LINKOPING
IIC" UNIVERSITY

TDDE21 DRIP 2024

Authentication Formats and Protocols for Broadcast Remote Identification

Jiajun Chen (jiach613)
Fabio Crugnola (fabcrb49)
Albin Svérd Gruvell (albsv335)
Liza Johansson (lizjo663)

December 17, 2024

Contents

1 Introduction| 4
L1 Motivationl e 4
1.2 Project goals| 4

12 Background| 5
2.1 Drone Remote Identification Protocoll 5
[2.2 DRIP Identity Management Entities (DIMEs)| 5
3 BIMetoothl - . . . v o o 5
24 Wifi Awarel 6
2.5 Previous workl. oL 6

B Method 7
BI Taskd 7

B.II1 _Auth formats to RECIOTH. 7
[3.1.2 Test BT5 on RaspberryPl'5|. o o oo 8
[3.1.3 Update DNS registry (registries-20) | L 8
[3.1.4 Update Android application for backend| 8

4_Result] 9
4.1 drip-core-c library| L o 9
4.2 Three transmitter]. 9
4.3 Observer up to REC9575 standard| 9

[4.3.1 Receiving and verifying chain of endorsements in DRIP Link| 9

A4 DNS . . . 10
4.1 lerachy] 10

[4.4.2 New resource record typel Lo 10
[4.4.3 DNS operation| L 10

4.5 Test result of Long range Bluetooth 5| 11

6 Discussionl 12
5.1 allenges|. L e 12
B2 Advice for future studentslo oo oo 12

6 Future Workl 13

[6.1 Transmitter(s)l 13
0.2 Observer. L 14
6.3 Wireshark detector] Lo 15
0.4 DINSI . . o e 15

1 Introduction

This report presents the work made by four students in the course Advanced Project Course: Secure
Distributed and Embedded Systems during the fall of 2024. This project is a continuation on what has
been made by other students during the same course in previous years.

1.1 Motivation

As the number of drones in society increases it leads to an increase of harmful drones as well, where drones
can be used to for example spy on individuals, military objects, or other malicious intents. In order to
be able to penalize people using drones in a harmful way there needs to be some way for authorities to
know who the drone belongs to despite the operator being far away. This is the purpose of DRIP (Drone
Remote Identification Protocol), as it implements a verification process for drones where each drone is
registered to an owner that can be identified by scanning for the drone with an app.

1.2 Project goals

The project goals for this year were:

e Test DNS registry (registries-20) LIU-IDA /LITH-EX-A—-24/073-SE.
Auth formats to RFC9575.

Test BT5 on RaspberryPI 5.

e Update Android application for the backend.

2 Background

In this section, the background of the project is presented.

2.1 Drone Remote Identification Protocol

The Drone Remote Identification Protocol (DRIP) is a product of the IETF (Internet Engineering Task
Force). This protocol brings up how trust policies and periodic accesses to registries change how UAS
(Unmanned Aircraft System) and their Remote Identification (RID) can be evaluated in real-time, en-
hancing their trustworthiness. In this system, each drone and each operator have their own unique
identifier linking them together, reassuring accountability for operators and their respective drones. This
protocol can be used with technologies such as WiFi and Bluetooth 5.[1]

2.2 DRIP Identity Management Entities (DIMEs)

DRIP Identity Management Entites(DIMESs) include a list of entities that follow a hierarchy structure.
In this structure, the entity at a higher hierarchy is responsible for endorsing the entity one layer below
it. The endorsement process occurs once during the public key creation period for each entity|2] and is
also included in the DRIP link message each time the broadcast endorsements are sent|l|. In this section,
we briefly outline the process of endorsement during public key creation. We further explain how this
hierarchy is represented in DNS and during broadcast endorsement in 4.3.1 and 4.4.1 respectively.

In this project, the RAA with ID 16376 is allocated to the DRIP working group, which is responsible
for endorsing the HDAs it manages. Linkoping University has been assigned the HDA with ID 1026 for
testing purposes.

The following steps outline the process for the authorized entity RAA (16376) to endorse the unauthorized
entity HDA (1026):”

1. The project team(LiU) for HDA(1026) generate DET for Authorization purpose. This step also
generate the Public and Private key pair for this given DET as well as the CSR(Certificate signing
request).

2. The project team(LiU) for HDA(1026) send the CSR to upper entities that are responsible for the
endorsement of their DET. In this case, we send CSR to RAA(16376)

3. The management team of RAA(16376) use their authorized RAA endorsed/signed CSR with their
private key and send back a signed certificate.

4. We registered the authorized HDA’s DET to our DNS server along with its certificate.

After the process above, our authorization HDA are endorsed and in charge of the authorization for other
entities below it. We can use our endorsed authorization HDA to endorse the issue HDA we generated
and further endorse all our drones using our issue HDA by following the same steps.

Noted that the endorsements generated from our year might have been already expired by the start of
2025. Also due to the fact that the DRIP scripts had some minor bugs [3], and the scripts might already
be updated in 2025, these whole steps of endorsement might have been performed again for next year.

2.3 Bluetooth

Bluetooth technology enables short-range wireless communication, offering a range of features to facil-
itate device interaction. One such feature is Bluetooth advertising, which allows devices to broadcast

information to nearby devices in the local area. Starting with Bluetooth 4, a Low Energy (LE) mode
was introduced, making it ideal for battery-powered devices. Bluetooth 5 expanded on this by introduc-
ing new encoding modes, including the coded PHY mode, which supports communication over longer
distances (up to one kilometer) and larger data packets (up to 255 bytes) [4].

In Linux, the Bluetooth stack is implemented as BlueZ, the official kernel-level protocol stack for Blue-
tooth. To interact with BlueZ, the Bluetooth Host Controller Interface (HCI) is used. A popular tool for
interacting with Bluetooth controllers in Linux is hcitool, which enables users to issue HCI commands
directly. The types of commands that can be sent, along with their functionality, are detailed in the
Bluetooth Core Specification [5].

2.4 Wifi Aware

WiFi NAN (Neighbor Awareness Networking), also known as WiFi Aware is a feature introduced in
modern Wi-Fi standards. It enables nearby devices to discover and communicate with each other directly
without requiring a traditional Wi-Fi network or internet connection. This technology is designed to
support proximity-based services and works well for applications that require contextual awareness [6].

It is one of the official mean of communications for DRIP and ASTM Messages.

2.5 Previous work

The work done by last year’s group consisted of the implementation of the DNS for DRIP. This was
implemented similarly to the current implementation, however, the record type was not of the type
described in [7]. Furthermore, the 2023 working group also implemented the authentication messages for
DRIP (Link, Wrapper, and Manifest), which were adapted for Bluetooth 4. This implementation was
also extended to the observer app which was made to support the DRIP framework for Bluetooth 4. [8]

3 Method

The concrete implementation of DRIP in 2023 consisted of a series of showcase examples involving the
main components described in section [2| Specifically, the DRIP examples could/can be organized in the
following modules:

e DRIP Transmitter: A basic Python implementation of a DRIP Transmitter able to send BASIC
ID ASTM messages.

e DRIP Observer: A fork of the opendroneid observer |9] Android app that was modified to support
DRIP in the past years on top of the ASTM protocol.

e DNS Server: A DNS server implementation to support validation and identification of UAS.

e Entitites DETSs generation scripts: Some utility scripts provided by the IETF DRIP Remote
ID protocol group [10].

Given that the totality of the deliverables consist of source code supporting DRIP features, a great
amount of time was initially spent to reorganize the repository containing the various modules. Up to
this point, it was not well organized. The modules were indeed part of a single repository, thus changes
to the various modules were interleaved in a single git history, making it extremely hard to unroll bad
changes, merging branches and more.

For this year, a better approach was chosen and each module now has a separate repository. To keep
source code forks (such as the Observer) up to date with the original repositories, mirror repositories
have been set up to keep track of changes easily. The new repositories have been forked from the mirrors,
and the old changes made by the other groups have been reintegrated.

The approach used to tackle the problem is inspired by what the previous group working on this project
did [8]. After getting a thorough understanding of the material mentioned in Section [2| a team of two
people worked on the changes needed in the observer module, while the remaining two worked each on
the transmitter(s) and the DNS Server. In the second part of the semester we decided to reassign some
of us where most of the help was needed. Communication between the various team members was held
through Teams chat-group and a weekly meeting.

The new organization, helped various member using project management features that GitLab offers such
as issues management, pipeline test’s integration and code review.

3.1 Tasks

The goals mentioned in section |1 materialized in more specific tasks, which have been grouped below by
the same goal.

3.1.1 Auth formats to RFC9575

This goal consisted of two tasks: update the observer and transmitter with changes required by RFC9575
draft. The Android observer will not see major reorganizations, but a set of patches to adapt it to
RFC9575. On the other hand, for the transmitter a more radical approach was taken.

Following the suggestion from 2023’s team [8], the Python based transmitter was scrapped for a fork of the
opendroneid ASTM transmitter. This transmitter comes with the advantage of having the entire ASTM
protocol already implemented and tested, based on the opendrone-core-c library [11]. Moreover, the C
Programming language adapts better to the kind of hardware which usually consists of microcontrollers
installed on UAV's.

3.1.2 Test BT5 on RaspberryPI 5

The need for Bluetooth 5 testing, in the context of DRIP comes from the presence in the Bluetooth 5
standard of what is known as long range transmission [4]. Long range advertising makes it possible for
Bluetooth transmitters to advertise packets at really slow speed for a couple of kilometers. This feature
is extremely useful when it comes to UAV's flying in the range of an observer.

Long range transmission is a non-compulsory trait of Bluetooth 5 chips. Sadly after some research, it
was realized that the Raspberry Pi 5, although being Bluetooth 5 certified, does not support extended
advertising.

Following these discoveries, other hardware was given to the group to make testing possible: two
NRF52840 Development Kits [12] in the form of a Dev Board and USB Dongle Chip. Moreover, an
ESP32-S3 Dev Kit by Waveshare [13], was also given to the group to test another feature supported by
the observer: WiFiNAN transmission.

Another device that was given to the group is a Crazyflie drone [14]. These drones have an open-source
reprogrammable firmware. They are controlled by an STM32 Chip which handles the flying control loop.
It also comes with a NRF51x chip, used to provide Bluetooth and Proprietary transmission for controlling
the drone remotely (through a smartphone or a proprietary remote device). A task given here was to
have DRIP transmitter implementation running on the drone hardware, in order to be able to make more
realistic tests.

The introduction of new hardware, came with the need of having more adaptable software, especially in
the context. The decision of scraping the Python-based transmitter for a C based one, became even more
beneficial: a lot of code could be shared among the various transmitters.

3.1.3 Update DNS registry (registries-20)

The primary goal contains implementing a prototype DNS server based on the suggestion from 2023’s
teams [8] and update its implementation to include the latest changes from draft drip-reg-20[7]. The
main focus here, is taking advantage of the newly defined resource record type used in DRIP, as well as
the DET Hierarchy into the DNS. Other aspects, such as security consideration and DNS operations, are
less emphasized but are mentioned in the Future Work section [f] as suggestions for next year’s team.

3.1.4 Update Android application for backend

This goal involves updating the Observer to comply with the RFC9575 standard, as well as updating the
functionality for sending DNS queries.

4 Result

This section presents the results of the project.

4.1 drip-core-c library

As mentioned in Section[3] the various transmitters have many common source code parts. For this reason,
a C library loosely based on the opendroneid implementation of the ASTM protocol opendroneid-core-c
[11], was realized for DRIP. The result is drip-core-c.

The library is an extension of opendroneid-core-c and uses ASTM Authentication messages to craft
DRIP encoded packets. It supports all currently defined DRIP messages, and can easily be integrated
on different architectures and different cryptographic libraries.

4.2 Three transmitter

The library from the previous section has been successfully integrated in three different transmitter
implementations:

e DRIP Linux Transmitter: This implementation replaces the Python based version. It supports
all ASTM messages and is able to transmit WiFi beacons, Bluetooth 4, and Bluetooth 5 extended
advertisements.

e DRIP NRF52840 DK Transmitter: This implementation uses Zephyr OS and the nRF SDK to
implement a DRIP Transmitter. It supports BT4 Legacy Advertisements and Bluetooth 5 Extended
Advertisement. Given the lack of support in the Linux Bluetooth Stack (bluez) for Bluetooth 5
extended advertisement, this transmitter implementation was used to test Bluetooth 5 with the
Observer.

e DRIP STM32-S3 Transmitter This implementation is implemented with EspressIF SDK, and
supports Bluetooth 4 and Bluetooth 5. It has never been tested extensively, due to the fact that
was mainly conceived to work with WiFi NAN, which sadly is still not supported by the official
SDK.

4.3 Observer up to RFC9575 standard

This section presents the major changes from auth-41 [15] to RFC9575 [1].

4.3.1 Receiving and verifying chain of endorsements in DRIP Link

We implemented the chain of endorsement of DRIP entities following RFC9575 section 6.3.

In the transmitter side, we should send all these four Broadcast Endorsement messages in DRIP Link.
This is further confirmed in drip-dki-03(2] where it points out ”It(The separation role of DRIP entities)
does make the chain of trust for a HDA customers’ Operational DETSs to be 4 Endorsements.”

1. BE: APEX, RAA
2. BE: RAA, auth HDA
3. BE: auth HDA, issue HDA

4. BE: issue HDA, UA

However, in our project, due to the fact that there is no APEX in place and the public key of RAA(16376)
is still unknown, only 3 and 4 are sent from transmitter.

In Observer, we enqueue the BEs until all of them are received and verify the signature of each using the
public key obtained from the BE immediately above it. The signature of BE from the highest level of
the hierarchy needs to be verified by the public key that is cached in the observer app.

4.4 DNS

Based on the suggestion from 2023’s team, BIND9 DNS server has been used. In order to make the
configuration more accessible, we use ubuntu/bind9 docker image and make all server configurations
visible in our GitLab repository.

4.4.1 DIME DET Hierachy

We stored the DETs that mangaed by HDA(1026) in a DNS zone file with the nibble reversing of the
IPv6 address as per drip-reg-20 section 3[7]. The zone file can be found in our repository.

4.4.2 New resource record type

Compared to last year, HHIT and BRID resource record types have been introduced in drip-reg-20[7].
Currently, we use TYPE65280 as an undefined RR type since BIND9 does not inherently support adding
fully custom RR types outside the standard DNS protocol. We only implemented HHIT resource record
to provide a proof of concept. As per drip-reg-20, the HHIT Data should be encoded in CBOR bytes.
The encoding script for HHIT data could be found at our DNS repository, while the decoding script could
be found at the observer app by checking the DNS query related function. However, due to not using
HHIT resource record type as defined in drip-reg-20 and lack of time, certain requirements are not met
so far. First, the current text representation is in a string of hexadecimal digits instead of base64 (section
5.1.1 in drip-reg-20). The reason why hexadecimal digits is used for now is because this is the standard
text presentation for unknown RR type as defined in RFC3597 section 5. Secondly, the registration-cert
field was left empty since its length definition is still not clear (section 5.1.2 in drip-reg-20). Please see
future work for more information regarding these new resource record types.

4.4.3 DNS operation

In drip-reg-20 section 7.1, a list of common practices in DNS operations is provided. In our work, DNS
Dynamic Update|l6] has been used. Specifically, user interaction to add, update, and remove resource
records in the zone file is done by using nsupdate. The nsupdate[17] is a client command that allows the
user to send dynamic DNS update requests to the DNS name server. Additionally, TSIG authentication
is used for message exchanged between client and server. Please see future work for more information
regarding the improvement of DNS operations.

10

4.5 Test result of Long range Bluetooth 5

Bluetooth 5 extended advertising is said to have a range of up to a kilometer in perfect conditions,
compared to Bluetooth 4 which has a range of up to 100 meters [18]. A test was conducted to estimate
the transmitter range under Bluetooth 5 Extended Advertising. The result of this test showed that the
observer would receive data up to a range of 313 meters. The tests were carried out outdoors, in an
environment with few obstacles that might have influenced the final results. Although the maximum
technical range is 1 KM, in normal conditions it should be possible to easily reach 400-500 meters. We
therefore consider the results of our tests acceptable.

ull Telenor SE 5G 15:16 v =
_ @ Bolt TRt |NSTALL
> 4.8 %
X
°N -
Q .

105,766 m*
-+ NG M 5

Figure 1: Measurement tests, in the picture the furthest point with signal and the transmitter fixed point

1]]
y?

11

5 Discussion

In this section some challenges that were encountered are presented as well as some advice for future
students continuing the work on this project.

5.1

5.2

Challenges

Understanding the drafts took some time. We did not really understand them in the beginning
despite reading through them several times. It took reading them multiple times during the project
to get a better understanding of them.

From previous years there is now a quite large code base with code from different sources and
written by students from different years. This led to a large code base that took some time to
understand. At the beginning of the project, it took some time to know where to begin and in
which part of the code to develop our part in.

There where also some difficulties with the required hardware, as we had to try multiple differ-
ent hardware components before finding one that was compatible with the Bluetooth 5 extended
advertising that we needed.

Advice for future students

Read through the draft early in order to grasp the overall structure and purpose of DRIP. When
doing this it can be good to have a document to keep track of the acronyms used in the draft and
add a describing sentence for each of the acronyms. This both makes it easier to understand the
drafts in the beginning and can also be helpful later in the project as some of the acronyms might
only be used rarely during the project.

As this is a new subject there is not that much info on the topic when looking for information
on e.g. Google. So make sure to ask the assistant questions and discuss with them if things are
unclear.

Another advice would be having a structured way to share information with everyone in the group.
There are many different parts of the project so everyone won’t know everything about all parts of
it. So having a structured way of sharing the gained knowledge so everyone is kept up to date can
be good. This can be done through weekly group meetings, another tip is to have a document with
all the relevant acronyms and relevant words so that everyone in the group can keep up and talk
about the same things.

12

6 Future Work

In this section some points about the various modules and the necessities that still need to be addressed
are listed.

6.1 Transmitter(s)

e The new transmitters support ASTM and the latest DRIP drafts. Unfortunately, it was not possible
to test WiFi NAN, due to the fact that the WiFi NAN APIs from the SDK do not yet support the
ESP32-S3 [19] (which should in any case support WiFi NAN at the hardware level). WiFi NAN is
also a quite rare feature on modern smartphones which made testing practically impossible. More
work to research WiFi NAN compatible hardware needs to be done. This implementation has been
left as a consequence, as an afterthought, and features like BT4 and BT5 were tested with the NRF
implementation. The ESP-32 source code can probably be scrapped, if next year WiFi NAN will
be tested with another platform.

e The Linux transmitter is able to transmit Bluetooth 5 messages, but after a lot of research, it has
been concluded that the BlueZ Linux Bluetooth Stack doesn’t fully support extended advertisements
(as of December 2024). Although messages can be clearly scanned with the command btmon, it
seems that messages that are being sent on CODED PHY Primary and Secondary Channel are not
correctly forwarded to the higher layer of the stack and then to the user application [20] [21]. Few
resources and many complaints can be found on the Internet and hopefully, by the time this project
is extended next year some improvements to the Bluetooth Stack will have been made. Until that
moment, Bluetooth 5 can be tested with the NRF Transmitter implementation. Another thing
that can be done to improve testing on the NRF transmitter is taking advantage of the LEDs and
Buttons the board provides to have a way to easily switch from Bluetooth Legacy to Bluetooth 5
Extended transmission.

e The transmitters main loop could and should be improved. An interrupt based approach or a
better message scheduling logic (based perchance on lookup tables or such), adhering to RFC9575
must be implemented. Currently, the transmitters are not fully observing the message transmission
frequency and delays mandated by the draft.

e The micro-controller based transmitters have the disadvantage of not having a way to synchronize
time (for example through the internet), which is needed to have valid DRIP message. Currently, a
hacky solution is being used, consisting in setting the micro-controllers timestamps to the firmware’s
compilation time. This works during rapid testing and prototyping (where the firmware gets flashed
and compiled multiple times), but doesn’t work in a more ”production based” context. A solution,
given that the transmission happens through Bluetooth could be to use the Time Sync Bluetooth
Service (this solution is good for the Crazyflie), available on many smartphone to synchronize the
micro-controller timestamp at boot with the one coming from a smartphone. Another simple and
more robust solution could be to have a UART console where the user could just input the current
time.

e Some initial analysis on the Crazyflie firmware were made, but no concrete implementation or tests
have been done. The source code with some initial suggestions is available in the Crazyflie GitHub
repository. The main obstacle to the implementation of DRIP is that the NRF SDK version being
used on the firmware is quite old and doesn’t match the one used for the NRF52840 transmitter.
Moreover, it seems that the firmware according to some discussion happening under the original
implementation disable Bluetooth advertising to improve performance [22] [23].

e More rigorous validations should be done to test thoroughly the Extended Advertising Capabilities
of Bluetooth 5 on Long Range. For example, tests where the transmission power of the transmitter
is changed could be made. [4] [18] [24].

13

6.2 Observer

In the year 2023, many issues regarding the implementation of the observer were highlighted [§]. With high
certainty, this year some additional tech debt might have been introduced by supporting the additional
features required by RFC9575. Among the issues listed in 2023, only one still hasn’t been tackled, because
most of the group focus was put on delivering RFC9575 support:

e If a verified message is currently stored and shown in the interface, and a non verified message is
received, the current implementation of the app will replace the message. An alternative to this
could be to store the non verified message (to be able to check the hash contained in a manifest
later), but keep showing the verified one on the interface until the newer message can be also
verified.

The new changes brought to comply with RFC9575, brought to light some issues that will require a
somewhat high amount of effort to be fixed.

e The current FEC implementation, only used with Bluetooth Legacy, only works in case the page
that is lost is not page zero (or the last one, but that is a case not covered by DRIP in general). If
the first page is missing, the observer should still be able to reconstruct it, but for that to happen,
a new data flow architecture should be developed. The current implementation of the Observer was
designed to receive general ASTM messages and not specific DRIP Messages.

The Bluetooth Advertisement message counter sent by the transmitter is ignored during the recep-
tion and parsing of messages. The observer uses the ASTM last Authentication Page Index field
to know whether we ”finished” receiving all the pages of a message so that it is possible to proceed
with parsing. If the first page is missing, this field is lost and there is no way for the Observer to
know whether the transmitter has started transmitting a new message or not, because it does not
know how many pages the current message consists of (this information is stored in page zero) |25].

This issue highlights also the fact that if the Observer loses more than one page, of which one is
page zero, then it might combine pages coming from two different ASTM Auth messages, that will
get discarded later in the parsing process because corrupted. This is also a problem because in this
way two messages get lost and the Observer will have to wait for retransmission to have the chance
of parsing them.

A solution to these problems could be using the Bluetooth Message counter that is currently sent
(as per Bluetooth standard) and ignored to distinguish between the messages that are sent. The
counter is set to 0 every time the transmission of pages coming from a new ASTM Auth message
is started. In this way, every time the counter becomes lower than it was during the previous page
reception, the Observer can assume that a new message is being transmitted and it can try to
reconstruct a missing page (page zero included) if any.

e The Hash Verification for DRIP Manifest message [1] is not working consistently. The problem
seems to arise because the same message, already parsed and verified is received at the observer
side more than once, due to the way the transmitter retransmit advertisements. To avoid memory
leaks, the observer deletes the most recent ”verified” hash. There are some hardware level filtering
options that can be set in the observer configuration for scanning messages, but they did not work
during our troubleshooting. More work should be put here to find a good retransmission interval
at the transmitter side and filtering options at the observer to avoid the hash verification failing.
When the interval is too low duplicate messages are retransmitted, when the interval is to big then
some messages are ”lost”, breaking the verification chain as well. Another robust solution could be
to to just store the hashes in the cache for longer time and remove them after they are "hit” for
a predefined amount of time, but this comes with increased memory usage and might also lead to
memory leaks in the long run.

Under the opendroneid GitHub webpage |11] there is also another version of the observer, based on a
multi-platform framework. It would be nice to investigate how long the implementation of DRIP would
take there. The result would lead to the ability to support other platforms, such as iOS at observer side.

14

6.3 Wireshark detector

It would be nice to extend the Wireshark filter made by opendroneid group [11] in order for it to support
DRIP messages as well.

6.4 DNS

e In RFCY575[1] section 3.1.1 , they mentioned the verification of DRIP with internet access as follow

“The Observer MUST perform a DNS query, when connectivity allows, to obtain a previously
unknown HI.”

However, our investigation, including a review of draft-drip-reg20[7], did not clarify how to expose
the HI/public key in DNS.

e Update to a new drip-reg draft or RFC standard by the time you see this report. One thing could
be implementing the new resource record types so that it can be recognized by the DNS server. A
possible implementation to add a new type of recourse record required changing the source code
for BIND9. We forked the official BIND9 repository into our workspace and added a Dockerfile to
build and use it easily. The direction of implementation can be found here[26].

e Improve user interaction to manage the DNS server. Currently, a Python backend service is left
unused in our repository. We found an example[27] of building a RESTful API to manage the
DNS resource record based on BIND9 and FastAPI. One suggestion could be to integrate the script
generated from the resource record into part of the back-end functionality when a new entity needs
to be registered.

e Public access to the DNS server. Currently, we can only test the DNS query when the observer
device and the DNS server are running on the same subnet. As pointed out by 2023’s team,
this could be facilitated by the university providing a dedicated server and domain name to use.
However, common security practices like DNSSEC SHOULD be used in this case, the detail of
security considerations for the DNS server can be found in draft-reg20 section 7. This part was
left unimplemented by us due to a lack of time. We also believe it is important to ask the DRIP
working group for the best practices in setting up a DNS server.

15

References

1]

A. Wiethuechter, S. W. Card, and R. Moskowitz, DRIP Entity Tag (DET) Authentication Formats
and Protocols for Broadcast Remote Identification (RID), RFC 9575, Jun. 2024. DOI: 10. 17487/
RFC9575. [Online]. Available: https://www.rfc-editor.org/info/rfc9575.

The drip det public key infrastructure draft-ietf-drip-dki-03, draft for drip dki. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-drip-dki/03/\

1. W. DRIP, Drip-scripts pull request 2, Accessed: 2024-12-16, 2024. [Online]. Available: https:
//github.com/ietf-wg-drip/drip-scripts/pull/2l

Bluetooth 5 extended advertising long range, Bluetooth Consortium Article regarding extended
advertising. [Online]. Available: https://www.bluetooth.com/blog/exploring-bluetooth-5-
going-the-distance/.

B. S. I. Group, Bluetooth 5.4 core specification. [Online]. Available: https://www.bluetooth.com/
specifications/specs/core-specification-amended-5-4/|

Wifi aware - wifi alliance. [Online]. Available: https://www.wi-fi.org/discover-wi-fi/wi-fi-
aware?utm_source=chatgpt.com.

Drip entity tags (det) in the domain name system (dns) draft-ietf-drip-registries-20, drip-registries
describes the discovery and management of DRIP Entity Tags (DETs) in DNS. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-drip-registries/20/.

M. Impesi, S. Klasson, M. Larsson, V. Norgren, D. Warlen, and S. M. Yute, “T'dde21 drip 2023,”
Link6ping University, Tech. Rep., 2023.

Opendroneid observer, GitHub repo for the ASTM opendroneid observer. [Online]. Available: https:
//github.com/opendroneid/receiver-android.

Drip ietf group, DRIP IETF Group GitHub page. [Online]. Available: https://github.com/ietf-
wg-drip.

Opendroneid github webpage, opendroneid GitHub web page. [Online]. Available: https://github.
com/opendroneid.

N. Semiconductor, Nrf52840 dk specs. [Online]. Available: https : / / www . nordicsemi . com /
Products/Development-hardware/nRF52840-DK.

Espressif, Fsp32-s3 specs. [Online]. Available: https://www.espressif.com/en/products/socs/
esp32-s3.

Bitcraze, Crazyflie spec. [Online]. Available: https://www.bitcraze.io/products/old-products/
crazyflie-2-0/|

A. Wiethuechter, S. W. Card, and R. Moskowitz, “DRIP Entity Tag Authentication Formats &
Protocols for Broadcast Remote ID,” Internet Engineering Task Force, Internet-Draft draft-ietf-
drip-auth-41, Dec. 2023, Work in Progress, 45 pp. [Online]. Available: https://datatracker .
ietf.org/doc/draft-ietf-drip-auth/41/.

B. Wellington, Secure Domain Name System (DNS) Dynamic Update, RFC 3007, Nov. 2000. DOT:
10.17487/RFC3007. [Online]. Available: https://www.rfc-editor.org/info/rfc3007.

L. man page, Linuz man page for nsupdate. [Online|. Available: https://linux.die.net/man/8/
nsupdate.

H. Gholami and N. Heydarian Caydan, Performance measurements on bluetooth 5.2 using nrf52840
development kit, 2023.

Pixellord, Support wifi nan esp32-s3. [Online]. Available: https://esp32.com/viewtopic.php?t=
39481l

ascode, Bluetooth core v5.3 set extended advertising data command. [Online]. Available: https://
stackoverflow.com/questions/74998854/bluetooth-core-v5-3-set-extended-advertisingr
data-command.

pvvx, Support for coded phy (bluetooth 5.0 feature) when scanning. [Online]. Available: https :
//github.com/hbldh/bleak/issues/1225|

16

https://doi.org/10.17487/RFC9575
https://doi.org/10.17487/RFC9575
https://www.rfc-editor.org/info/rfc9575
https://datatracker.ietf.org/doc/draft-ietf-drip-dki/03/
https://github.com/ietf-wg-drip/drip-scripts/pull/2
https://github.com/ietf-wg-drip/drip-scripts/pull/2
https://www.bluetooth.com/blog/exploring-bluetooth-5-going-the-distance/
https://www.bluetooth.com/blog/exploring-bluetooth-5-going-the-distance/
https://www.bluetooth.com/specifications/specs/core-specification-amended-5-4/
https://www.bluetooth.com/specifications/specs/core-specification-amended-5-4/
https://www.wi-fi.org/discover-wi-fi/wi-fi-aware?utm_source=chatgpt.com
https://www.wi-fi.org/discover-wi-fi/wi-fi-aware?utm_source=chatgpt.com
https://datatracker.ietf.org/doc/draft-ietf-drip-registries/20/
https://github.com/opendroneid/receiver-android
https://github.com/opendroneid/receiver-android
https://github.com/ietf-wg-drip
https://github.com/ietf-wg-drip
https://github.com/opendroneid
https://github.com/opendroneid
https://www.nordicsemi.com/Products/Development-hardware/nRF52840-DK
https://www.nordicsemi.com/Products/Development-hardware/nRF52840-DK
https://www.espressif.com/en/products/socs/esp32-s3
https://www.espressif.com/en/products/socs/esp32-s3
https://www.bitcraze.io/products/old-products/crazyflie-2-0/
https://www.bitcraze.io/products/old-products/crazyflie-2-0/
https://datatracker.ietf.org/doc/draft-ietf-drip-auth/41/
https://datatracker.ietf.org/doc/draft-ietf-drip-auth/41/
https://doi.org/10.17487/RFC3007
https://www.rfc-editor.org/info/rfc3007
https://linux.die.net/man/8/nsupdate
https://linux.die.net/man/8/nsupdate
https://esp32.com/viewtopic.php?t=39481
https://esp32.com/viewtopic.php?t=39481
https://stackoverflow.com/questions/74998854/bluetooth-core-v5-3-set-extended-advertising-data-command
https://stackoverflow.com/questions/74998854/bluetooth-core-v5-3-set-extended-advertising-data-command
https://stackoverflow.com/questions/74998854/bluetooth-core-v5-3-set-extended-advertising-data-command
https://github.com/hbldh/bleak/issues/1225
https://github.com/hbldh/bleak/issues/1225

Bitcraze, Crazyflie repository. [Online]. Available: https://github.com/bitcraze/crazyflie2-
nrf-firmware.

ataffanel, Disable bluetooth advertising at runtime. [Online]. Available: https://github. com/
bitcraze/crazyflie2-nrf-firmware/issues/17.

N. Semiconductor, Transmission power. [Online]. Available: https://docs . nordicsemi . com/
bundle/ncs-2.4.1/page/nrf/protocols/matter’,20getting_started/transmission_power.
html.

Astm standard, ASTM Standard. [Online]. Available: https://www.astm.org/f3411-22a.html.

ISC, Isc documentation for adding new resource record type in bind9. [Online]. Available: https:
//kb.isc.org/docs/aa-01140.

Fastapi example for building dns server restful api backend. [Online]. Available: https://gitlab.
com/jaytuck/bind-rest-api.

17

https://github.com/bitcraze/crazyflie2-nrf-firmware
https://github.com/bitcraze/crazyflie2-nrf-firmware
https://github.com/bitcraze/crazyflie2-nrf-firmware/issues/17
https://github.com/bitcraze/crazyflie2-nrf-firmware/issues/17
https://docs.nordicsemi.com/bundle/ncs-2.4.1/page/nrf/protocols/matter%20getting_started/transmission_power.html
https://docs.nordicsemi.com/bundle/ncs-2.4.1/page/nrf/protocols/matter%20getting_started/transmission_power.html
https://docs.nordicsemi.com/bundle/ncs-2.4.1/page/nrf/protocols/matter%20getting_started/transmission_power.html
https://www.astm.org/f3411-22a.html
https://kb.isc.org/docs/aa-01140
https://kb.isc.org/docs/aa-01140
https://gitlab.com/jaytuck/bind-rest-api
https://gitlab.com/jaytuck/bind-rest-api

	Introduction
	Motivation
	Project goals

	Background
	Drone Remote Identification Protocol
	DRIP Identity Management Entities (DIMEs)
	Bluetooth
	Wifi Aware
	Previous work

	Method
	Tasks
	Auth formats to RFC9575
	Test BT5 on RaspberryPI 5
	Update DNS registry (registries-20)
	Update Android application for backend

	Result
	drip-core-c library
	Three transmitter
	Observer up to RFC9575 standard
	Receiving and verifying chain of endorsements in DRIP Link

	DNS
	DIME DET Hierachy
	New resource record type
	DNS operation

	Test result of Long range Bluetooth 5

	Discussion
	Challenges
	Advice for future students

	Future Work
	Transmitter(s)
	Observer
	Wireshark detector
	DNS

