

Cookie file
amazon: 1678
ebay: 8734

client

Cookies: keeping “state” (cont.)

server

—

usual http request msg

S
u server %

+<— Set-cookie:

usual http response +
1678

— creates ID %, 74,
1678 for user NS ‘e,

usual http request msg
cookie: 1678

<4

usual http response msg

cookie- % D
~—— e <
— specific oc®

action

38

Cookie file
ebay: 8734

Cookie file]
amazon: 1678
ebay: 8734

one week later

Cookie file

amazon: 1678
ebay: 8734

client

—

Cookies: keeping “state” (cont.)

+<— Set-cookie:

usual http request msg

usual http response +
1678

server
_, server :fzz y
creates ID %4, “4
Ue g
1678 for user L

usual http request msg
cookie: 1678

<4

usual http response msg

cookie- % D
~—— e <
— specific oc®

action

39

Cookies: keeping “state” (cont.)

Cookie file
ebay: 8734

Cookie file
amazon: 1678
ebay: 8734

one week later:

Cookie file

amazon: 1678
ebay: 8734

usual http request msg
cookie: 1678

— o o
— specific

usual http response msg

usual http request msg
cookie: 1678

—

—

usual http response msg

client server
| usual http request msg server %y
usual http response + [~ creates ID ‘?4?6%”'75%
«| Set-cookie: 1678 | 1678 for user ¢ é%d

t

cookie-

action

cookie-
spectific
action

40

Cookies (continued)

What cookies can bring:

e authorization
* shopping carts
e recommendations

e user session state (Web e-
mail)

how to keep “state "

< protocol endpoints: maintain state at
sender/receiver over multiple
transactions

% cookies: http messages carry state

aside

Cookies and privacy:

7 cookies permit sites to
learn a lot about you

7 you may supply name
and e-mail to sites

7 search engines use
redirection & cookies
to learn yet more

7 advertising companies
obtain info across
sites

41

Roadmap

Principles of Network Applications

— App Architectures

— App Requirements

Web and HTTP

FTP

Electronic Mail

— SMTP, POP3, IMAP

DNS

P2P Applications

Socket Programming with UDP and TCP

FTP: File Transfer Protocol

file transfer

local file
system

e

<+ transfer file to/from remote host

+ client/server model

FTP
server

remote file
system

= client: side that initiates transfer (either to/from remote)

= server: remote host
+ ftp: RFC 959
+ ftp server: port 2|

Mail Access Protocols

user | g\TP SMTP - £
age > > nu.f_:;’,
= [[iTiTi] i (¢-9- PO .
00000 00000 IMAF)
sender’'s mail receiver’ s mail

server server

SMTP: delivery/storage to receiver’ s server
mail access protocol: retrieval from server

*
L

L]
L

Roadmap

Principles of Network Applications

— App Architectures

— App Requirements

Web and HTTP

FTP

Electronic Mail

— SMTP, POP3, IMAP

DNS

P2P Applications

Socket Programming with UDP and TCP

DNS: Domain Name System

Internet hosts:
— |P address (32 bit) - used for addressing datagrams

— “name”, e.g., www.yahoo.com - used by humans

DNS: provides translation between host name
and IP address

— distributed database implemented in hierarchy of
many name servers

— distributed for scalability & reliability

46

Distributed, Hierarchical Database

Root DNS Servers

| T .

com DNS servers ca DNS servers edu DNS servers gepyers
yahoo.com a@mazon.com ucalgary.ca usask.ca polyedu umass.edu

DNS servers DNS servers DNS servers DNS servers DNS servers DNS servers

* Root servers and TLD servers typically do not contain
hostname to IP mappings; they contain mappings for
locating authoritative servers.

47

DNS: Root Name Servers

+ contacted by local name server that can not resolve name

<+ root name server:
" contacts authoritative name server if name mapping not known
" gets mapping
" returns mapping to local name server

c. Cogent, Hermdon, Va (S other sites)
d. U Maryland College Park, MD k. RIFE London (17 other sites)
h. ARL Aberdeen, MD

j. Verisign, Dulles WA (6% other sites) I. Netnod, Stockholm {37 other sites)
2. MASA ML View, CA | == - m. WIDE Tokyo
.) (5 other sites)

f. Internet Software C.
Falo Alto, CA {and 45 other

sites) “‘--.______‘ ;

a_\erisign. Los Angeles EV ;
{3 other sites)

b, USC-I31 Marina del Rey, CA
[. ICAMM Los Angeles, CA
(41 octher sites)

1§ root name
servers
worldwide

g. U3 DoD Columbus,
OH (S other sites)

root DNS server

DNS Infrastructure .

2
Host at liu.se wants IP
TLD DNS server
address for 4
gaia.cs.umass.edu =R - =
Infrastructure:
— Client | local DNS serve
ient resolver dns.liu.se
— Local DNS server 7 6

— Authoritative DNS Server
— Root DNS Server
— Top-Level Domain DNS Server

authoritative DNS server
dns.cs.umass.edu

requesting host
Transport protocol? example.liu.se

gaia.cs.umass.edu

49

root DNS server

DNS Infrastructure .

2
Host at liu.se wants IP
TLD DNS server
address for 4
gaia.cs.umass.edu =R - =
Infrastructure:
— Client | local DNS serve
ient resolver dns.liu.se
— Local DNS server 7 6

— Authoritative DNS Server
— Root DNS Server
— Top-Level Domain DNS Server

authoritative DNS server
dns.cs.umass.edu

requesting host
Transport protocol? example.liu.se

— UDP (port: 53)

gaia.cs.umass.edu

50

Network stack with protocol and
address examples

Layer Example Protocols Example of address
type used here

Application (AL) HTTP, SMTP, DNS www.ida.liu.se

Transport (TL) TCP, UDP
Network (NL) IPv4, IPv6
Link (LL) Ethernet, WiFi (802.11)

Transport Layer

¥

Transport Services and Protocols

provide logical communication
between app processes
running on different hosts

transport protocols run in
end systems

= send side: breaks app
messages into segments,
passes to network layer

* rcv side: reassembles
segments into messages,
passes to app layer

more than one transport
protocol available to apps

® |nternet: TCP and UDP

Transport vs.

+ network layer: logical
communication
between hosts

< transport layer:
logical

communication
between processes

®* relies on, enhances,
network layer
services

Network Layer

Two Basic Transport Features

 Demultiplexing: port numbers
Server host 128.2.194.242

Web server
: . (i.e., the Web server) (port 80)
Echo server

. Service request for
Client host
oo ' .‘.a..r.'.......(.)f..E 128.2.194.242:80

 Error detection: checksums

IP payload

—
detect corruption 64

SaEtsaing Traffic

Server applications
communicate with

multiple clients Unique port for

Application D (S - o ¢;

Appllcatlons share
I the same network

{ % ¥

NI

Endpoints identified by <src_ip, src_port, dest _ip, dest_port>

65

t3

P1 P2

Two Main Transport Layers
e User Datagram Protocol (UDP)
— Just provides demultiplexing and error detection
— Header fields: port numbers, checksum, and length
— Low overhead, good for query/response and multimedia

* Transmission Control Protocol (TCP)
— Adds support for a “stream of bytes” abstraction
— Retransmitting lost or corrupted data
— Putting out-of-order data back in order
— Preventing overflow of the receiver buffer
— Adapting the sending rate to alleviate congestion
— Higher overhead, good for most stateful applications

Network stack with protocol and
address examples

Layer Example Protocols Example of address
type used here

Application (AL) HTTP, SMTP, DNS www.ida.liu.se

Transport (TL) TCP, UDP port 80, port 12376
Network (NL) IPv4, IPv6
Link (LL) Ethernet, WiFi (802.11)

Network Layer

Network Layer

transport segment from
sending to receiving host

on sending side
encapsulates segments
into datagrams

on receiving side, delivers
segments to transport
layer

network layer protocols
in every host, router

router examines header

fields in all IP datagrams
passing through it

natwork
data link | data link
physical physical

Ty

physical physical

Interplay between Routing and Forwarding

routina algorithm routing algorithm determines
959 end-end-path through network

local forwarding table forwarding table determines
local forwarding at this router

header value |nutp ut link

value in arriving
packet s heade

Network Layer Service Model

Q:What service model for “channel” transporting
datagrams from sender to receiver?

?
Network Service Guarantees Congestion

Architecture Model Bandwidth Loss Order Timing feedback

Internet best effort none no no no no (inferred
via loss)

How do we find a path?

Routing on a Graph

* Goal: determine a “good” path through the
network from source to destination

* What is a good path? 5
— Usually means the shortest path
— Load balanced
— Lowest SSS cost

* Network modeled as a graph

— Routers =2 nodes 1
— Link = edges

* Edge cost: delay, congestion level, etc.

Inter vs intra domain routing

75

BGP: The Internet’s Routing Protocol (3)

BGP sets up paths from ASes to destination IP prefixes.

ISP1, Level3, VZW, 22394

66.174.161.0/24 Level3, VZW, 22394

66.174.161.0/24

VZW, 22394
66.174.161.0/24

Verizon
Wireless

ISP2, Level3, VZW, 22394

22394
66.174.161.0/24

(also VZW)

A model of BGP routing policies:
Prefer cheaper paths. Then, prefer shorter paths.

Hierarchical addressing: route aggregation

ISP has an address block; it can further divide this block into sub blocks
and assign them to subscriber organizations.

Organization O

200.23.16.0/23

Organization 1

200.23.18.0/23 \ "Send me anything

with addresses
Organization 2 T beginning

200.23.20.0/23 . | Fly-By-Night-Isp —200.23.16.0/20"

.) \ Internet
Organization 7 . /

200.23.30.0/23 . —

"Send me anything
—— ISPs-R-Us with addresses

beginning
/ 199.31.0.0/16"

77

Network stack with protocol and
address examples

Layer Example Protocols Example of address
type used here

Application (AL) HTTP, SMTP, DNS www.ida.liu.se

Transport (TL) TCP, UDP port 80, port 12376
Network (NL) IPv4, IPv6 123.45.96.21
Link (LL) Ethernet, WiFi (802.11)

Link Layer

Link Layer

terminology:
% hosts and routers: nodes

'

%+ communication channels that
connect adjacent nodes along
communication path: links

= wired links
" wireless links
= | ANs

+ layer-2 packet: frame,
encapsulates datagram

data-link layer has responsibility of
transferring datagram from one node
to physically adjacent node over a link

L

Where is the link layer implemented?

in each and every host

link layer implemented in
“adaptor” (aka network
interface card NIC) or on a
chip
= Ethernet card, 802.1 |
card; Ethernet chipset

* implements link, physical
layer

attaches into host’ s system
buses

combination of hardware,
software, firmware

application ‘
transport
network

cpu emary
:t I <|
M Tohost
| bus
mn?ller | (e.q., PCI)
I
physical |
_tran an .

v

network adapter
card

Adaptors Communicating

datagram| — | m%ﬂ ! |

controller M

[, [,
sending|lhost receiving| host
BN cataganlll —
f ‘_._._._._._._._._._'_._._,_-—'—'
rame
+ sending side: + receiving side
= encapsulates datagram in " |looks for errors, rdt,
frame flow control, etc
= adds error checking bits, " extracts datagram, passes
rdt, flow control, etc. to upper layer at

receiving side

MAC Addresses(2/3)

Each adapter on LAN has unique LAN address

L)
—
=

71-65-F7-2B-08-53

«—1A-2F-BB-76-09-AD Broadcast address =
FF-FF-FF-FF-FF-FF

LAN
(wired or
wireless)

J) B - adapter

-~

<

58-23-D7-FA-20-BO

“— 0C-C4-11-6F-E3-98

85

LAN Address (3/3)

* MAC address allocation administered by IEEE
* manufacturer buys portion of MAC address space
* MAC flat address provides portability

— can move LAN card from one LAN to another
— different than with IP addresses!

86

ARP: Address Resolution Protocol

Question: how to determine | * Each IP node (Host, Router)
MAC address of B on LAN has ARP table
knowing B's IP address? ARP Table: IP/MAC address
mappings for some LAN
237.196.7.78 nodes
*"1A-2F-BB-76-09-AD < |P address; MAC address; TTL>
237.196.7.23 237.196.7.14 — TTL (Time To Live): time after

which address mapping will
be forgotten (typically 20
min)

l

B

71-65-F7-2B-08-53 58-23- D7 FA-20-BO

“— 0C-C4-11-6F-E3-98
237.196.7.88 —

88

Link Layer Services

% framing, link access:
* encapsulate datagram into frame, adding header, trailer
* channel access if shared medium

= “MAC” addresses used in frame headers to identify
source, dest

 different from IP address!

% reliable delivery between adjacent nodes

. sel_cl)nm used on low bit-error link (fiber, some twisted
pair

&

&

&

X

Link Layer Services

flow control:
= pacing between adjacent sending and receiving nodes

error detection:

= errors caused by signal attenuation, noise.
= receiver detects presence of errors:

* signals sender for retransmission or drops frame

error correction:

* receiver identifies and corrects bit error(s) without resorting to
retransmission

half-duplex and full-duplex

= with half duplex, nodes at both ends of link can transmit, but not
at same time

Network stack with protocol and
address examples

Layer Example Protocols Example of address
type used here

Application (AL) HTTP, SMTP, DNS www.ida.liu.se

Transport (TL) TCP, UDP port 80, port 12376
Network (NL) IPv4, IPv6 123.45.96.21
Link (LL) Ethernet, WiFi (802.11) AB:12:3A:45:1A:BB

Connecting the pieces

Three Kinds of Identifiers (+ports)
I N 2

Example www.cs.princeton.edu 128.112.7.156 00-15-C5-49-04-A9

Size Hierarchical, human Hierarchical, Flat, machine
readable, variable machine readable, readable, 48 bits
length 32 bits (in IPv4)

Read by Humans, hosts IP routers Switches in LAN

Allocation, Domain, assigned Variable-length Fixed-sized blocks,

top-level by registrar (e.g., for prefixes, assigned by assigned by IEEE to
.edu) ICANN, RIR, or ISP vendors (e.g., Dell)

Allocation, Host name, local Interface, by DHCP Interface, by vendor

low-level administrator or an administrator

94

Learning a Host s Address

me

adapter

adapter! ' |

\ =
B

e Whoam I?
— Hard-wired: MAC address
— Static configuration: IP interface configuration
— Dynamically learned: IP address configured by DHCP

* Who are you?

— Hard-wired: IP address in a URL, or in the code
— Dynamically looked up: ARP or DNS

95

Mapping Between Identifiers

 Dynamic Host Configuration Protocol (DHCP)
— Given a MAC address, assign a unique |IP address
— ... and tell host other stuff about the Local Area Network
— To automate the boot-strapping process

e Address Resolution Protocol (ARP)

— Given an |IP address, provide the MAC address

— To enable communication within the Local Area Network
 Domain Name System (DNS)

— Given a host name, provide the IP address
— Given an |IP address, provide the host name

96

Dynamic Host Configuration Protocol
> 4]
==

arriving
client

DHCP server

Host learns

IP address,
Subnet mask,
Gateway address,
DNS server(s),
and a lease time.

97

Network stack with protocol and
address examples

Layer Example Protocols Example of address
type used here

Application (AL) HTTP, SMTP, DNS www.ida.liu.se

Transport (TL) TCP, UDP port 80, port 12376
Network (NL) IPv4, IPv6 123.45.96.21
Link (LL) Ethernet, WiFi (802.11) AB:12:3A:45:1A:BB

Courses about Computer Networks

TDTS06 Computer Networks (6hp)

— D program: Recommended elective ...

TDDE35 Large-scale Systems (11hp)

— U program: Second year course covering computer networking,
distributed systems, multicore, embedded systems, and a project

TDTS21 Advance Networking (6p)

— Pre-requirement: Introductory networking course; e.g., TDDE35 (U),
TDTSO04 (IP, C, ...), TDTSO06 (D, Y, ...), TDTS11 (IT)

Thesis opportunities

— Companies often have projects

— | have many additional research projects (on these and related
topics, including novel multimedia streaming solutions, cloud, 10T,
data analytics/mining, network security, social networking, ..., but
also other things (e.g., sports analytics))

Extra slides ...

FTP: Commands and Responses

sample commands:

4+ sent as ASCI| text over
control channel

+ USER username
+ PASS password

+ LIST return list of file in
current directory

+ RETR filename
retrieves (gets) file

+ STOR filename stores
(puts) file onto remote
host

sample return codes

X

status code and phrase (as
in HTTP)

331 Username OK,
password required

125 data
connection
already open;
transfer starting

425 Can’'t open
data connection

452 Error writing
file

Socket Programming

goal: learn how to build client/server applications that
communicate using sockets

socket: door between application process and end-
end-transport protocol

controlled by
app developer

application

[~

socket
\

aiincaﬂnn

controlled
by OS

£

Internet

Socket Programming

Two socket types for two transport services:
« UDP: unreliable datagram
« TCP: reliable, byte stream-oriented

Application Example:

. Client reads a line of characters (data) from its
keyboard and sends the data to the server.

2. The server receives the data and converts
characters to uppercase.

3. The server sends the modified data to the client.

4. The client receives the modified data and displays
the line on its screen.

Socket Programming with UDP

e UDP: no “connection” between client & server
— no handshaking before sending data

— sender explicitly attaches IP destination address and port # to
each packet

— rcvr extracts sender IP address and port# from received
packet

 UDP: transmitted data may be lost or received out-of-order
e Application viewpoint:

— UDP provides unreliable transfer of groups of bytes
(“datagrams”) between client and server

Client/Server Socket Interaction: UDP

server (running on serverIP) client

create socket:

create socket, port= x: clientSocket =

serverSocket = socket(AF_INET.SOCK_DGRAM)
socket(AF_INET,SOCK_DGRAM)
Address family: IPv4, Socket type: datagrams UDP CTEET.E datagram with server IP and

/ port=x; send datagram via
clientSocket

read datagram from

serverSocket

write reply to — read 'datagram from
serverSocket — clientSocket
specifying

client address, close

port number clientSocket

Example App: UDP Client

Python UDPClient
include Python's socket

library * from socket import *

serverName = ‘hostname’
serverPort = 12000

create UDP socketfor_____, clientSocket = socket(socket. AF_INET,

server
input » message = raw_input('Input lowercase sentence:’)

Attach server name, port to _
message; send into socket——» ClientSocket.sendto(message,(serverName, serverPort))

read reply characters from —» modifiedMessage, serverAddress =

socket into string clientSocket.recvfrom(2048)

print modifiedMessage

rint out received string —— i
End close socket g clientSocket.close()

Example App: UDP Server

Python UDPServer

from socket import *
serverPort = 12000

create UDP socket > serverSocket = socket(AF_INET, SOCK_DGRAM)
bind socket to local port : "
Cumber 12000 — . serverSocket.bind((", serverPort))
print “The server is ready to receive”
loop forever » while 1:
Read from UDP socketinto | message, clientAddress = serverSocket.recvfrom(2048)
message, getting client's _
address (client IP and port) modifiedMessage = message.upper()

send upper case sting " serverSocket.sendto(modifiedMessage, clientAddress)

back to this client

Socket Programming with TCP

client must contact server

+ server process must first be + when contacted by client,
running server TCP creates new socket

for server process to

communicate with that
particular client

» allows server to talk with

+ server must have created
socket (door) that
welcomes client’ s contact

client contacts server by: multiple clients

» Creating TCP socket, " source port numbers used
specifying IP address, port to distinguish clients
number of server process

+ when client creates socket: app“catign yiewpgint'

client TCP establishes

connection to server TCP TCP provides rellable, in- urder

byte-strearn transfer (“pipe”)
between client and server

Client/Server Socket Interaction: TCP

server (running on hostid) client

create socket,

port=x, for incoming
request:

serverSocket = socket()

1

Wait for new
connections on
serversocket

create socket,

ﬁ;;g:gﬁgﬁgem - — TG_F" —— = cgnnecttnhnstid, port=x
connectionSocket = connection SEtUD clientSocket = socket()

serverSocket.accept()

send request using
read request from

connectionSocket

I |

write reply to
connectionSocket - read reply from
1 clientSocket
close l
connectionsocket close

clientSocket

Example App: TCP Client

Python TCPClient

from socket import *

serverName = 'servername’
create TCP socket for serverPort = 12000 Address family: IPv4, Socket type: TCP
server remote port 12000 lientSocket = socket(AF_INETCGSOCK_STREAM)
Connect to remote socket —— clientSocket.connect((serverName,serverPort))

sentence = raw_input(‘Input lowercase sentence:’)
No need to attach server » clientSocket.send(sentence)

name, port
modifiedSentence = clientSocket.recv(1024)

of bytes

print ‘From Server:’, modifiedSentence

clientSocket.close()

Example App: TCP Server

Python TCPServer

from socket import *

create TCP welcoming serverPort = 12000
socket » serverSocket = socket(AF_INET,SOCK_STREAM)

serverSocket.bind((”,serverPort))
serverSocket.listen(1)
print ‘The server is ready to receive’

while 1:

server wais on accepl() —» connectionSocket, addr = serverSocket.accept()
for incoming requests, new

socket created on return

server begins listening for
incoming TCP requests

loop forever

» sentence = connectionSocket.recv(1024)
read bytes from socket (but

not address as in UDP) capitalizedSentence = sentence.upper()
close connection to this » connectionSocket.send(capitalizedSentence)
client (but not welcoming connectionSocket.close()

socket)

FTP: File Transfer Protocol

file transfer

local file
system

e

<+ transfer file to/from remote host

+ client/server model

FTP
server

remote file
system

= client: side that initiates transfer (either to/from remote)

= server: remote host
+ ftp: RFC 959
+ ftp server: port 2|

]
o

]
o

]
o

]
o

]
o

FTP: Separate Control/Data Connections

TCP control connection,

FTP client contacts FTP server b server port 21
at port 21, using TCP)) E
client authorized over control TCP data connection,
connection FTP —server port 20 FTP

] client server
client browses remote
directory, sends commands
over control CDI‘II‘!ECtIDH % server opens another TCP
when server receives file data connection to transfer
transfer command, server another file
opens 2" TCP data . | .
connection (for file) to client v Eg:;':? connection: “out of

after transferring one file,

server closes data connection % FTP server maintains

“state”: current directory,
earlier authentication

Roadmap

Principles of Network Applications

— App Architectures

— App Requirements

Web and HTTP

FTP

Electronic Mail

— SMTP, POP3, IMAP

DNS

P2P Applications

Socket Programming with UDP and TCP

Electronic Mail

, [l outgoing
Three major components: message queue
< user agents O user mailbox

<+ mail servers

+ simple mail transfer
protocol: SMTP

User Agent

+ a.k.a. “mail reader”

+ composing, editing, reading
mail messages

+ e.g., Outlook, Thunderbird,
iPhone mail client

+ outgoing, incoming
messages stored on server

Electronic Mail: Mail Servers

mail servers:

+ mailbox contains incoming
messages for user

+ message queue of outgoing
(to be sent) mail messages

« SMTP protocol between mail
servers to send email
messages

* client: sending mail
server

= “server’: receiving mail
server

b
L

h
e

o

b
"

o

Electronic Mail: SMTP [RFC 2821]

uses TCP to reliably transfer email message from
client to server, port 25

direct transfer: sending server to receiving
server

three phases of transfer

* handshaking (greeting)

= transfer of messages

* closure

command/response interaction (like HTTP, FTP)
= commands: ASCI| text
= response: status code and phrase

messages must be in 7-bit ASCI

Scenario: Alice Sends Message to Bob

@ 6 e @
"H.ﬁ.-":
Alice’ s mail server Bob' s mail server
) Alice uses UA to compose 4) SMTP client sends Alice’ s
message to message over the TCP
boblsomeschool.edu connection
2) Alice’ s UA sends message to 5) Bob’ s mail server places the
her mail server; message message in Bob’ s mailbox
placed in message queue 6) Bob invokes his user agent
3) client side of SMTP opens to read message
TCP connection with Bob’ s

mail server

UA: User agent

Sample SMTP Interaction

220 hamburger.edu

: HELO crepes.fr

250 Hello crepes.fr, pleased to meet you

: MAIL FROM: <alicefcrepes.fr>

250 alicefcrepes.fr... Sender ok

: RCPT TO: <bobf@hamburger.edu>

250 bobf@hamburger.edu ... Recipient ok

: DATA

354 Enter mail, end with "." on a line by itself

: Do you like ketchup?
: How about pickles?

250 Message accepted for delivery

: QUIT

moOounagOoaonagnaonn O n

221 hamburger.edu closing connection

) | | S: Server
B ' . .
oth are mailservers CI Cllent

Try SMTP Interaction!

+ telnet servername 25
see 220 reply from server

+ enter HELO, MAIL FROM, RCPT TO, DATA, QUIT

commands

L

above lets you send email without using email client (reader)

promptS telnet mail.liu.se 25
rying 130.236.27.19...
onnected to mail.liu.se (130.236.27.19).
scape character is '*]'.
220 HC3-2010.ad.liu.se Microsoft ESMTP MAIL Service ready at
ri, 25 Sep 2015 07:51:45 +0200

250 HC3-2010.ad.liu.se Hello [130.236.180.74]

221 2.0.0 Service closing transmission channel
onnection closed by foreign host.
promptsS

&
e

&
o

-
e

SMTP: Comparison with HTTP

SMTP uses persistent
connections

SMTP requires message

(header & body) to be in
7-bit ASCI|

SMTP server uses
CRLEF.CRLF to
determine end of message

comparison with HITTP:

&
&

&

HTTP: pull
SMTP: push

both have ASCI|

command/response
interaction, status codes

HTTP: each object
encapsulated in its own
response msg

SMTP: multiple objects
sent in multipart msg

Mail Message Format

SMTP: protocol for
exchanging email msgs
RFC 822: standard for text
message format: /
« header lines, e.g.,
= To:
* From:

= Subject:
different from SMTP MAIL
FROM, RCPT TO:
commands!
+ Body: the “message”
= ASCI| characters only

blank
line

Mail Access Protocols

5 il SMTP SMTP user ™
& lagent . |agent f:_.:ia:'}’fff
E | M 1] I (e.g., POR,]

00000 00000 IMAP)
sender’ s mail receiver’ s mail
server server

SMTP: delivery/storage to receiver’ s server

mail access protocol: retrieval from server

= POP: Post Office Protocol [RFC 1939]: authorization,
download

= |MAP: Internet Mail Access Protocol [RFC |1730]: more
features, including manipulation of stored msgs on
server

= HTTP: gmail, Hotmail, Yahoo! Malil, etc.

