What is a number?
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Chap 1: Data Storage
Types of Numbers
Number Systems
Representation in Computers
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Types of Numbers

Complex

e T

Real
Rational g/ &

Integer
Natural &+

N Z Q R C
Nine Zulu Queens Ruled China
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Natural Numbers - Counting

. Addition - Closed

- Multiplication - Closed

. Subtraction - Not Closed
- Division - Not Closed

Solving the Subtraction Problem:
Discovery of Zero
Discovery of negative numbers

Han Dynasty 220 BCE - 202 CE
CE - Common era - Europe: 1/7th century
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. Addition - Closed

. Multiplication - Closed
. Subtraction - Closed

- Division - Not Closed

Solving the Division Problem:
Discovery of rational numbers
Ratios between two integers
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Rational Numbers

Q <+—++++—+t++—++—t+++—+++t++++i

10 9 8 -7 6 5 4 3 21 0 1 2 3 4 5 g 7 8 9 10

* Addition — Closed Numerator
e Multiplication — Closed Denominator
e Subtraction — Closed Numerator, Denominator are integers

The denominator can not be O

* Division — Closed

Rational numbers are dense. Between any two
of them, you can always find another!
« Between 0 and 1 there an infinite number of rationals!
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Decimal Representation of Fractions

Rational numbers are simple quantities:

They can be understood in finite terms;
Yet they can be used to represent quantities as small

or as large as we please

= 0.333333333...,
= 2.416666666 . . . ,

— 1.285714285714285 ... .

= 1.60135135135.. ...

3| r—l|l\:> Qo=
(\W] [Ne)
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Decimal Representation

Fractions are ultimately periodic:
after a certain point the infinite
sequence of digits consists of some
finite sequence of digits repeated
indefinitely!




Are the Rational Numbers Adequate?

Q

Since the rationals are dense, do we need any other quantity or
can we even fit anything more on the number line?

10 9 8 -7 6 5 4 3 21 0 1 2 3 4 5 g 7 8 9 10

1

2 2 2
What is the length of the C = a” + b
diagonal of the unit square?
= 17417
? — 14+1=2
1 1
(32 = 2 Can not be expressed as
the ratio of two integers!
/ C — ‘\/Q
o Not irrational =»
! an irrational number!
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Real Numbers

Ré—l—l—|—|—|—|—|—l—l—|—|—|—|—|—|—|—|—|—i—|—|—9

-0 9 8 v 6 5 4 3 2 14 0 1 2 3 4 5 6 7 8 9

Real Numbers = Rational Numbers + Irrational Numbers

V2 = 1.4142135623730950488016887 . . .

In decimal notation, an irrational number can not be represented
as terminating or with eventually repeating decimals.
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Some Special Real Numbers

Some important irrational numbers in engineering!

&
&
X
L/

Y

¢ \
& ."f d ’,,-::'"H \".
( |' »_-’e'g{'\e"e '| I
i T /]
1 - /]
/ N /]
A I-'._\ ‘.’-H f _.'..

T — 3.141592653589793238462643383279 . . .

eln(@) — ln(e‘”) — x  Euler's number
e = 2.7182818284590452353602874713526 . . .

Since they are important numbers, we will want to
represent them in a computer...
but can we? Let’s get back to that later!
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Countability

Q &> Dense

-0 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9

Are some infinite sets bigger than others?

f=> N

Countable Uncountable
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and Bases



Number Systems: Bases

The base of a system specifies the number of digits used

Base-10: Decimal number system: Digits 0-9

Base-2:. Binary number system: Digits: 0-1

Base-8: Octal number system: Digits: 0-7
Base-16: Hexadecimal number system: Digits: 0-9, Letters: A-F
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Number Systems: Positional Notation

Numbers are written and manipulated using positional notation.

Radix Pomnt ,l
10 10% 10' 10° - 10711072107
10° = 10 x 100, or 1000
10> = 10x 10, or 100
10" = 10x1,0r 10
10° =1 (any number raised to the power of 0 cquals 1)
107 = [ +10,or.1
107 = [+ 100, 0r .01
107 = 1+ 1000, or .001

LINKOPING
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736

L 6x10°=6x 1= 6
3x10"=3x 10= 30

L 7x10%= 7x100=700

Each position represents a
power of 10



Positional Notation, Base 10

Decimal: Base-10:

7365 =7 x 103+ 3 x 10°+ 6 x 10' + 5 x 10"
d, x 101 +d,_ x10" 2+ .--+dy x 10" + d;4
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Number Systems

How about base 27

a. Base ten system b. Base two system
S N 5 :— Representation 100 OHR 1 :— Representation
D & 9 & 5o o T
¢ @0 £ - ' S5 .85 S N _
é:? SO |- Position’s quantity & <€ 5 O L position's quantity
-
T - -

1101 =1 x224+1x24+0x 2 +1
d, x 2" 1 4+d 1 x2" 2+ ... +dy x 21 + d4
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Number Systems

How about any base?

d, x 101 +d,  x10" 2+ .. - +dy x 10" + d;4

d, x 2"t +d, _x2" 2%+ ... +dy x 21 4+ d;

If a number in the base-B number system has n digits, it is represented
as the following polynomial, where d; represents the digit in
the i-th position

d, X B*'4+d, { x B2+ ...4+dy x Bl +d;
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From Binary to Decimal

d, x2" 14+ d 1 x2" 2+ ... +dy x 21 + d4

The seventh position in the number

The zero position in the number

Base-2 number system

|
11011010=12"+ 125+ O 2° + 1" 2 + 1" 2° + O+ 2> + |- 2 + (- 2°

LTI

11011010=128 +64 + 0 +16 + & + 0 + + 0 = 218
A . A
The number in binary system The same number in decimal system

) ~ How about from Decimal to Binary?
LU 5



From Decimal to Binary

Translate 13

to binary:

Divide by 2
quotient is O
Stop

Divide by 2
quotient is 1
Continue

Divide by 2
quotient is 3
Continue

Divide by 2
quotient is ©
Continue

213

1. Divide the value by 2 and record the remainder.
2. As long as the quotient obtained is not O, repeat step 1
3. When the quotient of O has been obtained, the binary representation of the

original value consists of the remainders listed from right to left in the order they
were recorded.

LINKOPING
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Remainder 1 —

Remainder 1

Remainder 0

Record
the
remainder

Record
the
remainder

Record
the
remainder

Remainder 1

v
1

v
1

v
)

Record
the
remainder

|

Binary representation




Hexadecimal System: Base 16

d, x 16" +d, ; x 16" 2+ ... 4+dy x 161 + d;

. Since there are only 10 decimal digits but the
base is 16, we need additional digits: A,B,C,D,E,F

- Can be used as shorthand notation for long
patterns of bits:
Each group of 4 bits can be represented by a
single symbol.

. 3 bits: 2 digits, 16 bits: 4 digits, 32 bits: 8 digits

%b?OOOZH becomes A3
A 3
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&
%@+ oeo\é\o‘a
0 0 [ 0000
1 1 [ 0001
2 2 10010
3 3 10011
4 4 1 0100
5 5 10101
6 | 6 [0110 |
] ] 0111
8 8 11000
9 9 11001
A 11011010
B |11 [1011
C 11211100
D [13 11101
E (1411110
F [15]1 1111




Some Examples

What is 11000011 in hexadecimal notation?
C 3

Whatis 11111101 in hexadecimal notation?
F D .@‘z} 8

What is E6 In decimal notation?
27 426 425422 421 =230
1110 0110

=161 + 6*16Y = 230

14*161 + 6*16Y° = 230
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Information Storage and Processing

Goal: To understand how all modern computing systems
and computation using such systems
are based on binary numbers and operations on them!

Computers execute binary computations. Any information we
process Is ultimately encoded and stored as binary numbers!

sssss

Images Text Symbols Sound

Text Text =v TEXT — T T
TEXT Text 7_3"( f rl} 1‘ contz ot st o sy e
(eX{ ¢ Text Tox
vent TEXT Taxt Text
Text TEXT TXT Text
TEXT Vh x4 TEX T
FEXF Text

. B 0TS

Any process on data is ultimately encoded and stored as binary numbers!
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BITS - Binary Digits

Information in a computer is encoded as patterns of 1's and 0’s.

Information = Bits + Context

The context provides an interpretation of the bit patterns!
The same bit pattern can mean different things.

For instance, a numerical value, character or a program instruction!

Logical Computations Numerical Computations

1=true Aﬂdi Or 1 Addition, Subtraction
0= false Not 0 Multiplication, Division

Context; Logic Context: Numbers
II ULINKOPING
® UNIVERSITY



BITS and BYTES

Most computers use blocks of 8 bits, called bytes,
as the smallest addressable unit of memory
.\(o‘z"ad

KOS
0000

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Byte = 8 bits

Sinary 000000002 to 111111112
Decimal: 010 to 25510
Hexadecimal 0046 to FF16

HEOOIWP lolo|lvdony o s |lwio - lo
(M [H HY E Y
ol o = o el [Ro o s w v = o
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1000™
10007
10007
1000"
10007
1000%
1000%
1000%
1000
100047
100017
000"
1000~
100072
10007
10007
100073
10007
100072
10007"
100077
100072

Memory Size: Using Metric Prefixes

10"
1D24
1D21
1D1B
1D15
1D12
10°
10°
10°
10°
107
10°
107"
1072
10
1072
107
1D—12
1D—15
1D—1E
1D—21
1D—24

Prefix | Symbol Short scale Long scale

yiotta-
zetta-
Bxa-

peta-

tera-

giga-

rmega-

kila-

hecto-

deca-

(none) | fnone

deci-
centi-

milli-

riCro-

nana-

pico-

termto-

atto-

Zepto-

yocto-
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el -l el W el e Al el 8 e i B

da

d
C

I

septillion Cluadrillion
sextillion Trilliard
Cluintillion | Trillion
Cluadrillion | Billiard
Trillian Billion
Billian Milliard
tdillion
Thousand
Hundred
Ten
Cine
Tenth
Hundredth
Thousandth
Millianth
Billionth Milliardth
Trillianth Billionth

Cuadrillionth | Billiardth
Quintillionth | Treillionth
Sextillionth | Trilliardth

Decimal
1 000 000 000 000 000 000 ao0a 000
1 000 000 000 000 000 000 0o
1 000 000 000 000 000 o0
1 000 000 D00 000 000
1 000 000 00D 000
1 000 D00 000
1 000 oo
1 000
100
10
1
0.1
0.01
0.001
0.000 00
0.000 000 A0
0.000 000 Q00 001
0.000 000 000 000 0o
0.000 000 000 000 oo0 001
0.000 000 Q00 000 000 ao0ad 0o

Septillionth | Cuadrillionth 0.000 000 000 000 400 000 000 001

What is a Googol?
10100

What is a current
estimate of atoms in the
“observable” universe?

1080



Bytes and Words

- Nominal size of integer data

- For a time, 16-bit words (2 bytes) were common

- Numbers: 0 to 65535 (if positive)

- Want to add larger numbers? Do multiple additions...

- Then for a long time, 32-bit words (4 bytes) were common

- Hardware instructions processed 8, 16 or at most 32 bits at a time
- Most current machines, including phones, use 64-bit words (8 bytes)
- Still support 8, 16, 32 bits; now also 64-bit numbers

- (And there are can be special instructions handling larger numbers; not
covered here!)



Storage: Main Memory

Memory Cell: is a unit of memory (usually a byte), organized in a bit order:

High-order end o 1 0 1 1 0 1 O Low-order end

Most Least
significant significant
bit bit

Address: A number that uniquely identifies one cell in the computer’'s main memory
. Simple case: These numbers are assigned consecutively starting at zero.
- Associates an order with the memory cells

O S
Byte Oriented < )
Memory Organization

(Virtual Memory: Programs refer to virtual addresses — not covered here)

LINKOPING
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Word Oriented Memory Organisation

32-bit 64-bit

m Addresses Specify Byte Words Words BYtes Addr.
Locations

= Address of first byte in word Addr 8 8 8 2

= Add resses. of successw.e words differ 0000 0002

by 4 (32-bit) or 8 (64-bit) Aidr 0003

0000 0004

Addr 0005

0004 0006

0007

0008

Addr 0009

0008 Addr 0010

~ 0011

0008 0012

Addr 0013

0012 0014

0015

LINKOPING
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Measuring Memory Capacity

» Kilobyte: 210 bytes = 1024 bytes
— Example: 3 KB = 3 times1024 bytes

» Megabyte: 220 bytes = 1,048,576 bytes
— Example: 3 MB = 3 times 1,048,576 bytes

» Gigabyte: 230 bytes = 1,073,741,824 bytes
— Example: 3 GB = 3 times 1,073,741,824 bytes

Or: Kibibyte, Mebibyte, Gibibyte:

Indicate that it's a "binary prefix” (bi),
not a power of 1000
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Representing Unsigned Integers in Computers

Unsigned Integers: Not negative, no +/— sign

w= # of bits
w-1 .
BUX) = Ex,.-z‘
BinaryToUnsigned =0
Numeric Range
UMin = 0
000...0 7
UMax = 2% —1 L
111...1
B2U(0001) =0 x 22 4+0x224+40x2'+1=04+04+0+1=1
B2U(0101) =0 x 22 +1x 224+ 4+0x2'4+1=04+44+0+1=5

(0001)
(0101)

B2U(1011) = 1 x 22 +0x 22+ +1x2'+1=84+0+2+1=11
(1111)

_ 3 2 1 . B
hov iz 1111) =1 X 2°4+1x 2"+ +1x 27 +1=84+4+2+1=15



Representing Unsigned Integers in various Machine Memory

long int C = 15213;

1A32 x86-64 Sun
Decimal: 15213
yte oD ¥ (L 00 Bi 0011 1011 0110 1101
in .
Byte| [ 3B |t { 3B 00 ary
Byte 00 | " 00 3B Hex: 3 B 6 D
Byte 00 | » 00 oD
| 00 B
Little ig
Endian 00 Endian
00
00 = Big Endian
= Least significant byte has highest address
m Little Endian
. . = |east significant byte has lowest address
Big Endian 0x100 0x101 0x102 0x103 & y

m Example
= Variable x has 4-byte representation 0x01234567

01 23 45 6’/

Little Endian 0x100 0x101 0x102 0x103
o7 45 23 01

LINKOPING
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Representing Signed Integers in Computers

X
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 3
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15

LINKOPING
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Given 4 bits of memory, we can represent 4 unsigned numbers
(2% - 1if 0 is included)

Suppose we wanted to represent both positive and negative
numbers in memory....... Signed numbers

We would need to find an efficient mapping between
our binary numbers and roughly 2* /2 positive numbers
and 2* /2 negative numbers

Let's do that!




How about a "sign bit”?

Could we use one bit to represent + or —
and the rest to represent the actual number?

Yes, and sometimes we do!

4 pbits would allow us to represent +0 to +7/,
and -0 to—...

Might be a bit confusing to allow "negative zero”!

LINKOPING
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More common: Two’s Complement

- Two’s complement: First bit represents —2"~1, not 2%~1
* Binary 1010:
-8+0+2+0=-6

* To convert -6 to binary using two’s complement:
o Start with the positive: 6
* Representitinbinary: 0110 (4 + 2)
* Flip the bits: 1001
 Add 1: 1010...
This is the internal representation of -6
» Note: First bit is set, indicating a negative number!

LINKOPING
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More common: Two’s Complement

« What happens with zero?

* Represent it in binary: 0000
* Flip the bits: 1111
 Add 1: Resultis 10000,

but we only work with 4 bits: 0000 (bit 5 disappears)

e SO MINUS zero Is zero

LINKOPING
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Another method, instead of adding 1

Two’s complement notation 40 1 1 0 Start with the binary
for 6 using four bits I representation of 6
I I
I I
I I
: : ‘Copy the bits from)
l I / right to left until a
l | i 1 has been copied
| ] . J
I I
I I
|
i i Complement the
l | remaining bits
Two's complement notation v Vv v v
for -6 using four bits (1 0 1 o0

LINKOPING
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Two’s Complement Examples

a. Using patterns of length three b. Using patterns of length four ]
Comparison
Bit Value Bit Value I I

pattern represented pattern represented V)\(“th lizrlﬂgnBez?
011 3 0111 7 0000 0 0
010 2 0110 P 0001 : :
001 1 0101 5 ggi‘l’ ; ;
000 0 0100 4 9100 2 2
111 -1 0011 3 0101 - -
110 -2 0010 2 0110 : z
101 -3 0001 1 0111 - 7
100 -4 0000 0 1000 3 _g
1111 -1 1001 9 =7
1110 -2 1010 10 —6
1101 -3 1011 11 -5
1100 -4 1100 12 —4
1011 -5 1101 13 -3
1010 -6 1110 14 -2
1001 -7 1111 15 -1

1000 -8

LINKOPING
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Addition & Subtraction converted to Two’s Complement

|
he PayOﬁc For addition:
: : _ - Same algorithm as for
Problem in Problem in Answer in - "
. binary addition.

base ten two's complement  base ten .

any extra carry bit
; 0011 ﬁi?qiﬁteedd on the left is
+ 2 ’ + 0019 - addition of any combination
0101 e 2 of signed integers uses the
. 1101 (s;ie;rgwueitfﬁorlthm and
-  +1110 '

- 1011 —» =5

For subtraction:

0111 - negate the number subtracted
7 ' and then add both together.
4+ =5 +1011 - subtraction of any combination of
- 0010 —> 2 signed integers uses the same

algorithm and circuitry for

addition plus an additional circuit
— . for negation of an integer!
—xample: 7 -5 ) ’

LINKOPING
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Representing Signed Integers in Computers

Two’s Complement Decoding

B2T(X) = -x,,°2"" + Y x-2' 21 =2
{ i= 2=1 P
qn Bit |~ hegative Int e e
Sign Bit 0 = positive Int SRSESN ELALSS 'I ERS-
0001]
Numeric Raﬂge 0101] |
T™™in = =2w1 1011]
100...0
TMG(;(]_]_ =1 2"t -1 Half of ZW -1 1111
B2T(0001) = —-0x 2°4+0x2°+4+0x2'+1=040+0+1=1
B2T(0101) =0x2°4+1x2°4++4+0x2'+1=0+4+0+1=5
B2T(1011) = -1 x 224+ 0x 22+ +1x2'+1=-8+0+2+1=-5
B2T(1111) = -1 x 22 +1x 22+ +1x2'+1=-84+4+2+1=-1

LINKOPING
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Representing Signed Integers in various Machine Memory

int A = 15213;

IA32, x86-64 Sun

Little
Endian

int B = -15213;

1A32, x86-64 Sun

Sun

'wo's Complement
Representation

LINKOPING
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Decimal: 15213
Binary: 0011 1011 0110 1101
Hex: 3 B 6 D
long int C = 15213;
IA32 x86-64

Big 6D |t
Endian 3B |

00 <

00 [
Decimal: -15213

Binary: 1111 1111 1111 llllillOO 0100 1001 0011

Hex:

F F F F i C 4 9 3




Numeric Ranges of Integer Representations

Unsigned Values Two’s Complement Values
UMin= 0 T™Min = =2w-1
000...0 100...0
UMax = 2%-1 TMax = 2%w1-1 Half
111...1 011...1
For Different Word Sizes
W
[Bits] | 8 16 32 64
UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808
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Signed Integers in Excess Notation (unusual!)

Bit Value

pattern  represented . Select pattern length to be used
1111 4 - Write down all different patterns
ﬁ;g g in the order they would appear if
1100 4 counting from bottom up.

1011 3 - Pick the 1st pattern with 1 as most
1010 2 e .

1001 1 significant bit to represent O

—’322‘1’ ‘1’ . Patterns preceding 0 are used

0110 -2 for -1, -2, -3 ...

0101 =3 . Patterns proceeding O are used
0100 -4

0011 - for 1, 2, 3,

0010 -6

0001 -7 If the pattern length is x, the difference between the
0000 -8 bit pattern value and the value represented is 2%
4 x=4, excess-8 notation, x= 5, excess-16 notation

1111 = 15:15 -7 = 8 = 23

LINKOPING .
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Representing Fractions (Rational Numbers)

Hundreds Tens Ones Tenths Hundredths Thousandths
column (102}  column (107) column (107) Column (107} Column (10-¢} Column {10-)
=1 x 100 =4 x10 =5x1 =2 x Yo =3 X Yoo =8 X Yiooo

NAV=] )/
145:238

Fours Twos Ones Halves Fourths Eighths
column (27) column (27} column {2°) Column (2" Column (2=} Column (27)
=1x4 =0 x 2 =1x1 =1x% =0 x % =1x %

\\=///
01101

II u LINKOPING Radix Point
o UNIVERSITY



Representing Fractions (Rational Numbers)

Fourths Eighths

Halve
CI {2} Clm{2} Clm{2}

PPPPP

4
2
1
bi |bia|ees| bz | b1 | bolbus|ba|bsses b,

m Representation 2]
= Bits to right of “binary point” represent fractional powers of 2
= Represents rational number:
P Z bk X 2k

LINKOPING P
lI.U UNIVERSITY J



Division & Multiplication

Wiariard T o Tentl Hundredtt T it Fours Twos Ones Halves Fourths Eighths
e L L A . ERLS ey GRS DHaanEs column (22)  column (27) column (2°) Column (2% Column (22 Column (23)

column (102}  column (107) column {10%) Column (101} Column (102} Column {10-3) S A =0 x 2 =15 =1xV =0x" ey

=1x 100 =4x10 =5x1 =2 x Yo =3 x Yoo =8 X Yiooo Tl K IR = X = Tl e Bl

N\
4

o / / / \ \ \ b
| r ¥ 01

Radix Point

Shifting the decimal point 1 position to the left Shiﬂing the radix po.in.t 1 pOSitiOn to the @
has the effect of dividing the number by 10. has the effect of dividing the number by 2.

Shifting the decimal point 1 position to the right Shifting the radix point 1 position to the right
has the effect of multiplying the number by 10. has the effect of multiplying the number by 2.

.

145 238 101.11 = 5 3/4
14.5238 _
10111 = 27/8
1452.
02.38 1011.1 = 11 1/2

LINKOPING
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Representable Numbers

Assuming finite length encodings:

m Limitation
= Can only exactly represent numbers of the form x/2k
= QOther rational numbers have repeating bit representations

m Value Representation So, we must eventually truncate!
= 1/3 0.0101010101[01]...2
= 1/5 0.001100110011[0011]...

= 1/10 0.0001100110011[0011]....

Can approximate with increasing

accuracy by lengthening the binary
representation

LINKOPING
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Floating Point Representation

Representing a real value in a computer:

‘he sign - positive or negative
The mantissa - consists of digits in the value with the radix

point assumed to the left
The exponent - which determines how the radix point is

shifted relative to the mantissa (can be positive or negative)

}Bit positions

Exponent
Sign bit

LINKOPING
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Mantissa

Let’'s Assume an 8-bit fixed
representation
(usually much larger 64 bits):

- sign: 1 bit,
. exponent: 11 bits,
- mantissa: 52 bits

The representation is called f

oating point because the

number of digits is fixed but t

ne radix point floats.

. a positive exponent shifts t
. a negative exponent shifts

ne radix point to the right
the radix point to the left




Decoding the value 01101011

01101011 }Bit positions 1011 Extract Mantissa
| | |
|
Mantissa 2 110 | tExtrac:tt .Exponent3
Exponsnt nterpret in excess-
Sign bit Move radix point
10.11 to the rigth)Z
Bit Value
pattern represented
2+0+1/2+1/4 = 2 3/4 Iransiate to
111 3 decimal form
1L, 2
Soa : Check sign bit
100 0
011 =1 v 23 0 is positive
D s 1 is negative
001 -3
000 -4

2.15

Exponent encoded
IN excess-3

LINKOPING
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Decoding the value 00111100

00111100 }Bit positions 1100 Extract Mantissa
| | |
| Extract Ex
: ponent
Mant = .
Exponent A 1 011 Interpret in excess-3
Sign bit Move radix point
. 01100 to the left 1
Translate to
. 2+1/4+1/8 = .
Betibnit || inanssaanted 02+ 114118 = 3/8 decimal form
153 G 5 . .
110 2 Check sign bit
100 : + 38 O is positive
i E 1 is negative
001 -3

el P 0.375

Exponent encoded
IN excess-3

LINKOPING
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Encoding the value 1+1/8 (1.125)

01011001 }Bit oosifions 1 001 Encode the number

| | | | In binary notation
| Copy the pattern

Mantissa 1001 Intothe mantissa
Exponent (left to right)
Sign bit Starting with leftmost 1

Imagine the radix
- 1001 point to the left of
the mantissa value

Bit Value

pattern represented : . .
| Determine direction

o s 1 to the right and length to move
101 1 (+1 ) radix point to recover
100 0 the original binary
011 -1
010 —2 number
001 -3
i £ 101 Encode in exponent

fleld using excess notation
Exponent encoded J

in excess-4 Encode sign bit
0 O is positive
1 Is negative
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Truncation Errors: Encoding the value 2 5/8 (2.625)

, . Encode the number
I HEN ANEE }Blt posttions 10.101 In binary notation
| | | |
| Copy the pattern
oot " 2rts2se OO oo
i i Starting with leftmost 1
Sign bit Must truncate the g. |
rightmost 1 (1/8) 1010 Imagine the radix

point to the left of
the mantissa value

Bittt Value -
pattern represente
- Determine direction and
ﬁ; 3 2tothe rlght length to move radix point
101 1 (+1) to recover the original
{1)‘132 _g Qesu |-t binary number
010 -2
o " O’| d O’ O’| O =9 1/2 110 Encode in exponent
_ field using excess notation
Exponent encoded TrU qCathn or c de sian bit
: ) : NCoae sign ol
In excess-4 Rounding error! 0 0'is positive

1 1s negative
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Truncation Errors

Can cause significant problems in applications requiring high
precision!

There are many more repeating decimal numbers in binary than in
decimal notation. Example: 1/10

Arithmetic with accumulated rounding errors can be problematic:
3 bit representation:
2%+ 1/8+1/8=> 2%+ 1/8=> 2" (small parts disappear)
1/18+1/8+ 2% = 2+ 2% =2 3 (accumulate small parts first)

Topic: Numerical Analysis
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Worrying about precision

m Single precision: 32 bits

10737 10 1038

Precision: 7 decimal digits
A

S |exp frac

1 8-bits 23-bits
m Double precision: 64 bits

S |exp frac

1 11-bits 52-bits

m Extended precision: 80 bits (Intel only)

exp

frac

1

15-bits

LINKOPING
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63 or 64-bits

Single Precision

- Encodes very small real numbers and

very large real numbers
very accurate precision to 7
decimals...




IEEE Floating Point Standard

m |EEE Standard 754

" Established in 1985 as uniform standard for floating point arithmetic
= Before that, many idiosyncratic formats
= Supported by all major CPUs

m Driven by numerical concerns
" Nice standards for rounding, overflow, underflow
" Hard to make fast in hardware

= Numerical analysts predominated over hardware designers in defining
standard
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The High Cost of Floating Point Overflow!

On June 4, 1996, the US$500 million
Ariane 5 spacecraft was launched for the
first time.

Sadly, the primary cause was found to be a piece of software which had been retained from the
previous launcher’s systems and which was not required during the flight of Ariane 5. The
software was used in the Inertial Reference System (SRI) to calculate the attitude of the launcher. Sl
In Ariane 4, this software was allowed to continue functioning during the first 50 seconds of flight B - cieny
as it could otherwise delay launching if the countdown was halted for any other reason, this was o '

not necessary for Ariane 5. Additionally, the software contained implicit assumptions about the
parameters, in particular the horizontal velocity that was safe for Ariane 4, but not Ariane 5.

The failure occurred because the horizontal velocity exceeded the maximum value for a 16 bit |
unsigned integer when it was converted from it's signed 64 bit representation. This failure
generated an exception in the code which was not caught and thus propagated up through the
processor and ultimately caused the SRI to fail. The failure triggered the automatic fail-over to the .
backup SRI which had already failed for the same reason. This combined failure was then
communicated to the main computer responsible for controlling the jets of the rocket, however,
this information was misinterpreted as valid commands. As a result of the invalid commands, the
engine nozzles were swung to an extreme position and the launcher was destroyed shortly
afterwards.
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The High Cost of Floating Point Overflow!

On June 4, 1996, the US$500 million Ariane 5
spacecraft was launched for the first time

* Piece of software retained from Ariane 4,
used to calculate launcher attitude

« Contained implicit assumptions about safe horizontal
velocities (different in Ariane 5)

« Horizontal velocity exceeded max for 16 bit unsigned integer
 Velocity was actually safe, but overflow =» software crash

 Failed over to backup system; failed for the same reason

* Failure communicated to main computer, misinterpreted as
valid commands

* Engine nozzles swung to an extreme position

* Launcher destroyed
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Do programmers and computer engineers
work with ones and zeros?

Yes... in the same way authors and journalists
work with the alphabet -
ABCOCF

GCHIIKL M
NOPQRST
VVWXYZ
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