
Improving the Open Source HIPv2 Implementation
TDDE21 – Secure Distributed and Embedded Systems

Linköping University

Project Report 2025

Tobias Rosengren (tobro174)
Mabest Amin (mabam091)

Casper Nerf Kanefall (casne582)
Abuzar Sohail (abuso062)

December 17, 2025

1

Contents

1 Introduction and Background 4
1.1 Host Identity Protocol (HIP) 4
1.2 Host Identity Tag (HIT) and ORCHIDv2 4
1.3 HHIT . 4
1.4 CORE Network Emulator . 5
1.5 OpenSSL . 5
1.6 PyHIP . 5

1.6.1 Mininet . 6
1.6.2 PyCryptodome & Cryptography 6
1.6.3 cProfile . 6

1.7 GitLab Group Structure . 6
1.8 Wireshark . 6
1.9 Cryptographic techniques and modern suites 6

1.9.1 ECDSA/SHA-384 . 6
1.9.2 AES-256-GCM for ESP (ES-256-GCM) 7

2 Milestones 8
2.1 OpenSSL . 8

2.1.1 Migration from OpenSSL 3.0 to 3.5+: 8
2.1.2 Algorithm Validation: 8
2.1.3 Provider Initialization: 8

2.2 Wireshark Disector for HIP v2 8
2.3 PyHIP . 8

3 Previous Work 10
3.1 OpenSSL Migration . 10
3.2 HHIT Evolution . 10
3.3 PyHIP Foundations . 10

4 Contributions (2025) 11
4.1 PyHIP Subgroup . 11

4.1.1 Approach. 11
4.1.2 Instructions . 11
4.1.3 Throughput Test Examples 12
4.1.4 Profiling . 13
4.1.5 Multiprocessing experiments 13
4.1.6 Performance benchmarking 13
4.1.7 Cryptographic changes. 13

4.2 OpenSSL 3.5 Implementation: 14
4.2.1 Test Environment Initialization 14
4.2.2 Binary Linkage Confirmation 14
4.2.3 Configuration File Compatibility 14

2

4.2.4 Key Generation Tests 15
4.2.5 Provider Loading and Daemon Integration 15
4.2.6 Version Compliance and Enforcement 15
4.2.7 Script and Enforcement Checks: 15
4.2.8 Upgrade Validation Summary: 15
4.2.9 OpenSSL Integration Details: 16
4.2.10 OpenHIP OpenSSL 3.5+ Test Suite 16

4.3 Wireshark Dissector for HIP v2 17
4.3.1 Approach . 17
4.3.2 Dissector Experimentation 17
4.3.3 Updating the HIP Dissector 18
4.3.4 Testing HIP v2 Dissector 19

5 Future Work 19
5.1 OpenSSL . 19
5.2 Wireshark . 19
5.3 PyHIP . 19

6 Discussion 21
6.1 PyHIP . 21
6.2 OpenSSL . 21
6.3 Wireshark Dissector . 22

7 Conclusion 23
7.1 PyHIP . 23
7.2 OpenSSL . 23
7.3 Wireshark Dissector . 23

3

1 Introduction and Background

This report describes the 2025 continuation of the multi–year effort to im-
prove the open–source implementation of the Host Identity Protocol Ver-
sion 2 (HIPv2). The work was carried out within the course TDDE21 at
Linköping University. The project builds directly upon the codebase and
results delivered by the 2024 group, focusing on both correctness and per-
formance of the implementation.

HIP was designed to decouple host identity from network location, en-
abling stronger cryptographic identities for endpoints and supporting use
cases such as mobility and multihoming without binding long-term identity
to an IP address [8,10]. In practice, this makes HIP an interesting research
and experimentation platform for secure routing, machine-to-machine de-
ployments, and emerging identity-driven networking scenarios.

This year, the project group was divided into two subgroups:

• Core: focused on the C-based OpenHIP implementation, OpenSSL
integration, and Wireshark dissector.

• PyHIP: focused on the Python-based HIP router implementation,
profiling, performance analysis, and experimental improvements.

The following subsections summarize essential background concepts.

1.1 Host Identity Protocol (HIP)

HIP introduces a separation between host identity and network location. In-
stead of using IP addresses as both identifier and locator, hosts are identified
using asymmetric public keys (Host Identities), while IP addresses function
purely as routable locators [8,10]. During the HIP base exchange, public-key
signatures authenticate peers, after which symmetric cryptography protects
subsequent data traffic.

1.2 Host Identity Tag (HIT) and ORCHIDv2

A Host Identity Tag (HIT) is a 128-bit identifier derived from a host’s public
key using the ORCHIDv2 format [5,8]. The HIT embeds a fixed IPv6 prefix,
a Suite ID referencing the cryptographic algorithm, and a hash over the key
material. The resulting value is used as the host identifier throughout the
HIP protocol.

1.3 HHIT

Hierarchical HITs (HHITs) extend the HIT format by introducing struc-
tured fields for hierarchical allocation, such as Registered Assigning Au-
thority (RAA) and HHIT Domain Authority (HDA). These fields support

4

applications such as remotely identifiable tags, and HHITs follow RFC 9374,
which builds upon the ORCHIDv2 structure [7].

1.4 CORE Network Emulator

CORE is a network emulation environment used to test OpenHIP in con-
trolled virtual networks. It enables rapid iteration during development and
provides reproducible debugging setups through scripts such as debug.py.
CORE has been widely used for lightweight, scriptable network experiments
in research and teaching contexts [2].

1.5 OpenSSL

OpenSSL is a powerful, enterprise-grade toolkit designed for general-purpose
cryptography and secure communications. It provides a command-line util-
ity that allows users to perform a wide range of cryptographic tasks, includ-
ing generating keys and certificates [1]. In addition, OpenSSL includes a
collection of providers that deliver implementations for an extensive set of
cryptographic algorithms and secure network communication.Our process
started with validating the existing test cases in OpenSSL 3.0, followed by
adapting and converting them for compatibility with OpenSSL 3.5.

1.6 PyHIP

PyHIP is a Python-based implementation of the Host Identity Protocol ver-
sion 2 (HIPv2) intended primarily for experimentation and education. It
implements HIP control-plane functionality in user space and is commonly
deployed in virtualized network environments such as Mininet, where mul-
tiple HIP routers and hosts can be instantiated on a single machine.

In PyHIP, each router runs a software forwarding and control stack that
handles HIP base exchanges, HIP control messages, and ESP-protected traf-
fic. Packet processing is largely implemented in Python and relies on raw
sockets for capturing and injecting packets. Cryptographic functionality
is provided through Python cryptography libraries, while inter-component
coordination is handled using threads and shared data structures.

Because PyHIP prioritizes flexibility and readability over raw perfor-
mance, it provides a useful platform for studying protocol behavior, ex-
perimenting with new features, and validating changes before they are in-
troduced into lower-level implementations. At the same time, its reliance
on Python introduces inherent performance limitations that make it par-
ticularly suitable for research on architectural trade-offs and optimization
strategies.

5

1.6.1 Mininet

Mininet provides lightweight network emulation for Linux, enabling virtual
routers and hosts on a single machine. Its process-based virtualization and
scripting enable rapid prototyping of protocol experiments and reproducible
performance tests [6].

1.6.2 PyCryptodome & Cryptography

These libraries implement cryptographic operations in Python. PyCryptodome
offers low-level primitives, while the cryptography package provides mod-
ern APIs and can offer better performance and maintainability for selected
operations.

1.6.3 cProfile

cProfile is a built-in Python tool used for profiling execution time across
function calls, and was used to identify bottlenecks in PyHIP’s packet-
processing threads.

1.7 GitLab Group Structure

The project repositories are maintained in a shared GitLab group to en-
sure continuity across academic years, reduce fragmentation, and simplify
collaboration.

1.8 Wireshark

Wireshark is a widely used protocol analysis tool that captures packets and
presents decoded protocol fields to the user. The availability of custom
dissectors is essential for validating experimental or evolving protocol im-
plementations such as HIPv2 [13].

1.9 Cryptographic techniques and modern suites

HIPv2 typically combines asymmetric and symmetric cryptography. Public-
key signatures authenticate endpoints during control-plane exchanges, while
hash functions support identifier derivation and message binding. After
authentication, symmetric cryptography is used for efficient protection of
data traffic, commonly via IPsec ESP [4].

1.9.1 ECDSA/SHA-384

A common modernization is migrating from RSA/SHA-256 to ECDSA/SHA-
384. ECDSA provides comparable security with smaller keys and signatures

6

than RSA, reducing protocol and storage overhead [12]. Using SHA-384
raises the strength of the hash component within the signature suite [11].

1.9.2 AES-256-GCM for ESP (ES-256-GCM)

AES-256-GCM is an authenticated-encryption (AEAD) mode that provides
confidentiality and integrity together, and is widely used with ESP [3, 4].
Correct security depends on ensuring nonce/IV uniqueness per key when
using GCM-based ESP [3].

7

2 Milestones

2.1 OpenSSL

2.1.1 Migration from OpenSSL 3.0 to 3.5+:

The primary milestone was completing the migration to OpenSSL 3.5+,
ensuring that HIP base exchange and ESP traffic remained functional. This
required verifying compatibility with RSA, ECDSA, and EdDSA suites.

2.1.2 Algorithm Validation:

A milestone was set to confirm that all supported algorithms (RSA, ECDSA,
EdDSA Curve25519/448) could be generated and validated correctly. This
ensured interoperability with HIP’s identity and authentication mechanisms.

2.1.3 Provider Initialization:

Another milestone focused on integrating OpenSSL’s modular provider ar-
chitecture into HIP daemons. This step guaranteed that cryptographic ser-
vices were loaded consistently and reported accurate metadata.

2.2 Wireshark Disector for HIP v2

A wireshark dissector for the first HIP version exist as defined by rfc 5201 [9].
Changes to this dissector need to be made to match the HIP version 2 as
defined by rfc 7401 [8].

• Identify defferences between HIP v1 [9] and HIP v2 [8]

• Build and test the original wireshark dissector on HIP version 2 im-
plimantation.

• Impliment a simple test dissector.

• Update the values of changed packet parameters.

• Add new packet types to be recognized.

• Change packet alignment to match HIP v2 [8].

• Test new wireshark dissector on HIP v2 implimentation.

2.3 PyHIP

The PyHIP subgroup focused on improving end-to-end throughput in the
HIP implementation during 2025. To understand where performance limita-
tions originated, the group concentrated on identifying bottlenecks through
systematic benchmarking and detailed profiling. The main milestones were:

8

• Investigate and improve throughput by migrating from threading to
multiprocessing in switchd.py

• Implement and validate the AES-256-GCM cryptographic primitive,
including integration into the existing HIP codebase and extension of
test coverage in hiplib/tests.

• Migrate the deployed identity suite from RSA/SHA-256 to ECDSA/SHA-
384, including regeneration of keys, HITs, and firewall rules across all
routers.

• Update documentation.

9

3 Previous Work

The 2024 group delivered a stable baseline that our 2025 effort relied on.
Their report, “Improving the Open Source HIPv2 Implementation,” doc-
uments how the codebase reached its current state. The highlights below
capture the elements that directly influenced this year’s PyHIP focus.

3.1 OpenSSL Migration

The migration to OpenSSL began in 2021, when the project was first com-
piled against version 3.0 but remained non-functional. In 2022, partial base
exchange functionality was introduced, though stability issues persisted.

By 2023, the base exchange was completed for RSA and EdDSA algo-
rithms, and work began on resolving problems with the ping test. In 2024,
the migration to OpenSSL 3.0.X was finalized, with critical fixes applied to
ESP encryption and decryption, HMAC-SHA256 support, EdDSA segfaults,
and signature validation. These improvements ensured reliable HIP base ex-
change and ESP traffic, providing the foundation for the current upgrade to
OpenSSL 3.5+.

3.2 HHIT Evolution

HHIT work started in 2020 from early drafts and eventually aligned with
RFC 9374. The 2024 group corrected the remaining misunderstandings
around HDA/RAA handling, updated the ORCHID parameters to match
the final specification, and supplied a Python-based regression test that
compares generated HHITs against known-good DRIP tooling. Their im-
plementation gave us a consistent reference when regenerating identities for
the ECDSA migration.

3.3 PyHIP Foundations

PyHIP was restructured substantially last year. Duplicate router directories
were consolidated into a shared hiplib module with symlinks, making it
feasible to evolve the code once instead of four times. The team profiled
the three packet-processing threads using cProfile, identified digest.py

and symmetric.py as the heaviest consumers and began migrating selected
primitives to the cryptography package.

10

4 Contributions (2025)

4.1 PyHIP Subgroup

4.1.1 Approach.

The work began by restoring the Mininet lab environment from 2024 and
converting the throughput experiment into a repeatable and automated
benchmark. The resulting script, analysis/throughput test.py, boots
a four-router topology, waits for the HIP base exchange to complete, and
then runs scripted iperf3 traffic between selected host pairs.

4.1.2 Instructions

Because the script manipulates namespaces and raw sockets, it must be run
with root privileges:

cd analysis

sudo python3 throughput_test.py --duration 15

Once connectivity is detected, the script launches each iperf flow and prints
a live summary, e.g. *** Iperf result h1->h2: TX 11.70 Mbps, RX

11.72 Mbps.
Each run generates a JSON artifact under

analysis/results/throughput-<timestamp>.json containing the per-flow
throughput values, the switchd PID map (for later profiling), and tails of
every router*/hipls.log file to correlate performance drops with HIP or
IPSec events. The CLI supports several flags for repeatable experimenta-
tion:

• --pairs selects any host pairs (default h1:h2 h1:h4).

• --duration sets the per-pair iperf runtime in seconds (default 10).

• --l4 switches between TCP and UDP (UDP adds -u -b 10M).

• --ready-pair / --ready-timeout control the BEX readiness probe.

• --output chooses where the JSON report is written.

• --switchd-log-dir points to the directory that captures switchd

stdout/stderr.

• --log-level forwards the desired verbosity to Mininet.

11

Figure 1: Example run of throughout test

4.1.3 Throughput Test Examples

Each run waited for the HIP base exchange to converge (typically eight
probe cycles) and then drove either TCP or UDP traffic between selected
hosts. All switchd instances negotiated the same ECDSA/SHA-384/AES-
256-GCM profile as defined in router1/hiplib/config/config.py. Ta-
ble 1 summarises the per-flow transmit/receive rates recorded in the JSON
artifacts under analysis/results/.

Run ID JSON File L4 Duration (s) Pair TX (Mbps) RX (Mbps)
T1 throughput-20251214-211430 TCP 10 h1 → h2 19.49 19.50

h1 → h4 24.25 24.51
T2 throughput-20251214-211542 TCP 30 h1 → h2 24.31 24.43
T3 throughput-20251214-211654 UDP 10 h1 → h2 10.49 10.49
T4 throughput-20251214-211956 UDP 20 h1 → h4 10.49 10.49

Table 1: Measured throughput for varied transports, durations, and host
pairs.

Across all cases TCP maintained symmetric throughput between 19.5–
24.5 Mbps, with longer durations helping the h1 → h2 flow exit slow-start.

12

UDP tests are bounded by the harness’ -b 10M setting and, as expected,
stayed pinned at 10.5 Mbps with negligible loss across both hop counts.

4.1.4 Profiling

Profiling was initially planned as a means of identifying fine-grained bot-
tlenecks inside switchd.py. In practice, combining Python profiling tools
with Mininet, raw sockets, and multiple interacting router processes proved
difficult. Profiling runs were unstable or incomplete, and no reliable pro-
filing data could be extracted within the project timeframe. Consequently,
decisions were not based on profiling results.

4.1.5 Multiprocessing experiments

Several approaches were explored to reduce Python interpreter overhead by
introducing multiprocessing. The first approach attempted to run separate
HIP processes with independent HIPLib instances. This design failed during
the HIP base exchange due to state desynchronization between processes.

A second approach attempted to share a single HIPLib instance across
multiple processes. This revealed limitations in Python raw socket handling
across process boundaries, resulting in kernel errors (ENXIO, errno 6). Fi-
nally, queue-based designs were tested to reduce lock contention between
execution contexts, but these did not lead to measurable throughput im-
provements.

None of the multiprocessing variants were stable enough to integrate into
the main codebase.

4.1.6 Performance benchmarking

All performance results in this report are based on the working Mininet
and iperf3 throughput-testing setup. While no throughput improvements
were achieved during the project, the benchmarking script provides a decent
baseline for future optimization efforts.

4.1.7 Cryptographic changes.

The cryptographic work focused on adding support for AES-256-GCM and
migrating the identity suite to ECDSA/SHA-384. AES-256-GCM was in-
tegrated alongside existing symmetric ciphers to provide modern authenti-
cated encryption.

All router identities were regenerated using ECDSA/SHA-384, and con-
figuration files, HITs, and firewall rules were updated consistently across the
topology.

13

4.2 OpenSSL 3.5 Implementation:

This test suite confirms that OpenSSL 3.5+ is fully integrated and sta-
ble within the OpenHIP environment. The validation focused on ensuring
that all baseline cryptographic algorithms, configuration files, and provider
mechanisms function correctly after the migration from OpenSSL 3.0. The
results demonstrate that HIP base exchange and ESP traffic are supported
end-to-end with RSA, ECDSA, and EdDSA suites.

4.2.1 Test Environment Initialization

The suite successfully initialized the testing environment and directories,
confirming readiness for execution. This step ensured that the OpenHIP
framework could consistently reproduce test conditions and validate inte-
gration across multiple components.

Algorithm Compatibility Validation

The test suite verified that all supported algorithms could be generated and
validated without errors. Specifically:

• RSA: Key generation and validation passed.

• ECDSA: Baseline ECDSA keys generated successfully.

• Curve25519: Keys generated and validated correctly.

• Curve448: Keys generated and validated correctly.

This confirms that OpenSSL 3.5 provides full support for modern elliptic
curve cryptography, ensuring interoperability with HIP’s identity and au-
thentication mechanisms.

4.2.2 Binary Linkage Confirmation

All binaries were confirmed to link against OpenSSL 3.5+ libraries. This
prevents runtime inconsistencies and ensures that HIP components consis-
tently use the correct cryptographic backend.

4.2.3 Configuration File Compatibility

Existing configuration files were validated as compatible with OpenSSL 3.0.
This ensures that legacy setups remain functional and that administrators
can migrate without rewriting configuration suites. RSA and ECDSA suites
were confirmed to load correctly under the DEFAULT configuration profile.

14

4.2.4 Key Generation Tests

The suite validated successful generation of:

• ECDSA keys

• EdDSA Curve25519 and Curve448 keys

• RSA keys

All keys were generated and validated without errors, confirming that OpenSSL
3.0 supports HIP’s identity requirements across both traditional and modern
cryptographic suites.

4.2.5 Provider Loading and Daemon Integration

The HIP help daemon was tested to ensure correct loading of OpenSSL
providers. The daemon reported accurate metadata and confirmed provider
availability. This validates OpenSSL’s modular provider architecture within
HIP, ensuring that cryptographic services are accessible to system daemons.

4.2.6 Version Compliance and Enforcement

The suite confirmed that OpenSSL 3.0 is correctly enforced and compli-
ant with expected standards. Version detection via pkg-config reported
OpenSSL 3.6.0, confirming proper system integration and alignment with
the intended library version.

4.2.7 Script and Enforcement Checks:

The existence of required scripts was verified, and provider enforcement
policies were confirmed. This ensures that HIP does not bypass OpenSSL’s
provider framework and that all cryptographic operations remain compliant
with the enforced configuration.

4.2.8 Upgrade Validation Summary:

All tests passed, confirming:

• Successful upgrade to OpenSSL 3.5+.

• Full algorithm validation for RSA, ECDSA, and EdDSA curves.

• Correct provider integration and enforcement.

• Reliable version detection and binary linkage.

As shown in Figure 2, all tests passed successfully, confirming that Open-
HIP is now fully interoperable with OpenSSL 3.5+ and provides a secure,
standards-compliant cryptographic foundation for HIPv2.

15

4.2.9 OpenSSL Integration Details:

Because the OpenSSL integration required changes across build automation,
daemon startup, and test coverage, several steps were introduced to ensure
stability and compliance. These adjustments were implemented directly in
the OpenHIP codebase and validated through automated tests:

• Added pkg-config checks for openssl >= 3.5.0 in configure.ac,
rejecting LibreSSL.

• Initialized OpenSSL 3.x providers (default and legacy) during HIP
daemon startup in hip main.c.

• Updated build.sh on macOS to auto-install openssl@3 via Home-
brew and run bootstrap → configure → make.

• Ensured hitgen generates EdDSA keys (Curve25519/448) and emits
correct XML fields, verified through tests.

• Add setup openhip ubuntu.sh) to align with the original setup and
reduce confusion.

• Verified that hip and hitgen link to libssl.3 and libcrypto.3 via
automated checks.

• Confirmed RSA, ECDSA, and EdDSA (Curve25519/448) key genera-
tion and XML correctness in test openssl35.py.

• Validated provider behavior and daemon startup messages through
test coverage in test openssl35.py.

These steps ensured that OpenHIP’s OpenSSL integration was stable,
portable, and fully validated across environments.

4.2.10 OpenHIP OpenSSL 3.5+ Test Suite

To validate OpenSSL 3.5+ integration with OpenHIP, a dedicated test suite
was executed covering algorithms, configuration, key generation, provider
loading, and version enforcement. All 13 tests passed, confirming correct
linkage, provider integration, and full support for RSA, ECDSA, and EdDSA
suites.

16

Figure 2: ”OpenHIP OpenSSL 3.5+ test suite output”

4.3 Wireshark Dissector for HIP v2

4.3.1 Approach

The work began with reading the rfc documentation for HIP v2 [8] and
identifying the changes compared to the original HIP rfc [9]. Using the
Minnet simulation the HIP v1 Wireshark dissector was run on the routers
to observe the traffic. As expected many packet types were unidentifiable
by the dissector and not able to be interpreted.

For the new wireshark dissector we first downloaded the raw source files
from Git and the necessary libraries needed for building. We then compiled
the entire project to a run file and verified it worked as expected. The
first step of implementing a custom dissector was to write a simple test
dissector foo.c that simply should detect and report custom packets sent.
After compiling wireshark again and fixing all errors two simple python
scripts were created to simulate packets sent over the network, server.py
and client.py. After verifying and testing the dissector work on the HIP v2
dissector started.

4.3.2 Dissector Experimentation

The first dissector was built only had basic functionality to test the Minnet
routers could access the custom Wireshark implementation. After confirm-
ing the routers had access to the custom Wireshark the source code for
Wireshark Dissector HIP v1 was imported and small changes were made for
testing. The larger dissector file however lead to very long compile times,
often several minutes. After experimentation it was discovered to be much
quicker to include the HIP dissector inside the Wireshark dissector source

17

folder instead of including it as a plugin. A marginal time difference was
also discovered between using ninja or make as build system. Ninja was
consistently faster to compile Wireshark.

Figure 3: Wireshark example with new DH-Group-LIST, P-bit check and
alignment check

4.3.3 Updating the HIP Dissector

New parameters added, HIT-SUITE-LIST, TRANSPORT-FORMAT-LIST,
DH-GROUP-LIST. HMAC and HMAC-2 changed name to HIT-MAC and
HIT-MAC-2. R1-COUNTER changed value to 129. Support detection of
new cryptography algorithms, Elliptic Curve RSA and Elliptic Curve Diffie-
Hellman.

In HIP v1 the padding of packets were optional thus the length parameter
of the the packets included the length of the padding. In HIP v2 padding
to an alignment of 8 bytes are mandatory, therefore the length parameter
no longer need to include the padding. The Wireshark v2 dissector were
modified to enforce the packets are aligned to 8 bytes. Otherwise Wireshark
alert the user. Another new rule that was changed to be hard enforced was

18

the P-bit must be set in the parameter headers, it will now alert if it does
not.

4.3.4 Testing HIP v2 Dissector

For all the testing of the HIP v2 dissector the HIP v1 dissector was excluded
from the custom Wireshark build. The new dissector was tested on Minnet.
All the packet types could be identified. When a packet not following the
new alignment standard was sent the dissector alerted for malformed packet.

5 Future Work

5.1 OpenSSL

• Expand algorithm support beyond RSA and EdDSA, deciding whether
to remove or repair incomplete suites such as DSA and EcDSA.

• Refine provider integration with further testing to ensure stability and
security across different platforms.

• Improve performance by extending continuous integration pipelines
with automated regression and throughput tests.

• Maintain ongoing alignment with evolving RFCs and cryptographic
standards to ensure interoperability and compliance.

5.2 Wireshark

• Ensure that Wireshark detect what HIP version is used and utilize the
correct dissector.

• Alternatively integrate HIP v1 and v2 dissector into one program and
inform the user if a packet follow v1.

• Improve Tshark utility, starting and switching between the Wireshark
GUI for each router is very inconvenient.

• Add enforcement of more specific rules for the packet types.

5.3 PyHIP

• Use the existing throughput-testing framework as a baseline for eval-
uating future changes.

• Investigate architectural changes that reduce reliance on Python raw
sockets, maybe by offloading performance-critical paths to native code.

19

• Revisit execution models for switchd.py, informed by documented
multiprocessing failure modes from this project.

• Successfully do profiling, to find potential bottlenecks

• Extend HIP message handling to support for example UPDATE ex-
changes and rekeying as specified in RFC 7401 [8].

20

6 Discussion

6.1 PyHIP

The PyHIP results seem to suggest that throughput is currently constrained
by architectural aspects of the Python implementation rather than by indi-
vidual cryptographic primitives. The restored Mininet lab and the scripted
analysis/throughput test.py benchmark provide reproducible evidence
of a stable but limited throughput ceiling.

Although profiling was attempted, no usable results were obtained due to
implementation issues and the interaction between profiling tools, Mininet,
and raw sockets. As a result, performance analysis was based on end-to-end
throughput measurements rather than detailed function-level timing.

Multiple multiprocessing-based designs for switchd.py were explored
in an attempt to overcome Python interpreter limitations. These efforts
exposed fundamental challenges, including state desynchronization during
the HIP base exchange, raw socket failures across process boundaries, and
ineffective queue-based designs. Together, these results indicate that a
naive transition from threading to multiprocessing is insufficient to improve
throughput.

In contrast, the cryptographic changes were successful and improved
the robustness and longevity of the PyHIP implementation. Adding AES-
256-GCM and migrating to ECDSA/SHA-384 align the system with modern
security recommendations while maintaining compatibility with the existing
routing and benchmarking setup.

Overall, the 2025 PyHIP work prioritised correctness, reproducibility,
and understanding of system limitations. While no throughput gains were
achieved, the project leaves behind a reliable measurement framework, doc-
umented failure modes for multiprocessing, and a more future-proof crypto-
graphic configuration that future groups can build upon.

6.2 OpenSSL

The move to OpenSSL 3.5+ in OpenHIP brings up several important points
for future work. One key issue is making the system run reliably across
different platforms. The migration has been tested on Linux and macOS,
but keeping builds consistent everywhere is still a challenge. Using con-
tainer tools or continuous integration pipelines could make the process more
reliable and reduce the need for manual setup.

Another point is the stability of OpenSSL’s provider system. Providers
make it possible to load cryptographic services in a flexible way, but they
also add complexity. It will be important to study how stable and secure
this model is over time, especially as new algorithms are added and older
ones are phased out.

21

The future of cryptographic algorithms also needs attention. RSA is still
supported, but its long-term use is becoming less secure. A gradual shift
toward EdDSA and other elliptic-curve algorithms will help OpenHIP stay
in line with modern standards.

Automation is another area for improvement. Adding cryptographic
regression tests to continuous integration pipelines would make the system
more reliable and help catch problems early. This would also make it easier
for future student groups to reproduce results and validate changes.

Finally, security and compliance with standards remain ongoing prior-
ities. As RFCs and regulations evolve, OpenHIP must keep up to date.
Regular monitoring of cryptographic standards and proactive updates will
be necessary to ensure interoperability and trustworthiness.

6.3 Wireshark Dissector

While there are many significant changes between HIP v1 and v2 it reflect
some modest between the new and old Wireshark dissector. During devel-
opment several problems were encountered. The first big challenge was very
long build times, often exceeding ten minutes. This leads to slow iterations
on code and a simple typo cold and did cause long delays when waiting to
rebuild. There dissector had been added as plugin and for the simple this
has proven relatively fast. The HIP v2 dissector had many more depen-
dencies and much more closely with the rest of the Wireshark source code.
Probably because of this large parts of the entire Wireshark code had to
also be rebuilt. When testing placing the dissector inside the main dissector
folder yielded much better build time. Depending on what parts of the code
changed the build time could be as low as a few minutes. It should be noted
however that a VM with more RAM will give more time savings as this was
the biggest bottleneck when building.

HIP v2 added several new rules that according to the specification should
be enforced. While this is not strictly necessary for the dissector to be aware
of the decision to alert the user if either the alignment was of or P-bit not
set were implemented because this signify a major problem with the HIP
structure. Checks for other rules such as, all the required parameters are
included in their respective packets, could be implemented. However those
rules are more specific for each packet type and are not a general for all HIP
packets.

22

7 Conclusion

7.1 PyHIP

While throughput remains constrained by architectural aspects of the Python
implementation, the project delivers clearer experimental infrastructure,
documented design limitations, and a more future-proof cryptographic con-
figuration. These results provide a solid foundation for future attemps to
pursue deeper architectural refactoring, performance improvements or cryp-
tographic additions.

7.2 OpenSSL

The OpenSSL migration effort has reached a stable and validated endpoint.
All 13 tests in the OpenSSL 3.5+ suite passed successfully, confirming full
support for RSA, ECDSA, and EdDSA algorithms, correct provider inte-
gration, and reliable version detection. The HIP daemon and system com-
ponents are now fully interoperable with OpenSSL 3.5+. This achievement
secures the cryptographic integrity of OpenHIP and lays the groundwork
for future upgrades, including post-quantum readiness and continuous per-
formance monitoring.

7.3 Wireshark Dissector

Using Wireshark to inspect the HIP packets facilitate easier development of
future HIP versions and error searching. While it remain somewhat cum-
bersome to run the Wireshark GUI for each it is now functional for the new
HIP v2 feature. All the milestones for the Wireshark HIP v2

References

[1] The OpenSSL Project Authors. Openssl guide: An introduction
to libcrypto. OpenSSL Documentation. https://docs.openssl.

org/master/man7/ossl-guide-libcrypto-introduction/, Septem-
ber 2024.

[2] CORE Developers. CORE network emulator documentation. https:

//coreemu.github.io/core/, 2024.

[3] S. Housley. The use of galois/counter mode (gcm) in ipsec esp. RFC
4106. https://www.rfc-editor.org/info/rfc4106, June 2005.

[4] S. Kent. Ip encapsulating security payload (esp). RFC 4303, In-
ternet Engineering Task Force (IETF), December 2005. https://

datatracker.ietf.org/doc/html/rfc4303.

23

https://docs.openssl.org/master/man7/ossl-guide-libcrypto-introduction/
https://docs.openssl.org/master/man7/ossl-guide-libcrypto-introduction/
https://coreemu.github.io/core/
https://coreemu.github.io/core/
https://www.rfc-editor.org/info/rfc4106
https://datatracker.ietf.org/doc/html/rfc4303
https://datatracker.ietf.org/doc/html/rfc4303

[5] A. Laganier and F. Dupont. An ipv6 prefix for overlay routable cryp-
tographic hash identifiers version 2 (orchidv2). RFC 7343. https:

//www.rfc-editor.org/info/rfc7343, September 2014.

[6] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop:
rapid prototyping for software-defined networks. In Proceedings of the
9th ACM SIGCOMM Workshop on Hot Topics in Networks, Hotnets-
IX, New York, NY, USA, 2010. Association for Computing Machinery.
https://doi.org/10.1145/1868447.1868466.

[7] Robert Moskowitz et al. Hierarchical host identity tags (hhit). RFC
9374. https://www.rfc-editor.org/info/rfc9374, August 2023.

[8] Robert Moskowitz, Tobias Heer, Petri Laari, and Thomas R. Hender-
son. Host Identity Protocol Version 2 (HIPv2). RFC 7401. https:
//www.rfc-editor.org/info/rfc7401, April 2015.

[9] Robert Moskowitz, Petri Laari, Tom Henderson, and Pekka Nikander.
Host Identity Protocol. RFC 5201. https://www.rfc-editor.org/
info/rfc5201, April 2008.

[10] Robert Moskowitz and Pekka Nikander. Host identity protocol (hip) ar-
chitecture. RFC 4423. https://www.rfc-editor.org/info/rfc4423,
March 2006.

[11] National Institute of Standards and Technology. FIPS 180-4: Secure
hash standard (shs). Federal Information Processing Standards Publi-
cation. https://csrc.nist.gov/pubs/fips/180-4/upd1/final, Au-
gust 2015.

[12] National Institute of Standards and Technology. FIPS 186-5:
Digital signature standard (dss). Federal Information Processing
Standards Publication. https://nvlpubs.nist.gov/nistpubs/FIPS/
NIST.FIPS.186-5.pdf, February 2023.

[13] The Wireshark Foundation. Wireshark documentation: User’s guide
and developer’s guide. https://www.wireshark.org/docs/, 2025. Ac-
cessed 2025-12-14.

24

https://www.rfc-editor.org/info/rfc7343
https://www.rfc-editor.org/info/rfc7343
https://doi.org/10.1145/1868447.1868466
https://www.rfc-editor.org/info/rfc9374
https://www.rfc-editor.org/info/rfc7401
https://www.rfc-editor.org/info/rfc7401
https://www.rfc-editor.org/info/rfc5201
https://www.rfc-editor.org/info/rfc5201
https://www.rfc-editor.org/info/rfc4423
https://csrc.nist.gov/pubs/fips/180-4/upd1/final
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://www.wireshark.org/docs/

	Introduction and Background
	Host Identity Protocol (HIP)
	Host Identity Tag (HIT) and ORCHIDv2
	HHIT
	CORE Network Emulator
	OpenSSL
	PyHIP
	Mininet
	PyCryptodome & Cryptography
	cProfile

	GitLab Group Structure
	Wireshark
	Cryptographic techniques and modern suites
	ECDSA/SHA-384
	AES-256-GCM for ESP (ES-256-GCM)

	Milestones
	OpenSSL
	Migration from OpenSSL 3.0 to 3.5+:
	Algorithm Validation:
	Provider Initialization:

	Wireshark Disector for HIP v2
	PyHIP

	Previous Work
	OpenSSL Migration
	HHIT Evolution
	PyHIP Foundations

	Contributions (2025)
	PyHIP Subgroup
	Approach.
	Instructions
	Throughput Test Examples
	Profiling
	Multiprocessing experiments
	Performance benchmarking
	Cryptographic changes.

	OpenSSL 3.5 Implementation:
	Test Environment Initialization
	Binary Linkage Confirmation
	Configuration File Compatibility
	Key Generation Tests
	Provider Loading and Daemon Integration
	Version Compliance and Enforcement
	Script and Enforcement Checks:
	 Upgrade Validation Summary:
	 OpenSSL Integration Details:
	 OpenHIP OpenSSL 3.5+ Test Suite

	Wireshark Dissector for HIP v2
	Approach
	Dissector Experimentation
	Updating the HIP Dissector
	Testing HIP v2 Dissector

	Future Work
	OpenSSL
	Wireshark
	PyHIP

	Discussion
	PyHIP
	OpenSSL
	Wireshark Dissector

	Conclusion
	PyHIP
	OpenSSL
	Wireshark Dissector

