TDDE21 - DRIP Project Report

Suleman Khan, Markus Loborg, Robin Lidekrans, Lukas Rajala
December 2021

1 Introduction

This report will present the work done in the course TDDE21 Advanced Project:
Secure Distributed and Embedded Systems at Linképing University during the
fall of 2021. The goal of the project is to implement the Drone Remote ID
Protocol (hereafter referred to as DRIP). The group working on the project
consists of four students, and the work is a continuation of the work done by
another group in the course the previous year.

The proposed Drone Remote Identification Protocol (DRIP) is an extension
of the ASTM F3411-19 standard for Drone Remote Identification (DRI). As a
result, a new set of requirements for all parties participating in a UAS network
and their communication are being established.

Unmanned Aircraft (UA), operators, observers, and registries are examples
of these entities, although they are not restricted to them. The goal of the new
protocol is for observers to be able to detect any UAs in their airspace and
execute lookups for information on those UAs.

Data supplied by any entity should be verifiable and trustworthy to the
observer as well. In order to protect sensitive information, such as Personally
Identifiable Information (PII), authorized individuals must be granted access to
such data.

2 Background

This section goes over previous work and fields related to DRIP.

2.1 Open Drone ID

Open Drone ID is a project to provide beacon capabilities to drones so that
they can be identified. It describes formats for messages and how they can be
broadcasted over Bluetooth and WiFi. The Open Drone ID project resulted in
the ASTM Remote ID specification, which is an official standard describing these
messages. These messages include information about the drone, such as location,
speed, ID, and such. It also includes messages for authenticating the identity of
the drone, but it does not specify how these should be authenticated. Thus, the

DRIP protocol was created to create a trustworthy way to authenticate drones.
DRIP messages live in the authentication messages of the ASTM standard.

2.2 DRIP

DRIP is an acronym for Drone Remote Identification Protocol which is a protocol
with the goal to provide a trustworthy and secure way for remote identification
of unmanned aircraft systems. The idea is similar to license plates on cars.
Remote identification allows any user, both civilian and government workers,
to look up and identify unmanned aircraft systems. For the identity of a UAS,
DRIP uses a unique identifier, similar to a license plate, and broadcasts it using
technologies like Bluetooth and WiFi. Any user with a device capable of receiving
the broadcast can then remotely receive the identifier and use it to look up
the identity of the owner and information of the drone. The DRIP protocol
is specified in several documents written by the Internet Engineering Task
Force [1]. The relevant documents for this project are draft-ietf-drip-rid-09 [2]
and draft-ietf-drip-auth-01 [3].

Draft-ietf-drip-rid-09 [2], The document focuses on describing the use of
a technology called Hierarchical Host Identity Tags (HHITS) to be used as
a trustable identifier used for remote ID of UAS. HHITs are a hierarchical
HIT which means that it’s possible to assign an organization responsible for
authentication of the HIT as well as enabling using DNS queries. The authors
come up with the term DRIP Entity Tag(DET), which refers to HHITs within
the context of UAS. HITs are unique IPv6 identifiers that are cryptographically
secure and will not produce two identical HITs. Adding the hierarchy to the HIT
and adding a HHIT registration process will provide global HHIT uniqueness.
HHITs use Hierarchy ID(HID) to organize HITs into domains. HIDs provide
two authorizations for the hierarchy, Registered Assigning Authority(RAA) and
Hierarchical HIT Domain Authority(HDA). The RAA could be an organization
that manages a registry of HDAs. At the same time, an HDA is any sort of third
party that takes on the responsibility to provide services for enabling HIP.

draft-ietf-drip-auth-01 [3], describes how to add trust into the Broadcast
RID. The document uses ASTM Authentication Message, which defines and
standardizes new Authentication formats. This was needed to be able to provide
trustworthy Broadcasting of the RID. See the ASTM F3411-19 standard for
further information.

2.3 Bluetooth Advertising

Bluetooth Low Energy (BLE) was released with Bluetooth 4. BLE has an
advertising feature that allows devices to broadcast packets up to 32 bytes.
Bluetooth 5 further improved this with new encoding modes, one of them being
called coded PHY, which enabled longer range and an increase in package size
to 255 bytes.

Bluetooth is defined in the over 3000 pages long Bluetooth Core Specification
[4]. The Bluetooth stack in the official Linux kernel is called BlueZ [5], which can

be controlled using the D-Bus API [6]. To make it easier to manage Bluetooth
devices on Linux, tools like hcitool, bluetoothctl, and btmgmt allow the user to
control BlueZ using the command line.

BlueZ communicates with Bluetooth devices using the Bluetooth Host
Controller Interface (HCI). The hcitool allows you to send HCI commands,
which can be found in the Bluetooth Core Specification, directly to the controller.
For example, the following command is used to configure Bluetooth Low Energy
to advertise every 100ms on all available channels:

hcitool -i hei0 ecmd 0x08 0x0006 a0 00 a0 00 03 00 00 00 00 00 00 00 00 07 02

0x08 0x0006 is the HCI__Set_Advertising Parameters command, and the
following hexadecimal values are the command parameters. Tools like the
bluetoothctl and btmgmt make it easier to manage Bluetooth devices by adding
abstractions to the HCI. Instead of specifying which HCI command to run, these
tools use a CLI interface with options such as “enable BLE advertising” or
“advertise every 100ms”.

2.4 WiFi Beacon

WiFi Beacon is a part of the 802.11 [7] protocol and is what allows devices to
find WiFi networks by broadcasting data to devices within range. Access points
or routers usually use it to allow devices to detect them, but it can also be used
to broadcast a website link or arbitrary data. WiFi NaN WiFi NaN stands for
WiFi Neighbourhood Area Network and is sometimes referred to as WiFi Aware
though technically NaN is the actual standard, and Aware is when a device is
certified to support it. WiFi [8] protocol uses modified 802.11 frames to allow
direct communication between end devices without the need for an access point.
There are two important main functions in WiFi NaN. The publish function and
the subscribe function. The publish function allows a device to broadcast a “NaN
Service.” A service can be anything from a single line of text to identification
data. The subscribe function allows devices to listen for a particular “NaN
Service.” If two devices are within range of each other and one is subscribed to
a service that the other is publishing, they will connect and start sending any
data needed to fulfill the service.

When a device starts using NaN, it listens for any “NaN cluster,” which is a
group of NaN devices that periodically broadcasts that their cluster exists. If it
finds a cluster, it will join it. Otherwise, it will create its own cluster.

After joining a cluster, it will listen for any service it is subscribed to as well
as publish its services. These messages will only be accepted by other devices
in the cluster. Any other device not in the cluster will ignore them. There are
also some synchronization messages that are sent within the cluster to keep all
devices synchronized since the protocol has windows where different actions are
taken. For example, there is a discovery window which is the time period where
all devices are actively listening for new services.

2.5

Project Goals

The following goals were defined for the project:

3

Update the project in accordance with the differences introduced in draft-
ietf-drip-rid-09.

Implement authentication as specified in draft-ietf-drip-auth-01.
Test the project with the provided BT 5 dongle.

Test battery powered Raspberry PI with GPS on a Phantom drone.

In addition to these goals, two additional goal were specified
Improve the documentation and readability of the project.

Attempt to implement WiFi Broadcasting.

Method

The group started out by working together to understand the scope of the
project by reading relevant documents and code from the previous year. After
understanding the goal of the project, the work was divided between the
group members. The identified areas of work were Bluetooth, the transmitter
application and the receiver application. The working method for each of the
areas can be seen below.

3.1

Bluetooth:
Read and understand the Bluetooth implementation of previous year
Read about Bluetooth 5 and how it works.
Examine the provided Bluetooth dongle (see hardware)
Attempt Bluetooth 5 Low Energy advertising

Integrate Bluetooth 5 in the transmitter application

Transmitter application:

Gain an understanding of previous code.
Refactor to improve usability.
Improve modularity to allow for multiple broadcasting technologies.

Improve documentation of the code.

3.3 Receiver application:

¢ Understanding last year’s receiver application
¢ Examining Open Drone ID receiver application
o Implementing DRIP authentication in the receiver application

¢ Adding new features

3.4 WiFi:
e Understand the standards
¢ Implement WiFi NaN in Python
e Implement WiFi Beacon script

o Integrate WiFi broadcasting in the transmitter application

4 Hardware

Raspberry Pi 4 running the Raspberry Pi foundation’s Raspbian image was
used for running the transmitter application. The built-in chips were used for
Bluetooth 4 and WiFi beacon/NaN. For Bluetooth 5, the nRF52840 USB dongle
from Nordic Semiconductor was used. For Bluetooth 5 development with the
dongle, laptops running Xubuntu 20.04, Manjaro 21.1.4, and Windows 10 were
used.

The receiver applications broadcasting code was developed with and tested
on a plethora of devices. Specifics can be found in the README.md file here.
As [9] for the extensions that were made to the applications, they were done
using a Samsung Galaxy A52 5G. The code was written in Android Studios
Arctic Fox on a computer running Windows 10. In addition to the A52, the
code was also tested on a Samsung Galaxy A71.

5 Result

This section covers the result of the project.

5.1 Bluetooth

The first challenge was understanding the Bluetooth 5 protocol, what Bluetooth
Low Energy is, and how applications are developed. The next challenge was to
figure out how to use the Linux Bluetooth stack with the provided nRF52840
dongle. Nordic Semiconductor provides an application called nRF Connect [10]
that can be used for controlling some of the Bluetooth capabilities of the chip,
but advertising was not one of them. The group then attempted to use the dongle

with the Bluetooth tools provided by BlueZ, but the dongle was not recognized
as a Bluetooth controller. Upon further research, a sample program [11] that
allows the dongle to be recognized by BlueZ was found. The toolchain had to
be set up using the instructions here [12] to compile programs for the dongle.
Following the instructions for compiling and transferring programs to the dongle
found here [13]. This allowed the Linux kernel to recognize the dongle as a
Bluetooth device, and we could control it through the Linux Bluetooth stack,
bluez [5]. However, neither bluetoothctl nor btmgmt could use the Bluetooth 5
extended advertising features. Attempting to set the PHY to LE coded resulted
in error messages, and it was not possible to use the extended package size.
Using hcitool with the command “hcitool -i -hcil emd 08 31 03 04 04” allowed
us to set the preferred PHY to LE coded, but it was not possible to enable
advertisement with this set.

A Linux transmitter example exists on the Open Drone ID GitHub repository
here [14]. Running this program with the dongle did not work either. Using
the program btmon we could monitor the calls being made to Bluez. There we
could see that the Bluetooth 5 extended advertising HCI commands returned
unknown errors. In addition, calling the “Read Advertising Features” command
through bluetoothctl and reading the return value through btmon reports LE
coded as unavailable. Therefore, it appears like the Bluetooth 5 features of the
dongle is either not available to or not detected by, Bluez.

The next was to write native code for the chip. Attempts to compile
and run examples on code using Bluetooth 5 advertisements, such as this
one [15], were made. However, setting up the development environment for
development beyond compiling simple example code proved non-trivial, and
the group was unsuccessful in getting any example code to run. Attempts
to write programs using Nordic Semiconductor’s library to communicate with
the chip[https://github.com/NordicSemiconductor/pe-ble-driver-py| were also
made. However, despite following all available documentation for compiling and
programming the necessary softdevice program to the dongle, it was not possible
to program the dongle with the necessary software.

Having tried running the dongle as a USB device, writing native code for
the dongle, as well as communicating directly with the softdevice on the dongle
without any success, the group decided to use the remaining time for other parts
of the project. However, tests done by the manufacturer suggest that with a
proper configuration, a range of 1300 meters is achievable [16].

5.2 Beacon Script

A lot of the old code contained hard-to-read Bluetooth commands or encoded
messages in hexadecimal strings, making it difficult to read or modify the code.
Therefore, the group decided to clean up the code, modularize it, and make it
easier to add new features.

pyOdid is a set of classes that behaves a lot like the Open Drone ID core
library to create and encode messages. It provides classes and constants that
allow you to generate messages that adhere to the ASTM standard easily. It

Beacon pyQOdid

N

| Communication Interface ‘

Bluetooth 4 W [Bluetooth 5 J WiFi Beacon

p A

-

p =

Figure 1: Beacon Script

also provides a way to encode these messages for broadcasting.

The communication interface is a simple layer that makes it easy to add
additional broadcasting mediums and enable or disable interfaces not supported
on the device. It is an interface to which the Beacon script can send pyOdid
message objects to broadcast them over the enabled communication channels.
This decouples the internal structure of the messages from the beacon script and
the implementation details of the various communication protocols. Therefore,
the beacon script is mainly concerned with the content of the messages and the
timing of the broadcasts.

6 Authentication

The authentication works in multiple steps. First, a public and private key is
generated using the Edwards-curve Digital Signature Algorithm. The drone
is then registered using the public key and receives a HHIT from the registry.
While the drone is used, it periodically broadcasts its id and authentication
data. The authentication data is generated on the drone and is signed using the
private key.

Any observer can verify the drone’s identity with an application that can
receive the messages broadcasted by the drone. Upon receiving the messages, it
will fetch the public key from the registry that the drone registered with. The
application will get the needed address for the registry from the ID (HHIT). This
can either be done using an online server or a local database in situations where
no internet connection is available. The authentication data is then verified
using the drone’s public key.

Edwards-curve Digital Signature Algorithm working:

EJdDSA Components

To do EADSA, we need to standardize:

~ An elliptic curve E over F),
~ Generator point G with order |G| =n
» Cryptographic hash function [with |output| > |2p]|

Figure 2: EADSA Components

EdDSA - Key Generation

Private Key:

+ Hash of random n-bit byte string t
» ko= Ho,..p-1(t), k1 = Hp,._ (1)

Public Key:

 Curve point

A= k‘o x G
Figure 3: EADSA Key Generation

EdDSA - Signing

With key pair ([k0, k1], A) and message M:

1. Calculate r: r= H(k1||]\/[)
2. Calculate point R: R=rxG
3. Calculate point S: s=r+H(R| A || M)ko (mod n)

The tuple (R, s) is the signature.

Figure 4: EADSA Signing

EdDSA - Verification

With public key A, signature (R,s) and message M:

1. Calculate left side: Cl =sxG
2. Calculate right side: CT =R+ H(RHAHA/I)A
3. Check if equivalent check lf Cl == Cr

The signature 1is valid if the check succeeds

Figure 5: EADSA Verification

7 Application:

For this project, a mobile application for android phones that can receive ASTM
broadcasts and verify DRIP authentication data was developed. The application

is based on the open-source project Open Drone ID. The choice to base the
application on this project was made due to the fact that it already had support
for detecting beacons using Bluetooth 4 and 5, as well as WiFi NaN. This meant
that the group only had to add support for DRIP authentication. This was done
in several steps. First, the DRIP was added as a possible type to detect. After
that, authentication using a static public key was added, meaning that it only
worked with a specific drone. This was then expanded to work with any drone
by fetching the public key from a specific server. The communication with the
server is done over HT'TPS to make it secure. Lastly, the possibility to manually
enter the public key to a local database was added.

When the application starts, it listens for broadcasts on any of the supported
broadcasting methods. If it finds one, it will parse it and display it in a list. If
one clicks on the item, it will be focused on a map to where the drone is. If one
clicks the info button, information about the drone, such as location, potential
speed, acceleration, etc., is shown.

Figure 6: Application Demo

Information about the validity of the authentication is shown. The authentication
can be valid, invalid, or unknown. The unknown state happens if the application
is unable to connect to the server or when manual authentication fails. The
reason it will still claim unknown when the manual authentication fails is to
account for the fact that the user could have input the public key incorrectly.
The application will report the authentication invalid if the public key taken
from the server fails to verify the drone. If the application succeeds in verifying

the authentication, then no matter if the key came from manual entry or the
server, it will report the authentication as valid.

7.1 WiFi Broadcasting

As part of implementing the DRIP protocol, we need to implement the various
broadcasting technologies mentioned both in DRIP and in the ASTM standard.
WiFi NaN For NaN, the group started developing a library for Python since
there was no open-source implementation of NaN in any language available,
and the only implementation the group could find was in Android. Halfway
through the development, the group was made aware that the DRIP standard
was moving away from NaN due to it working poorly with UAVs traversing an
area, and development was therefore halted. This resulted in a half-complete
implementation of NaN being created.

7.2 WiFi Beacon

For the beacon, a script was created for broadcasting a DRIP beacon with
whatever data is given to the script. However, during development, it became
clear that WiFi beacons were not compatible with the hardware available in
the group. The script uses a library called scapy [17] to allow the creation and
transmission of messages at the data link layer. It starts by creating a normal
802.11 beacon frame. It then modifies the relevant fields to make it a DRIP
beacon. Data is then added, and the script starts to transmit the beacon.

The problem came in the fact that while scapy allows the code to create and
transmit on the data link layer, the actual WiFi chip on the hardware does not
support transmitting messages directly to the data link layer. So it will look like
the script is running and transmitting, but in reality, nothing leaves the device.
It is sent to the wifi-chip, which promptly discards it without notice or warning.
This would also affect WiFi NaN if that code ever got to the transmitting stage
as well.

8 Discussion

8.1 Update to draft-ietf-drip-rid-09 and draft-ietf-drip-
auth-01

While improving the code from last year’s project the group made sure to read
the drafts to make sure that it followed the rid-09 and auth-01 drafts so that it
is doing properly. Similarly when extending the Open Drone ID app the group
based the work on previous year in combination with the documents from IETF
workgroup. Since the Open Drone ID already supported receiving WiFi beacons
and WiFi NaN, and it is included in the ASTM and DRIP standard, it was
decided to try and get the broadcasting part to work as well.

10

8.2 Test BT 5 dongle

All attempts at getting Bluetooth 5 to run were unsuccessful. We did however
test the Bluetooth 5 dongle, and thus feel like we succeeded with this goal. The
Bluetooth standard is very hard to grasp, while at the same time there is not a
whole lot of documentation available on the internet describing how to use any
of the tools meant to make Bluetooth development easier. This meant that a
lot of time spent on trying various things and trying to get them to work could
have been avoided. Once we finally grasped the concepts and tools, it was quite
easy to see that the dongle was not working for our purposes. Unfortunately
we came to this conclusion at a late stage in the project, and since we had no
backup device prepared and since the dongle does not have many of the features
one would expect when doing embedded development, it was decided to stop
working on Bluetooth 5 and focus on finishing the other parts of the project.

8.3 Test battery powered RP with GPS on a Phantom
drone

Due to the aforementioned Bluetooth 5 issues, we did not carry out this step. As
mentioned in the result chapter, range tests using the nRF52840 chip indicates
a range over 1.3km, suggesting that using the chip with an actual drone could
allow for DRIP authentication over quite long ranges.

8.4 Improve the documentation and readability of the
project

The work and attempts of previous year being somewhat lacking in documentation,
the Bluetooth 5 standard being very hard to read, the DRIP specifications being
very abstract and hard to grasp, as well as the lack of both documentation and
examples on how to do Bluetooth development on Linux meant that a lot of time
in this project was spent in the dark trying to get things to work or understand
how cryptic one-liners work. As a result of this, one of the priorities of this
project was to document the solutions we tried and make sure that the produced
code was easy to follow. The transmitter application now uses a library with
named fields for configuring the content of the broadcasted messages, and the
hexadecimal commands used for controlling the Bluetooth 4 controller have been
bundled together in a communication library to make the code easier to read
and understand.

8.5 WiFi

As mentioned earlier there was an issue with the WiFi chip not supporting
transmission directly on the data link layer. This can be quite easily fixed by
simply getting a WiFi adapter that supports this and is compatible with the OS
used. Then you simply need to tell the script to use the adapter instead of the
built in chip.

11

Support for data link transmission is called monitor mode. Therefore, you
need to find a WiFi adapter that uses a WiFi chip that supports monitor mode.
Note however that this is not something that is written among specifications on
the WiFi adapters. So to find a good adapter might take a lot of searching. One
way is to search for the actual WiFi chips that support it and then find what
adapters use those chips.

9 Future Work

Here we present the areas we think that future groups should focus on.

9.1 Bluetooth

As mentioned in the report, the nRF52840 dongle does not appear to work as a
Bluetooth 5 dongle with the BlueZ Bluetooth stack. Therefore if this dongle is to
be used one would most likely have to write native code for the chip. The dongle
is not suited for this purpose since it does not have any debugging features, and
it might therefore be suitable to use the nRF52840 development kit. Another
solution would be to use a Bluetooth 5 dongle with Extended Advertising support
that is confirmed to work with the BlueZ Bluetooth stack. Once you have a
working Bluetooth 5 controller, it should prove trivial to integrate it in the
transmission application.

9.2 WiFi

Get a WiFi adapter that supports monitor mode. Then ensure the beacon
script actually does what it is supposed to do. After that one could attempt to
complete the NaN if one wanted to, or potentially find an open source version
that can be used.

9.3 Application

Ensuring the application is up to date with any new standard. Possibly try and
create an application for iphones. However note that as of now iphones do not
have built in support for WiFi NaN.

9.4 DRIP

The drafts that the group have been working on have been replaced with newer
versions and the group hasn’t done a thorough check to see what needs to be
replaced but that could be a good start for anyone who wishes to get started
with our project.

12

10 Conclusion

It has been very interesting to work on cutting-edge technology and being among
the first to implement something. While we wish to have produced something
more tangible, a lot of time was spent trying to get things like Bluetooth 5 and
WiFi NaN to work. The lack of good documentation and examples held us back
at times, which is why we felt it was important to spend extra time documenting
our findings. We hope this report can be of use to anyone wishing to continue
working on this project, and help them avoid falling into some of the traps we
fell into.

10.1 Appendix: Project overview

A gitlab group containing the repositories used in the project can be found
at https://gitlab.liu.se/tdde21-drip-2021 (feel free to contact any of the group
members if you need access). The available repositories are as follows:

e« DRIP Android Observer - The observer application.
e DRIP Backend - The backend used for authentication.
e DRIP Beacon - The transmitter application.

e DRIP Iroha 1.1.3 - A custom version of Iroha used for storing the location
of the drone using an Iroha blockchain (not part of this project).

e Python Nan - Standalone library implementation of NaN for Python
(partially completed).

« Installation guidelines are available in the README-files of the repositories.

References

[1] IETF, “Drone remote id protocol (drip),” Available at
https://datatracker.ietf.org/wg/drip/about/ (2021/12/03).

[2] A. W. A. G. Robert Moskowitz, Stuart Card, “Drip entity tag (det) for
unmanned aircraft system remote identification (uas rid),” Available at
https://datatracker.ietf.org/doc/draft-ietf-drip-rid/09/ (2021/09/08).

[3] R. M. Adam Wiethuechter, Stuart Card, “Drip authentication
formats,” Available at https://datatracker.ietf.org/doc/draft-ietf-drip-
rid/09/ (2021/06/18).

[4] Bluetooth, “Drip authentication formats,” Available at
https: //www.bluetooth.com/specifications/specs/core-specification/
(2021/11/18).

13

[5]

BlueZ, “Release of BlueZ 5.62,” http://www.bluez.org/, 2021, [Online;
accessed 11-September-2021].

——, “Bluez git,” https://git.kernel.org/pub/scm/bluetooth /bluez.git /about/,
2021.

D. Stanley, “Ieee 802.11 tm wireless local area networks,” The Institute of
Electrical and Electronics Engineers, Inc.(IEEE).

Developers, “Wifi Aware Overview,” https://developer.android.com/guide/topics/connectivity /wifi-
aware, 2021, [Online; accessed 07-November-2021].

A. Gurtov, “Drip drone observer,” https://gitlab.liu.se/tdde21-drip-
2021/drip-android-observer/- /tree/master, 2021.

Nordic, “nRF Connect for Desktop,” https://www.nordicsemi.com/Products/Development-
tools/nRF-Connect-for-desktop, 2021, [Online; accessed 17-November-2021].

——, “nRF Connect for Desktop,” https://developer.nordicsemi.com/nRF Connect’SDK /doc/latest /zephyt
and-debugging, 2021, [Online; accessed 18-November-2021].

——, “nRF Connect for Desktop,” https://infocenter.nordicsemi.com/index.jsp,
2021, [Online; accessed 18-November-2021].

Bluetooth, “Bluetooth: HCI USB,” https://developer.nordicsemi.com/nRF Connect'SDK/doc/latest/zephy
2021, [Online; accessed 02-December-2021].

friissoren, “transmitter-linux,” https://github.com/opendroneid /transmitter-
linux, 2021.

M. Afaneh, “Bluetooth 5 Advertisements: Everything you need to
know,” https://www.novelbits.io/bluetooth-5-advertisements/, 2021,
[Online; accessed 27-November-2021].

[16] jornbh, “Nordicsemiconductor,” https://github.com/NordicSemiconductor/pe-

[17]

ble-driver-py, 2021.

Scapy, “Scapy Project,” https://scapy.net/”, year = 2021, note =.

14

