
1 of 87

Computer Systems

Seminar 3

Petru Eles
petel@ida.liu.se
tf: 281396

Some few slides are based on material from the course book as well as from the
book “Computer Systems: A Programmer’s Perspective”

by Bryant & O’Hallaron

Binary Representation
 Information is represented as a sequence of binary digits: Bits

 What the actual bits represent depends on the context:

 Numerical value (integer, floating point, fixed point)

 Sequence of characters (text)

 Executable instruction
2 of 87

Binary Representation
 Information is represented as a sequence of binary digits: Bits

 What the actual bits represent depends on the context:

 Numerical value (integer, floating point, fixed point)

 Sequence of characters (text)

 Executable instruction

 Depending on the context, operations performed are:

 Logical computation (context: logic)
1: true Operations: And, Or, Exclusive-Or (Xor), Not
0: false

 Numerical Computation (context: numbers)
1 Operations: Addition, Subtraction, Multiplication,

 0 Division
3 of 87

Logical Computation: Boolean Algebra

& 0 1
0 0 0
1 0 1

 | 0 1
0 0 1
1 1 1

 ^ 0 1
0 0 1
1 1 0

 ~
0 1
1 0

And NotXorOr
4 of 87

Logical Computation: Boolean Algebra

 It applies similarly to bit vectors (operations apply bitwise):

& 0 1
0 0 0
1 0 1

 | 0 1
0 0 1
1 1 1

 ^ 0 1
0 0 1
1 1 0

 ~
0 1
1 0

And NotXorOr

11100101
& 01101101

01100101

11100101
 | 01101101

11101101

11100101
^ 01101101

10001000
~ 01101101

10010010
5 of 87

Arithmetical Computation

Adding two one bit numbers

A B Σ Cout
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1
6 of 87

How is this Done in Computers?

 Logic values are represented by voltage levels:

 High Voltage (e.g. 3.3V):1

 Low Voltage (e.g. 0V): 0

At the output of a circuit we can have the following signal; this circuit produces
the sequence 0, 1, 0 (or false, true, false):
7 of 87

The Basic Building Block: The Transistor

Vout

Vin

Source

H: high voltage level (1, true)
L: low voltage level (0, false)

Vin Source Vout
H H L
L H H
8 of 87

The Basic Building Block: The Transistor

Vout

Vin

Source

H: high voltage level (1, true)
L: low voltage level (0, false)

Observe!
This implements logic Not from Vin to Vout!

 ~
0 1
1 0

Such a circuit is called a Not gate
(also inverter):

Vin Source Vout
H H L
L H H
9 of 87

t

Gates for Boolean Operations
 Gates are electronic devices that perform Boolean operations.

 Gates are built as small electronic circuits based on transistors;

 Gates are the basic building blocks out of which VLSI (very Large Scale
Integration) circuits are built; today computers are implemented as
VLSI circuits, with up to billions of transistors on a chip.

In In In InOutOutOut Ou

In1 In2 Out
0 0 0
0 1 0
1 0 0
1 1 1

In1 In2 Out
0 0 0
0 1 1
1 0 1
1 1 1

In1 In2 Out
0 0 0
0 1 1
1 0 1
1 1 0

In Out
0 1
1 0

And NotXorOr
10 of 87

Gates for Boolean Operations
 Gates are electronic devices that perform Boolean operations.

 Gates are built as small electronic circuits based on transistors;

 Gates are the basic building blocks out of which VLSI (very Large Scale
Integration) circuits are built; today computers are implemented as
VLSI circuits, with up to billions of transistors on a chip.

 Any logical function can be implemented as a combination of such gates.
11 of 87

Implementing Arithmetical Computation
 The one bit adder:

 This is just a truth table capturing a
logical function; thus, it can be
implemented with a combination of
logical gates!

Sum = A Xor B
Cout = A And B

A B Sum Cout
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1
12 of 87

).
Implementing Arithmetical Computation
 The one bit adder:

 This is just a truth table capturing a
logical function; thus, it can be
implemented with a combination of
logical gates!

Sum = A Xor B
Cout = A And B

Cout

Here is the circuit:

This is called a Half Adder
(does not consider input carry

A B Sum Cout
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1
13 of 87

Implementing Arithmetical Computation

 The Full Adder (adds two bits and input carry):

Cin A B Sum Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
14 of 87

Implementing Arithmetical Computation

 The Full Adder (adds two bits and input carry):

Cin A B Sum Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
15 of 87

Implementing Arithmetical Computation
 A four bits adder: adds two four bits numbers and an input carry:

 By further cascading full
adders, one can build 8, 16,
32, 64, ... bit adders.

 In a similar way, circuits for
other arithmetic operations
can be implemented.
16 of 87

How to Store a BIT?

 Circuits like those shown in the previous slides are called “combinatorial”:
they produce an output that only depends on the input; the output is
maintained as long as that input is applied.

 What about a circuit that is able to store a bit?
You can write 1 or 0 to the circuit, and the output will keep the value also
after the input has disappeared.
17 of 87

Flip-Flops
 The circuit below has two inputs. One (called S) for setting it to 1 (H), the

other (called R) for setting to 0 (L).
 When there arrives an input 1 to S, the output becomes 1; it will stay 1,

until there comes an input 1 to R.
 Once an input 1 arrived to R, the output switches 0, and stays so until

an 1 arrives to S.

OutS

R

18 of 87

Setting the Flip-Flop to 1

1

0

19 of 87

Setting the Flip-Flop to 1

11

0

1

1

1

20 of 87

Setting the Flip-Flop to 1

10

0

1

1

1The input has changed
to 0, but the output still
remembers 1!
21 of 87

Setting the Flip-Flop to 0

0

1

22 of 87

Setting the Flip-Flop to 0

00

1

0

0

0

23 of 87

Setting the Flip-Flop to 0

00

0

0

1

0

The input has changed
to 0, but the output still
remembers 0!
24 of 87

Flip-Flops

 One flip-flop can store one bit. Using groups of several flip-flops, arbitrary

long sequences of bits can be stored. This is a basic technique to store data

in computers e.g. in registers.
25 of 87

Let’s Go Over to Computers

 We have seen how data (logical and numerical) is represented in a computer.

 We have seen that it is possible to construct circuits that are able to operate on

data and perform logical and arithmetical operations.

 We have seen that circuits can be built which are able to store data.
26 of 87

Let’s Go Over to Computers

 We have seen how data (logical and numerical) is represented in a computer.

 We have seen that it is possible to construct circuits that are able to operate on

data and perform logical and arithmetical operations.

 We have seen that circuits can be built which are able to store data.

Now, let’s see how a computer is built and works!
27 of 87

What is a Computer/Computer-System?

 A computer is a data processing machine which is operated automatically
under the control of a list of instructions (called a program) stored in its main
memory.

 Computers today are extremely complex and are built of many
interconnected components; in addition to actual data processing, they have
to perform tasks, such as communicate with other computers and devices, to
interact with the user and the environment, etc. Therefore, we speak about
Computer Systems.
28 of 87

Computer Systems

USB
controller

Graphics
adapter

Disk
controller

Mouse Display

Bridge Main
memory

ALU

Control
Unit

R
eg

is
te

rs
IR
PC

CPU

Bus in-
terface

Memory busSystem bus

I/O bus

Internal
CPU bus

Keyboard
Disk
29 of 87

)

Computer Systems

USB
controller

Graphics
adapter

Disk
controller

Mouse Keyboard Display

Bridge

ALU

Control
Unit

R
eg

is
te

rs
IR
PC

CPU

Bus in-
terface

Memory busSystem bus

I/O bus

Internal
CPU bus The CPU (Central Processing Unit

This is the hart of the system; it is
the engine that interprets the
instructions and executes them
(with the help of other components
of the computer system).

Disk

Main
memory
30 of 87

Computer Systems

USB
controller

Graphics
adapter

Disk
controller

Mouse Display

Bridge

ALU

Control
Unit

R
eg

is
te

rs
IR
PC

CPU

Bus in-
terface

Memory busSystem bus

I/O bus

Internal
CPU bus The Main Memory

Is a temporary storage that stores
both instructions (the program)
and data.

Keyboard
Disk

Main
memory
31 of 87

Computer Systems

USB
controller

Graphics
adapter

Disk
controller

Mouse Display

Bridge

ALU

Control
Unit

R
eg

is
te

rs
IR
PC

CPU

Bus in-
terface

Memory busSystem bus

I/O bus

Internal
CPU bus The CPU together with the Main

Memory build the core computer;
this is the minimal structure
capable of storing and executing
programs.

The rest of the computer system
deals with communication, Input/
Output, long term storage, and
interaction with the environment.Keyboard

Disk

Main
memory
32 of 87

Computer Systems

USB
controller

Graphics
adapter

Disk
controller

Mouse Display

Bridge

ALU

Control
Unit

R
eg

is
te

rs
IR
PC

CPU

Bus in-
terface

Memory busSystem bus

I/O bus

Internal
CPU bus

Keyboard

Buses

Buses are the physical
infrastructure (electrical wiring)
over which bytes are travelling
between components of the
computer system.

Disk

Main
memory
33 of 87

Computer Systems

USB
controller

Graphics
adapter

Disk
controller

Mouse Display

Bridge

ALU

Control
Unit

R
eg

is
te

rs
IR
PC

CPU

Bus in-
terface

Memory busSystem bus

I/O bus

Internal
CPU bus Input/Output Devices

They connect the computer to the
external world. Connection is via
controllers/adaptors.

Keyboard
Disk

Main
memory
34 of 87

Computer Systems

USB
controller

Graphics
adapter

Disk
controller

Mouse Display

Bridge

ALU

Control
Unit

R
eg

is
te

rs
IR

CPU

Bus in-
terface

Memory busSystem bus

I/O bus

Internal
CPU bus Disk drive

The disk drive is a special device
used as a long term storage for
data and programs. Such a storage
is also called Secondary Memory.

Keyboard
Disk

On modern computers the
secondary memory is often
implemented as solid state disk
(SSD) on flash memory.

PC

Main
memory
35 of 87

How Does a Computer Work?

 All computers in use, simple or complicated, big or small, cheap or expen-
sive work according to the same basic concept, known as the von Neumann
architecture:

 Data and instructions are both stored in the main memory (stored
program concept);

 The content of the memory is addressable by location (without regard
to what is stored in that location);

 Instructions are executed sequentially (from one instruction to the
next, in order of their location in memory) unless the order is explicitly
modified.
36 of 87

A Simple Computer Architecture

Main
memory

ALU

Control
Unit

R
eg

is
te

rs
IR

PC

CPU

Bus in-
terface

The basic organization (architecture):

 Central processing unit (CPU) contains:
 Control unit (CU) that coordinates the

execution of instructions;
 Arithmetic/logic unit (ALU) that performs

arithmetic and logic operations;
 A set of registers.

 Main memory.
37 of 87

A Simple Computer Architecture

ALU

Control
Unit

R
eg

is
te

rs
IR

PC

CPU

Bus in-
terface

Main
memory

Register Organization

 The set of registers within the CPU represents
the top level of the memory hierarchy inside
the computer system:

 User visible registers: can be accessed
by programs, for data storing.

 Control and Status registers: used by
the Control Unit to control the operation
of the CPU; not directly accessible by
the programmer.
38 of 87

A Simple Computer Architecture

ALU

Control
Unit

R
eg

is
te

rs
IR

PC

CPU

Bus in-
terface

Main
memory

User Visible Registers

 A set of registers which can be used without
restrictions as operands for any operation
and as address registers; these are so called
general-purpose registers.
39 of 87

A Simple Computer Architecture

ALU

Control
Unit

R
eg

is
te

rs
IR

PC

CPU

Bus in-
terface

Main
memory

Control and Status Registers

 Program Counter (PC): holds the address of
the instruction to be fetched and executed.

 Instruction Register (IR): holds the last
instruction fetched.

 Program Status Word (PSW): Condition
Code Flags + other bits defining the status
of the CPU.

 .
40 of 87

A Simple Computer Architecture

ALU

Control
Unit

R
eg

is
te

rs
IR

PC

CPU

Bus in-
terface

Main
memory

Arithmetic Logic Unit (ALU)

 Performs arithmetic and logic operations.
There might be several of them in a CPU.
ALUs are different, depending on the data
type they operate on: integer ALU, floating
point ALU, etc.
41 of 87

A Simple Computer Architecture

ALU

Control
Unit

R
eg

is
te

rs
IR

PC

CPU

Bus in-
terface

Main
memory

Arithmetic Logic Unit (ALU)

 Performs arithmetic and logic operations.
There might be several of them in a CPU.
ALUs are different, depending on the data
type they operate on: integer ALU, floating
point ALU, etc.

Control Unit

 The control unit generates the appropriate
signals such that all other components of
the CPU and the computer system,
together, execute the current instruction.

 The current instruction to execute is stored
in the instruction register (IR); it is the
instruction whose memory address is
stored in the program counter (PC)
42 of 87

Machine Instructions
 A CPU can only execute machine instructions,

 Each computer has a set of specific machine instructions which its CPU is
able to recognize and execute.
43 of 87

Machine Instructions
 A CPU can only execute machine instructions,

 Each computer has a set of specific machine instructions which its CPU is
able to recognize and execute.

 A machine instruction is represented as a sequence of bits (binary digits).
These bits are organized into fields that define:

0 0 0 1 1 0 1 1 1 0 0 0 1 0 1 1

opcode operand 1
(memory)

operand 2
(register)
44 of 87

Machine Instructions
 A CPU can only execute machine instructions,

 Each computer has a set of specific machine instructions which its CPU is
able to recognize and execute.

 A machine instruction is represented as a sequence of bits (binary digits).
These bits are organized into fields that define:

 What has to be done (the operation code).

0 0 0 1 1 0 1 1 1 0 0 0 1 0 1 1

opcode operand 1
(memory)

operand 2
(register)
45 of 87

Machine Instructions
 A CPU can only execute machine instructions,

 Each computer has a set of specific machine instructions which its CPU is
able to recognize and execute.

 A machine instruction is represented as a sequence of bits (binary digits).
These bits are organized into fields that define:

 What has to be done (the operation code).

 To whom the operation applies (source operands).

0 0 0 1 1 0 1 1 1 0 0 0 1 0 1 1

opcode operand 1
(memory)

operand 2
(register)
46 of 87

Machine Instructions
 A CPU can only execute machine instructions,

 Each computer has a set of specific machine instructions which its CPU is
able to recognize and execute.

 A machine instruction is represented as a sequence of bits (binary digits).
These bits are organized into fields that define:

 What has to be done (the operation code).

 To whom the operation applies (source operands).

 Where does the result go (destination operand); in this example CPU it
is assumed that the result of the operation is stored in the same place
where the second operand was stored; no additional field is needed.

0 0 0 1 1 0 1 1 1 0 0 0 1 0 1 1

opcode operand 1
(memory)

operand 2
(register)
47 of 87

Machine Instructions
 A CPU can only execute machine instructions,

 Each computer has a set of specific machine instructions which its CPU is
able to recognize and execute.

 The number of bits, number and length of the fields and their order is
particular to each computer; this defines the instruction format of that
computer.

0 0 0 1 1 0 1 1 1 0 0 0 1 0 1 1

opcode operand 1
(memory)

operand 2
(register)
48 of 87

Types of Machine Instructions

 Machine instructions are of four types:

 Data transfer between memory and CPU registers

 Arithmetic and logic operations

 Program control (test and branch); these are those instructions that
change the flow of instruction execution by jumping to an instruction
different from the instruction following the current one in memory.

 I/O transfer

You see, there are very simple things a machine instruction does!
But many machine instructions, together, perform the big thing!
49 of 87

Instruction Execution
Let’s imagine you write in a program the following instruction:

Z := (Y + X) * 3;

The instruction will be executed by the CPU as a sequence of four machine
instructions!
50 of 87

Instruction Execution
Let’s imagine you write in a program the following instruction: Z := (Y + X) * 3;

0000101110001010
Move addr of Y Reg 2

. .

Memory address at
which the instruc-
tion/data is stored

X
Y
Z

00001000

0001101110000010

0010100000011010

0001001110010010

0000000000001011
0000000000000011
0000000000101010

Add addr of X Reg 2

Mul value “3” Reg 2

Move addr of Z Reg 2

00001001

00001010

00001011

01110000
01110001
01110010

Content of the memory

Instructions
D

ata

Move value of Y to Reg 2

Add value of X to Reg 2
(result kept in Reg 2)

Multiply Reg 2 with 3
(result kept in Reg 2)

Store Reg 2 at address of Z

Value of X: 11
Value of Y: 3

Final value of Z: 42

51 of 87

Let’s Follow the Instruction Execution

Control unit ALU

Main memory

datainstructions

CPU

0000101110001010
0001101110000010
0010100000011010
0001001110010010

0000000000001011
0000000000000011
x x x x x x x xx x x xx x x x

x x x x x x x xx x x x x x x x
Instruction Register Register R2

x x x xx x x xx x x xx x x x

Instructions

X
Y
Z

00001000
Program CounterBefore the first

instruction
52 of 87

Let’s Follow the Instruction Execution

Control unit ALU

Main memory

datainstructions

CPU

0000101110001010
0001101110000010
0010100000011010
0001001110010010

0000000000001011
0000000000000011
x x x x x x x xx x x xx x x x

0000101110001010
Instruction Register Register R2

x x x xx x x xx x x xx x x x

Instructions

X
Y
Z

00001000
Program CounterNow the first

instruction
is fetched
53 of 87

Let’s Follow the Instruction Execution

Control unit ALU

Main memory

datainstructions

CPU

0000101110001010
0001101110000010
0010100000011010
0001001110010010

0000000000001011
0000000000000011
x x x x x x x xx x x xx x x x

Instruction Register Register R2
0000000000000011

Instructions

X
Y
Z

00001001
Program CounterAfter the first

instruction

0000101110001010
54 of 87

Let’s Follow the Instruction Execution

Control unit ALU

Main memory

datainstructions

CPU

0000101110001010
0001101110000010
0010100000011010
0001001110010010

0000000000001011
0000000000000011
x x x x x x x xx x x xx x x x

0001101110000010
Instruction Register Register R2

0000000000000011

Instructions

X
Y
Z

00001001
Program CounterNow the sec-

ond instruc-
tion is fetched
55 of 87

A
o

Let’s Follow the Instruction Execution

Control unit ALU

Main memory

datainstructions

CPU

0000101110001010
0001101110000010
0010100000011010
0001001110010010

0000000000001011
0000000000000011
x x x x x x x xx x x xx x x x

0001101110000010
Instruction Register Register R2

0000000000001110

Instructions

X
Y
Z

00001010
Program Counterfter the sec-

nd instruction
56 of 87

Let’s Follow the Instruction Execution

Control unit ALU

Main memory

datainstructions

CPU

0000101110001010
0001101110000010
0010100000011010
0001001110010010

0000000000001011
0000000000000011
x x x x x x x xx x x xx x x x

0010100000011010
Instruction Register Register R2

0000000000001110

Instructions

X
Y
Z

00001010
Program CounterNow the third

instruction is
fetched
57 of 87

Let’s Follow the Instruction Execution

Control unit ALU

Main memory

datainstructions

CPU

0000101110001010
0001101110000010
0010100000011010
0001001110010010

0000000000001011
0000000000000011
x x x x x x x xx x x xx x x x

0010100000011010
Instruction Register Register R2

0000000000101010

Instructions

X
Y
Z

00001011
Program CounterAfter the third

instruction
58 of 87

Let’s Follow the Instruction Execution

Control unit ALU

Main memory

datainstructions

CPU

0000101110001010
0001101110000010
0010100000011010
0001001110010010

0000000000001011
0000000000000011
x x x x x x x xx x x xx x x x

0001001110010010
Instruction Register Register R2

0000000000101010

Instructions

X
Y
Z

00001011
Program CounterNow the

fourth instruc-
tion is fetched
59 of 87

Let’s Follow the Instruction Execution

Control unit ALU

Main memory

datainstructions

CPU

0000101110001010
0001101110000010
0010100000011010
0001001110010010

0000000000001011
0000000000000011
0000000000101010

0001001110010010
Instruction Register Register R2

0000000000101010

Instructions

X
Y
Z

00001100
Program CounterAfter the

fourth and last
instruction
60 of 87

s

Compilers
We have written in our program:

What the computer executes is:

 Z := (Y + X) * 3;

0000101110001010
0001101110000010
0010100000011010
0001001110010010

High Level Language
(e.g. C, C++, Java)

Machine instruction
for the particular
processor that runs
the program.
61 of 87

62 of 87

Compilers
We have written in our program:

What the computer executes is:

Who brings us from our program to the machine instructions?

 A compiler is a program that translates programs written in a high level
language into machine code to be executed on a certain processor.

 Z := (Y + X) * 3;

0000101110001010
0001101110000010
0010100000011010
0001001110010010

High Level Language
(e.g. C, C++, Java)

Z=(Y+X)*3

Compiler

HL-language
program

program in
machine code

01001000
10110001
00111001

Machine instructions
for the particular
processor that runs
the program.

The Machine Cycle
From the previous example you have seen that many things have to be done to
execute a simple machine instruction;
 Fetch instruction

 Decode instruction

 Execute instruction
63 of 87

The Machine Cycle
From the previous example you have seen that many things have to be done to
execute a simple machine instruction;
 Fetch instruction

 Decode instruction

 Execute instruction
 Fetch operand(s)

 Execute instruction
64 of 87

The Machine Cycle
From the previous example you have seen that many things have to be done to
execute a simple machine instruction;
 Fetch instruction

 Decode instruction

 Execute instruction
 Fetch operand(s)

 Execute instruction

Fetch
instruction

Decode

Fetch
operand

Execute
instruction

Machine Cycle

Each instruction is performed as a sequence
of steps; the steps corresponding to the
execution of one instruction are referred
together as a machine cycle.

The number and nature of steps in the ma-
chine cycle differ from processor to processor.
65 of 87

The Quest for Speed

Running faster (more instructions per time unit) has been a permanent goal of
computer designers.

Two main factors contribute to high performance of modern processors:

1. Fast circuit technology: smaller and faster switching transistors, allowing
the processor to run at higher frequency.

2. Architectural features such as:
 Smart memory hierarchies
 Pipelining
 Superscalar architectures

Several instructions
are executed in parallel.
66 of 87

Memory System
One of the most crucial aspects in designing efficient computer architectures is the
memory system.

 What do we need?

We need memory to fit very large programs and to work at a speed comparable
to that of the microprocessors.

 Main problem:

 Processors are working at a high clock rate and they need large memories;
 Memories are much slower than microprocessors; but for executing a

single instruction you need several memory accesses (fetch the
instruction and operands); it doesn’t help that the processor is fast, if the
memory is orders of magnitude slower.
67 of 87

The CPU-Memory Gap

(main memory)m
em

or
y

ac
ce

ss
 ti

m
e

(n
s)

C
PU

 c
yc

le
 ti

m
e

(n
s)
68 of 87

Memory Hierarchies
 Fast memories are more expensive per byte and cannot be very large (main

memory is much smaller than SSD or Disk)
 It is possible to build memory structures that are as fast as the CPU, but they

are very expensive and small.
69 of 87

Memory Hierarchies
 Fast memories are more expensive per byte and cannot be very large (main

memory is much smaller than SSD or Disk)
 It is possible to build memory structures that are as fast as the CPU, but they

are very expensive and small.
70 of 87

Memory Hierarchies
The good news:

 It is possible to build a composite memory system which combines small,

fast memories (from the top of the hierarchy) and large slow memories (from

the middle and bottom of the hierarchy) and which behaves (most of the

time) like a large fast memory.

How can this work?
71 of 87

Memory Hierarchies
The good news:

 It is possible to build a composite memory system which combines small,

fast memories (from the top of the hierarchy) and large slow memories (from

the middle and bottom of the hierarchy) and which behaves (most of the

time) like a large fast memory.

How can this work?

The answer is: Locality
72 of 87

The Principle of Locality

 During execution of a program, memory references by the processor, for
both instructions and data, tend to cluster: once an area of the program is
entered, there are repeated references to a small set of instructions (loop,
subroutine) and data (components of a data structure, local variables or
parameters on the stack).

 Temporal locality (locality in time): If an item is referenced, it will tend
to be referenced again soon.

 Spacial locality (locality in space): If an item is referenced, items whose
addresses are close by will tend to be referenced soon.
73 of 87

Cache Memory

A cache memory is a small, very fast memory that retains copies of recently
used information (instructions and data). It operates transparently to the pro-
grammer, automatically deciding which values to keep and which to overwrite.

 Due to the property of locality, most of the time, the instruction or data
required by the CPU will be available in the top cache. If not, it will be loaded
from the lower level cache; once loaded the information will be written into
the top level cache and replace some existing one, in order to make space
for the new information.

 Which information is replaced when new one has to be written?

 Some information is overwritten that has, for a long time, not been
used by the CPU (and, thus, is less likely to be needed in the future)

 The above procedure is repeated at each level of the hierarchy.
74 of 87

The Quest for Speed

Running faster (more instructions per time unit) has been a permanent goal of
computer designers.

Two main factors contribute to high performance of modern processors:

3. Fast circuit technology: smaller and faster switching transistors, allowing
the processor to run at higher frequency.

4. Architectural features such as:
 Smart memory hierarchies
 Pipelining
 Superscalar architectures

Several instructions
are executed in parallel.
75 of 87

Pipelining
We remember the machine cycle

Fetch
instruction

Decode

Fetch
operand

Execute
instruction
76 of 87

N

Pipelining
We remember the machine cycle

 Each step in the machine cycle is performed
by a separate piece of hardware:

Fetch
instruction

Decode

Fetch
operand

Execute
instruction

Stage 1 Stage 2 Stage 3 Stage 4

ew instruction fetched

Result comes out:
one result every T
time units

Takes time T
77 of 87

N

Ne
Pipelining
We remember the machine cycle

 Each step in the machine cycle is performed
by a separate piece of hardware:

Fetch
instruction

Decode

Fetch
operand

Execute
instruction

Stage 1 Stage 2 Stage 3 Stage 4

ew instruction fetched

Result comes out:
one result every T
time units

Takes time T

 The CPU works like a pipeline (assembly line): Once
a stage finished with an instruction, it hands it over
to the next stage and takes over a new instruction.

Stage 1 Stage 2 Stage 3 Stage 4

w instruction fetched

Result comes out:
one result every
T/4 time units!!!
78 of 87

Superscalar Architectures

 You can imagine a superscalar processor as composed of several pipelines
running together.

 As opposed to simple pipelined computers, superscalars fetch several
instructions and produce several results simultaneously

Se
ve

ra
l i

ns
tr

uc
tio

ns

in
, a

t t
he

 s
am

e
tim

e
Several results out,
at the sam

e tim
e

79 of 87

The Quest for Speed

Running faster (more instructions per time unit) has been a permanent goal of
computer designers.

Two main factors contribute to high performance of modern processors:

5. Fast circuit technology: smaller and faster switching transistors, allowing
the processor to run at higher frequency.

6. Architectural features such as:
 Smart memory hierarchies
 Pipelining
 Superscalar architectures

That one has been a primary
source of performance
improvement all over the years.
Processors running at higher and
higher frequencies allowed for a
continuous increase in speed.
That doesn’t work any more!!!
80 of 87

The Power Wall
We have reached the limit due to the temperature produced by the high power
consumption! Further increase of the frequency is impossible!

This is the main
challenge today!

New ways have to be
explored in order to
deliver performance!
81 of 87

Multicore Chips

 Multicore chips: Several processors on the same chip.

 This is the only way to increase chip performance without excessive increase
in power consumption:

 Instead of increasing processor frequency, use several processors and
run them in parallel, each at lower frequency.
82 of 87

Intel Core Duo
 Composed of two Pentium M superscalar processors.

Processor
core

32-KB L1
I Cache

32-KB L1
D Cache

Processor
core

32-KB L1
I Cache

32-KB L1
D Cache

2 MB L2 Shared Cache

Off chip
Main Memory
83 of 87

Intel Core i7
 Composed of four x86 SMT (simultaneous multithreading) processors.

Processor
core

32-KB L1
I Cache

32-KB L1
D Cache

Processor
core

32-KB L1
I Cache

32-KB L1
D Cache

Processor
core

32-KB L1
I Cache

32-KB L1
D Cache

Processor
core

32-KB L1
I Cache

32-KB L1
D Cache

256 KB L2
Cache

256 KB L2
Cache

256 KB L2
Cache

256 KB L2
Cache

8 MB L3 Shared Cache

Off chip
Main Memory
84 of 87

ARM11 MPcore
 Composed of four ARM11 processor cores.

Arm11 Processor
core

32-KB L1
I Cache

32-KB L1
D Cache

32-KB L1
I Cache

32-KB L1
D Cache

32-KB L1
I Cache

32-KB L1
D Cache

32-KB L1
I Cache

32-KB L1
D Cache

Off chip
Main Memory

Cache coherence unit

Arm11 Processor
core

Arm11 Processor
core

Arm11 Processor
core
85 of 87

 Intel's Single-Chip Cloud Computer (SCC)

 Composed of 48 P54C Pentium cores
86 of 87

Where are We

Bits, Bytes, Words,
Representations

Information

Arithmetical & Logical
Computations

Computation

Transistors, Circuits &
Processors

Hardware

Logical Gates & NetworksHardware

Computer ArchitecturesHardware

Machine LanguageProgramming

Assembly LanguageProgramming

Abstraction

Electronics

Digital
Electronics

Signals &
Systems

Information
Theory

Discrete
Mathematics

Computer
Systems

Compiler Design
87 of 87

	Computer Systems
	Seminar 3

	Binary Representation
	Information is represented as a sequence of binary digits: Bits
	What the actual bits represent depends on the context:
	Numerical value (integer, floating point, fixed point)
	Sequence of characters (text)
	Executable instruction

	Binary Representation
	Information is represented as a sequence of binary digits: Bits
	What the actual bits represent depends on the context:
	Numerical value (integer, floating point, fixed point)
	Sequence of characters (text)
	Executable instruction

	Depending on the context, operations performed are:
	Logical computation (context: logic)
	Numerical Computation (context: numbers)

	Logical Computation: Boolean Algebra
	Logical Computation: Boolean Algebra
	It applies similarly to bit vectors (operations apply bitwise):

	Arithmetical Computation
	How is this Done in Computers?
	Logic values are represented by voltage levels:
	High Voltage (e.g. 3.3V): 1
	Low Voltage (e.g. 0V): 0

	The Basic Building Block: The Transistor
	The Basic Building Block: The Transistor
	Gates for Boolean Operations
	Gates are electronic devices that perform Boolean operations.
	Gates are built as small electronic circuits based on transistors;
	Gates are the basic building blocks out of which VLSI (very Large Scale Integration) circuits are built; today computers are implemented as VLSI circuits, with up to billions of transistors on a chip.

	Gates for Boolean Operations
	Gates are electronic devices that perform Boolean operations.
	Gates are built as small electronic circuits based on transistors;
	Gates are the basic building blocks out of which VLSI (very Large Scale Integration) circuits are built; today computers are implemented as VLSI circuits, with up to billions of transistors on a chip.

	Any logical function can be implemented as a combination of such gates.

	Implementing Arithmetical Computation
	The one bit adder:

	Implementing Arithmetical Computation
	The one bit adder:

	Implementing Arithmetical Computation
	The Full Adder (adds two bits and input carry):

	Implementing Arithmetical Computation
	The Full Adder (adds two bits and input carry):

	Implementing Arithmetical Computation
	A four bits adder: adds two four bits numbers and an input carry:

	How to Store a BIT?
	Circuits like those shown in the previous slides are called “combinatorial”: they produce an output that only depends on the input; the output is maintained as long as that input is applied.
	What about a circuit that is able to store a bit? You can write 1 or 0 to the circuit, and the output will keep the value also after the input has disappeared.

	Flip-Flops
	The circuit below has two inputs. One (called S) for setting it to 1 (H), the other (called R) for setting to 0 (L).
	When there arrives an input 1 to S, the output becomes 1; it will stay 1, until there comes an input 1 to R.
	Once an input 1 arrived to R, the output switches 0, and stays so until an 1 arrives to S.

	Setting the Flip-Flop to 1
	Setting the Flip-Flop to 1
	Setting the Flip-Flop to 1
	Setting the Flip-Flop to 0
	Setting the Flip-Flop to 0
	Setting the Flip-Flop to 0
	Flip-Flops
	One flip-flop can store one bit. Using groups of several flip-flops, arbitrary long sequences of bits can be stored. This is a basic technique to store data in computers e.g. in registers.

	Let’s Go Over to Computers
	We have seen how data (logical and numerical) is represented in a computer.
	We have seen that it is possible to construct circuits that are able to operate on data and perform logical and arithmetical operations.
	We have seen that circuits can be built which are able to store data.

	Let’s Go Over to Computers
	We have seen how data (logical and numerical) is represented in a computer.
	We have seen that it is possible to construct circuits that are able to operate on data and perform logical and arithmetical operations.
	We have seen that circuits can be built which are able to store data.
	This is just a truth table capturing a logical function; thus, it can be implemented with a combination of logical gates!
	By further cascading full adders, one can build 8, 16, 32, 64, ... bit adders.
	In a similar way, circuits for other arithmetic operations can be implemented.
	This is just a truth table capturing a logical function; thus, it can be implemented with a combination of logical gates!

	Compilers
	A compiler is a program that translates programs written in a high level language into machine code to be executed on a certain processor.

	What is a Computer/Computer-System?
	A computer is a data processing machine which is operated automatically under the control of a list of instructions (called a program) stored in its main memory.
	Computers today are extremely complex and are built of many interconnected components; in addition to actual data processing, th...

	Computer Systems
	Computer Systems
	Computer Systems
	Computer Systems
	Computer Systems
	Computer Systems
	Computer Systems
	How Does a Computer Work?
	All computers in use, simple or complicated, big or small, cheap or expensive work according to the same basic concept, known as the von Neumann architecture:
	Data and instructions are both stored in the main memory (stored program concept);
	The content of the memory is addressable by location (without regard to what is stored in that location);
	Instructions are executed sequentially (from one instruction to the next, in order of their location in memory) unless the order is explicitly modified.

	A Simple Computer Architecture
	A Simple Computer Architecture
	A Simple Computer Architecture
	A Simple Computer Architecture
	A Simple Computer Architecture
	A Simple Computer Architecture
	Machine Instructions
	A CPU can only execute machine instructions,
	Each computer has a set of specific machine instructions which its CPU is able to recognize and execute.

	Machine Instructions
	A CPU can only execute machine instructions,
	Each computer has a set of specific machine instructions which its CPU is able to recognize and execute.
	A machine instruction is represented as a sequence of bits (binary digits). These bits are organized into fields that define:

	Machine Instructions
	A CPU can only execute machine instructions,
	Each computer has a set of specific machine instructions which its CPU is able to recognize and execute.
	A machine instruction is represented as a sequence of bits (binary digits). These bits are organized into fields that define:
	What has to be done (the operation code).

	Machine Instructions
	A CPU can only execute machine instructions,
	Each computer has a set of specific machine instructions which its CPU is able to recognize and execute.
	A machine instruction is represented as a sequence of bits (binary digits). These bits are organized into fields that define:
	What has to be done (the operation code).
	To whom the operation applies (source operands).

	Machine Instructions
	A CPU can only execute machine instructions,
	Each computer has a set of specific machine instructions which its CPU is able to recognize and execute.
	A machine instruction is represented as a sequence of bits (binary digits). These bits are organized into fields that define:
	What has to be done (the operation code).
	To whom the operation applies (source operands).
	Where does the result go (destination operand); in this example CPU it is assumed that the result of the operation is stored in the same place where the second operand was stored; no additional field is needed.

	Machine Instructions
	A CPU can only execute machine instructions,
	Each computer has a set of specific machine instructions which its CPU is able to recognize and execute.
	The number of bits, number and length of the fields and their order is particular to each computer; this defines the instruction format of that computer.

	Types of Machine Instructions
	Machine instructions are of four types:
	Data transfer between memory and CPU registers
	Arithmetic and logic operations
	Program control (test and branch); these are those instructions that change the flow of instruction execution by jumping to an instruction different from the instruction following the current one in memory.
	I/O transfer

	Instruction Execution
	Instruction Execution
	Let’s Follow the Instruction Execution
	Let’s Follow the Instruction Execution
	Let’s Follow the Instruction Execution
	Let’s Follow the Instruction Execution
	Let’s Follow the Instruction Execution
	Let’s Follow the Instruction Execution
	Let’s Follow the Instruction Execution
	Let’s Follow the Instruction Execution
	Let’s Follow the Instruction Execution
	Compilers
	The Machine Cycle
	The Machine Cycle
	The Machine Cycle
	The Quest for Speed
	1. Fast circuit technology: smaller and faster switching transistors, allowing the processor to run at higher frequency.
	Smart memory hierarchies
	Pipelining
	Superscalar architectures

	Memory System
	What do we need?
	Main problem:
	Processors are working at a high clock rate and they need large memories;
	Memories are much slower than microprocessors; but for executing a single instruction you need several memory accesses (fetch the instruction and operands); it doesn’t help that the processor is fast, if the memory is orders of magnitude slower.

	The CPU-Memory Gap
	Memory Hierarchies
	Fast memories are more expensive per byte and cannot be very large (main memory is much smaller than SSD or Disk)
	It is possible to build memory structures that are as fast as the CPU, but they are very expensive and small.

	Memory Hierarchies
	Fast memories are more expensive per byte and cannot be very large (main memory is much smaller than SSD or Disk)
	It is possible to build memory structures that are as fast as the CPU, but they are very expensive and small.

	Memory Hierarchies
	It is possible to build a composite memory system which combines small, fast memories (from the top of the hierarchy) and large slow memories (from the middle and bottom of the hierarchy) and which behaves (most of the time) like a large fast memory.

	Memory Hierarchies
	It is possible to build a composite memory system which combines small, fast memories (from the top of the hierarchy) and large slow memories (from the middle and bottom of the hierarchy) and which behaves (most of the time) like a large fast memory.

	The Principle of Locality
	During execution of a program, memory references by the processor, for both instructions and data, tend to cluster: once an area...
	Temporal locality (locality in time): If an item is referenced, it will tend to be referenced again soon.
	Spacial locality (locality in space): If an item is referenced, items whose addresses are close by will tend to be referenced soon.

	Cache Memory
	Due to the property of locality, most of the time, the instruction or data required by the CPU will be available in the top cach...
	Which information is replaced when new one has to be written?
	Some information is overwritten that has, for a long time, not been used by the CPU (and, thus, is less likely to be needed in the future)

	The above procedure is repeated at each level of the hierarchy.

	The Quest for Speed
	3. Fast circuit technology: smaller and faster switching transistors, allowing the processor to run at higher frequency.
	Smart memory hierarchies
	Pipelining
	Superscalar architectures

	Pipelining
	Pipelining
	Each step in the machine cycle is performed by a separate piece of hardware:

	Pipelining
	Each step in the machine cycle is performed by a separate piece of hardware:

	Superscalar Architectures
	You can imagine a superscalar processor as composed of several pipelines running together.
	As opposed to simple pipelined computers, superscalars fetch several instructions and produce several results simultaneously

	The Quest for Speed
	5. Fast circuit technology: smaller and faster switching transistors, allowing the processor to run at higher frequency.
	Smart memory hierarchies
	Pipelining
	Superscalar architectures

	The Power Wall
	Multicore Chips
	Multicore chips: Several processors on the same chip.
	This is the only way to increase chip performance without excessive increase in power consumption:
	Instead of increasing processor frequency, use several processors and run them in parallel, each at lower frequency.

	Intel Core Duo
	Composed of two Pentium M superscalar processors.

	Intel Core i7
	Composed of four x86 SMT (simultaneous multithreading) processors.

	ARM11 MPcore
	Composed of four ARM11 processor cores.

	Intel's Single-Chip Cloud Computer (SCC)
	Where are We
	Central processing unit (CPU) contains:
	Control unit (CU) that coordinates the execution of instructions;
	Arithmetic/logic unit (ALU) that performs arithmetic and logic operations;
	A set of registers.

	Main memory.
	A set of registers which can be used without restrictions as operands for any operation and as address registers; these are so called general-purpose registers.
	The set of registers within the CPU represents the top level of the memory hierarchy inside the computer system:
	User visible registers: can be accessed by programs, for data storing.
	Control and Status registers: used by the Control Unit to control the operation of the CPU; not directly accessible by the programmer.
	Program Counter (PC): holds the address of the instruction to be fetched and executed.
	Instruction Register (IR): holds the last instruction fetched.
	Program Status Word (PSW): Condition Code Flags + other bits defining the status of the CPU.
	. .
	Performs arithmetic and logic operations. There might be several of them in a CPU. ALUs are different, depending on the data type they operate on: integer ALU, floating point ALU, etc.
	Performs arithmetic and logic operations. There might be several of them in a CPU. ALUs are different, depending on the data type they operate on: integer ALU, floating point ALU, etc.
	The control unit generates the appropriate signals such that all other components of the CPU and the computer system, together, execute the current instruction.
	The current instruction to execute is stored in the instruction register (IR); it is the instruction whose memory address is stored in the program counter (PC)

	Fetch instruction
	Decode instruction
	Execute instruction
	Fetch instruction
	Decode instruction
	Execute instruction
	Fetch operand(s)
	Execute instruction
	Fetch instruction
	Decode instruction
	Execute instruction
	Fetch operand(s)
	Execute instruction
	The CPU works like a pipeline (assembly line): Once a stage finished with an instruction, it hands it over to the next stage and takes over a new instruction.
	Composed of 48 P54C Pentium cores

