TDDE21 DRIP 2023

Mario Impesi Sebastian Klasson Martin Larsson
Viktor Norgren David Warlén Samuel Malawi Yute

Contents

1 Introduction|
II.1 Project goals|

[2__Background|
2.1 Drone Remofe Identification Profocoll
2.2 DRIP Identity Management Entities (DIMEs)[.

2.3_DRIP Entity Tag (DETL)|. . - - -+« © oo
2.4 _DRIP and DNS|

2.4.1 Storing and Lookup|

3 Method

1 Introduction

The number of drones in our society is increasing and the capabilities of the
drones are becoming more impressive. Civilian drones can be used for legitimate
recreational and commercial purposes, but they can also be used in malicious
activities, for example spying on military installations or private individuals.
Malicious actors need to be held accountable and this creates a need for tying
drones to their respective owners. In the same way that there are registration
plates on cars that tell authorities who the driver is, there should be an equiv-
alent when it comes to drones. However, having a readable license plate on a
drone would be impractical and therefore there needs to be a way of gathering
this information from a distance without having direct vision of the drone.

This is where the Drone Remote ID Protocol (DRIP) comes in. It allows for
the wireless identification and verification of drones and their owners.

This project was done as a part of the course Advanced Project: Secure
Distributed and Embedded Systems (TDDE21) at Linkoping University during
the autumn of 2023.

1.1 Project goals

These were the goals that we aimed to achieve in the course:
1. Update to RFC9374
2. Port Android App to iPhone (possibly)

Interface to DNS registry

Authentication extension (update from -17 to -40)

oro W

Interoperability with other implementations

2 Background

In this section, the background of the project is presented.

2.1 Drone Remote Identification Protocol

The Drone Remote Identification Protocol (DRIP) is a protocol created by IETF
with the aim of trustworthy and secure remote identification (RID) of unmanned
aircraft systems (UAS) [4]. The idea for DRIP is similar to license plates on cars
and driver’s licenses: Both UAS and UAS operators have licenses, called unique
identifiers, and they are used to uniquely identify UAS and operators, as well
as link UAS to operators. The unique identifiers of drones are broadcast using
technologies like Bluetooth or Wi-Fi which enable remote actors to receive the
identifier and find information about the drone, as well as link the drone to an
owner.

| Apex e e Esss 5
+=0======0=-+ |

FhEkkkdiErddibd Lt E L | ******l *********il FEEEXEEFEXET X T TR ETL

RAAs | MCA | | INN | | RAA |

HDAs | MAA | | HDA | | HDA

Figure 1: The DIME hierarchy [2]

2.2 DRIP Identity Management Entities (DIMEs)

The structure of the hierarchy is shown in Figure[ll A Registered Assigning Au-
thority (RAA) is for example a national civil aviation authority, in the swedish
case, Luftfartsverket. HHIT Domain Authorities (HDA) are businesses and or-
ganizations that provide UAS services. These HDAs register themselves at a
RAA and are assigned IDs. The HID is thereby used to tell us which RAA and
HDA the entity is registered at. The Apexr handles assigning the IDs for the
RAAs, and acts as the root of the whole hierarchy.

2.3 DRIP Entity Tag (DET)

A DET is just a different name for a Hierarchical Host Identity Tag (HHIT).
The structure of a HHIT is shown in Figure

The prefix is predefined for this type of communication, and has the value:
2001:30/28. The HID contains the IDs of the RAA and HDA that the entity,
for example a drone, is registered at.

2.4 DRIP and DNS

One way for people to verify that the drones that they see are registered and safe
is by looking them up via DNS. When you receive an endorsement from a drone
you can use the included DET to look them up to see if they are registered.
Regular people will not be able to find any personal information about the drone
owner, only if it is registered or not. Law enforcement will have access to more
information about the owner, so if it does anything malicious they can find who
was responsible for those actions. This can also be used to raise alarms if there
are any unregistered drones flying around, thereby you can know in advance
which drones to pay extra attention to.

However someone other than the registered owner might have been in control
of the drone when it was used maliciously, but this same problem exists when it

14 bits| 14 bits 8 bits

Fomm - Fommm - + T +
| RAA | HDA | |HHIT Suite ID |
+-—m - Fo————- + e +
it | e !
A VoS .
A ¥ !
| p bits | 28 bits |8bits| 0=92-p bits |
R e e e e +-———= et it +
| IPv6 Prefix | HID |HHST | ORCHID hash |
e it Fommm e it e e +

Figure 2: Structure of a HHIT |[3]

comes to license plates on cars. This system will at least give law enforcement
a place to start.

2.4.1 Storing and Lookup

There are two ways to send the DNS messages, either via FQDNs or "reverse
DNS lookups as IPv6 addresses per [RFC8005]” [3]. Below we detail the process
using the FQDN approach.

Using a DET you are able to construct a Fully Qualified Domain Name
(FQDN), which has the structure [2]:

{hash}.{oga_id }.{hda}.{raa}.{prefix }.{apex}
Here is an example of a FQDN with actual data:
c4651542a33fdc26.05.0014.000a.2001003. example . com

The FQDN contains all the information necessary to query the DNS server
where the drone is registered.

3 Method

We started by just trying to test the previous groups’ work to get an idea of
how the system functions. We also read a bunch of material that was provided
to us to learn more about DRIP and the state-of-the-art.

When we had an idea of how the whole system functioned as a whole, we
started working on the tasks we had. We divided the group into pairs and
assigned a task to each pair, this allowed each group to focus on one area. We
had a group meeting each week so the pairs could update each other on their
progress and share relevant information to the other pairs’ work.

> # - : sudo nano — Konsole

GNU nano 6.2 /etc/bind/db.drones. local

; Negative Cache TTL

TXT "Owner=Test Testsson, Model=Phantom 4 Pro V

[Read 15 lines]|
i Write Out i Where Is B Cut B Execute ¥ Location gl Undo
flil Read File |l Replace il Paste R Justify Ml Go To Line [fJE Redo

Figure 3: Illustrates the zone file structure, showing how FQDNs map to TXT
records containing drone information.

4 Results
4.1 DRIP and DNS

Our DNS server was configured with a custom zone file. The zone file con-
tained Fully Qualified Domain Names (FQDNs) decoded from DRIP Entity
Tags (DETs). Each FQDN was mapped to a TXT record holding the drone
information, such as model and owner details, see

To validate and demonstrate the functionality of our DNS server, we utilized
the ’dig’ command to manually query the DNS for specific drone data. This
process involved sending a query for a particular drone’s FQDN and receiving
the corresponding TXT record in response, see [4

The DNS querying capability was also successfully integrated into the Ob-
server App. This integration allows the app to automatically query our DNS
server for information whenever you select a nearby drone. The app retrieves
details like the drone’s model and owner information and displays it alongside
other information, see the app section for more information.

4.2 Authentication

DRIP defines three types of authentication messages, which were implemented
as part of this project.

DRIP Link, defined in section 4.2 of [1], was implemented to broadcast the
endorsement HDA on UA, so that the observer app could learn the public key
of a drone, and use it to read the other two authentication messages: Wrapper
and Manifest.

DRIP Wrapper, defined in section 4.3 of [1], was implemented to include the
three ASTM messages that the transmitter currently sends: Basic ID type A,
Basic ID type D and Location.

2

~: bash — Konsole

alhost 8339efb29f4e9d61 3ffs .drones.local -t TXT
.84.3-Ubuntu localhost ©339efb29f4edde Ba. 3.drones.local -t TXT

; global option
; Got a
t DNS
esting what happens when an mDNS query is leaked to DNS
: QUERY, status: NOERROR, id: &€
rd ra; QUERY: 1, ANSWER: 1, AUTHORITY ADDITIONAL: 1

; udp: 1
; COOKI d5 762e77b41eBbcaebafa48e (good)
53 QUESTION SECTION:

;0339efb29f4e9de 0a.3ff: drones.local. IN TXT

;3 ANSWER SECTIO
0339efb29f4e9d6 0 3.drones.local. &€ ® IN TXT "Owner=Test Testsson, Model=Phantom 4 Pro V2.0"

53 Query ti

;3 SERVER: 12

33 WHEN: Sun Dec
55 MSG SIZE r

martingmartin

Figure 4: Showcases a sample dig command and its output, effectively retrieving
drone information from the DNS server.

DRIP Manifest, defined in section 4.4 of [1], was implemented to include the
hashes of the same three ASTM messages included in the Wrapper.

These three messages were sent as ASTM Authentication messages and split
in pages to fit the maximum size of a Bluetooth 4 advertisement message.

4.3 App

The observer app builds on the opendroneid implementation which supports
all ASTM messages including the four types of messages that our transmitter
implements: Basic ID type A, Basic ID type D, Location and Authentication.

From this foundation, the app was successfully extended to implement the
DRIP authentication messages as outlined in section 4.2. The app received a
paginated authentication message which was then reconstructed.

The messages were also successfully verified with the hashes sent in the DRIP
Manifest.

The DNS lookup was implemented by using the FQDN constructed from the
DET sent by the UAS.

The current implementation works well with Bluetooth 4 but it was not
tested for Bluetooth 5 and WIFI.

5 Discussion

In this section, we reflect on the challenges encountered during our project and
the valuable lessons we learned. These insights not only shaped our approach to
the project but also provided us with a deeper understanding of the complexities

involved in real-world applications of theoretical concepts.

One of the most important aspects of our project was delving into the in-
tricacies of IETF drafts, particularly those concerning drone identification and
DNS management. This exploration:

e Enhanced our understanding of how protocols and standards are de-
veloped and the decision-making behind them.

e Highlighted the importance of adhering to global standards for inter-
operability and future scalability.

e Challenged us to interpret and implement these drafts in a practical,
working prototype.

5.1 Challenges

Venturing into a relatively new and unexplored domain presented its challenges:

e Encountering the Unknown: We often found ourselves in situations
where there were no established methods or best practices to follow, push-
ing us to innovate and experiment.

e Risk of Misinterpretation: Without widespread examples to guide us,
interpreting and implementing the IETF drafts accurately was challenging.

During this project, we discovered how important it is to break down com-
plex problems into more manageable parts. We did this by using a step-by-step
approach which helped us tackle one aspect of a problem at a time and also
made it easier to track our progress and identify issues. This also helped us try
to reduce the feeling of being overwhelmed by the complexity and scale of the
project.

One of the most crucial lessons was understanding the gap between theo-
retical knowledge and its practical application. Theoretical models often do
not account for all the nuances and unpredictable variables encountered in real-
world scenarios. We learned the importance of being adaptable and ready to
modify our approach when theory did not align perfectly with practice.

5.2 Advice for future students

Create and maintain a document with the full names of all the relevant acronyms.
It might even be worth to also add a paragraph with information about the
acronym. You are going to be working on this project for a whole semester,
there are going to be acronyms that only find two or three times over the whole
project, but it can take a lot of time to look them up and find a good summary
for them.

Understand that there are two standards in this context: ASTM F3411 and
DRIP. DRIP in designed on top of ASTM and DRIP messages are encapsulated
in ASTM Authentication messages.

Since this work is cutting edge, there are no FAQs, guides or solutions to
find online. A good resource that we used was the IETF DRIP taskforce mail-
ing list (https://mailarchive.ietf.org/arch/browse/tm-rid/) which contains the
latest information about the developments and discussions before they update
the drafts and RFCs.

6 Future work

e This project implemented three ASTM messages: Basic ID type A, Ba-
sic ID type D and Location. The others need to be implemented for a
complete message schedule. A suggested schedule is in Appendix B of
draft-ietf-drip-auth-41 |1]. An alternative approach could be to use the
OpenDronelD implementatiorEI of a transmitter and add the DRIP func-
tionality on top of that.

e The transmitter and app were tested using Bluetooth 4. Wifi and Blue-
tooth 5 need to be tested.

e The draft-ietf-drip-auth-40 has a section on Forward Error Correction.
This was not explored or implemented by this group.

e One of the Bluetooth headers, called AD Counter, is currently read by the
observer app as a message counter, which counts how many messages of the
same type have been sent so far. However at the moment, the transmitter
always sends 0 as the AD Counter. This needs to be implemented.

e The observer app should check the previous manifest hash and current
manifest hash included in a manifest message, as explained in section 4.4
of draft-ietf-drip-auth-41 |1]. The app can also only receive one type of
endorsement in a Link message, which is the endorsement HDA on UA.
The app should be able to receive the other types of endorsement explained
in section B.2 of [1].

e If a verified message is currently stored and shown in the interface, and
a non verified message is received, the current implementation of the app
will replace the message. An alternative to this could be to store the non
verified message (to be able to check the hash contained in a manifest
later), but keep showing the verified one on the interface until the newer
message can be also verified.

Lhttps://github.com/opendroneid/transmitter-linux

6.1 DNS

In our project, we successfully implemented a local DNS prototype for drone
identification and tracking. There is some potential here for expansion and
enhancement. You can follow the README in the drip-backend-dns folder to
get started with a local DNS setup for initial testing, and then start building
the proper public DNS inside that folder. Note that the code inside "app.py”
and "run.py” are only placeholder functions carried over from the 2022 work
which implemented a blockchain solution to drone management. We have kept
the code there to serve as an example of what the DNS functions should do
(register, remove, lookup etc). Here are some thoughts on how the development
of the DNS can look like:

e Public DNS implementation: Our local DNS setup works as a proof-
of-concept, but it would be beneficial to implement a public-facing DNS
server. This could be facilitated by the university providing a dedicated
server and domain name to use.

e Access Control: As per the DRIP design, the DNS setup should have
access control. The design should allow for varying levels of information
to be disclosed based on the user’s clearance. For instance, general public
queries might return basic information like the drone’s model, whereas au-
thorized entities like law enforcement could access detailed data, including
the drone owner’s name and address.

e User Interface for DNS Interaction: Currently, the local DNS setup
requires direct interaction with the DNS server. To make this process
more user-friendly and efficient, developing a web interface for DNS man-
agement is advisable. This interface would allow easy registration, modi-
fication, and removal of drone records.

e DNS record type: Currently, our prototype uses the TXT record type
to store drone information. At the time of writing this report, the IETF
DRIP taskforce has suggested to use a part of the unassigned DNS space
(TYPE 68) to be used for DRIP and perhaps when you read this it has
been decided and you can implement this instead of using TXT records.

References

1]

Adam Wiethuechter, Stuart W. Card, and Robert Moskowitz. DRIP En-
tity Tag Authentication Formats € Protocols for Broadcast Remote ID.
Internet-Draft draft-ietf-drip-auth-41. Work in Progress. Internet Engineer-
ing Task Force, Dec. 2023. 45 pp. URL: https://datatracker.ietf.org/
doc/draft-ietf-drip-auth/41/.

Ed. A. Wiethuechter and J. Reid. DRIP Entity Tag (DET) Identity Man-
agement Architecture. URL: https://www.ietf.org/archive/id/draft-
ietf-drip-registries-13.html (visited on 12/04/2023).

A. Wiethuechter R. Moskowitz S. Card and A. Gurtov. DRIP Entity Tag
(DET) for Unmanned Aircraft System Remote ID (UAS RID). URL: https:
//www.rfc-editor.org/rfc/rfc9374.html (visited on 12/04/2023).

IETF. Drone Remote ID Protocol (drip). n.d. URL: https://datatracker.
ietf.org/wg/drip/about/ (visited on 12/04/2023).

10

https://datatracker.ietf.org/doc/draft-ietf-drip-auth/41/
https://datatracker.ietf.org/doc/draft-ietf-drip-auth/41/
https://www.ietf.org/archive/id/draft-ietf-drip-registries-13.html
https://www.ietf.org/archive/id/draft-ietf-drip-registries-13.html
https://www.rfc-editor.org/rfc/rfc9374.html
https://www.rfc-editor.org/rfc/rfc9374.html
https://datatracker.ietf.org/wg/drip/about/
https://datatracker.ietf.org/wg/drip/about/

	Introduction
	Project goals

	Background
	Drone Remote Identification Protocol
	DRIP Identity Management Entities (DIMEs)
	DRIP Entity Tag (DET)
	DRIP and DNS
	Storing and Lookup

	Method
	Results
	DRIP and DNS
	Authentication
	App

	Discussion
	Challenges
	Advice for future students

	Future work
	DNS

