DRIP Project Report - TDDE21

Abdullah Bin Zubair Hampus Rosenquist
Mirna Ghazzawi Younus Salman Yinan Wang

Ezaminer: Andrei Gurtov, Supervisor: Suleman Khan

December 16, 2022

Contents

1__Introductionl
I1.1 Project goals|

|12 Background|

[2.2_Bluetooth advertising]

2.3 oogle Maps for Android|

3.3 Reciever Android application development|.
3.4 Bluetooth sender development|.
3.5 WiFi sender development|

4" Results|

{11 draft-ietf-drip-rid-32[. L.
ET2 draft-ietE-drip-auth-17] o v v v oo

4.2 Android application| 0oL

6_Discussion 10

bl DRIPdrafts. 10
p.1.1 draft-iett-drip-auth-17 L. 10

p.1.2 draft-iett-drip-rid-32] 10

5.2 Android application|o 0oL 11
B3 Bluetoothl o o oo 11
7 .51 12
[6_Conclusion 12
[6.1 allenges|. 12
B2 Tuture worklo 13
6.2.1 draft-iett-drip-auth-17o 13

6.2.2 draft-moskowitz-drip-secure-nrid-c2|. 13

025 Wik, . ..o 13

1 Introduction

This report presents the work done in the course Advanced Project: Secure
Distributed and Embedded Systems (TDDE21) at Linkoéping University during
the fall of 2022. The project’s goal was to further develop Linkopings Uni-
versity’s open-source contributions to the Drone Remote ID Protocol (DRIP).
The project was performed by five students at Linképing University and is a
continuation of previous years students’ work.

1.1 Project goals
This year’s project goals were:

1. Update to draft-ietf-drip-rid-32.

2. Update to draft-ietf-drip-auth-17.
Implement draft-moskowitz-drip-secure-nrid-c2.
Test on Next Unit of Computing (NUC).
Check Bluetooth 5 status.
Check WiFi beacon status.

Test interoperability with other DRIP implementations.

® N e o s W

Replace Google Maps with Open Maps in the Android app.

2 Background

This section presents the background of the different parts of the project.

2.1 DRIP

Drone Remote Identification Protocol (DRIP) is an architecture that provides
secure and trustworthy remote identification for unmanned aircraft systems
(UAS). The operation of the whole system is similar to the transportation sys-
tem: there are two licenses, one for the car that indicates this car can run on
the road legally, and one driver’s license shows that this driver has the ability to
drive a car. Similarly, there are several objects in the DRIP system: the registry,
unmanned aircraft (UA), the operator of UA, and the observer. Both UA and
operator need their respective certificates, which are preserved by the registry.
In DRIP, a UA broadcasts its unique identifier through WiFi or Bluetooth, an
observer can look for the information from the registry by using the identifier,
and the registry will return the information about the UA as well as its operator.
An identifier contains such normative requirements: length, registry ID, entity
ID, uniqueness, non-spoofability and unlinkability [3]. This DRIP project also

refers to several documents published by the Internet Engineering Task Force
(IETF), the specific version of the documents are: draft-ietf-drip-auth-17 (DRIP
Entity Tag Authentication Formats and Protocols for Broadcast Remote ID)
[13] and draft-ietf-drip-rid-32 (DRIP Entity Tag (DET) for Unmanned Aircraft
System Remote ID (UAS RID)) [§].

The document draft-ietf-drip-auth-17 describes the way to add trust into the
Broadcast Remote ID (RID) specification, which has been introduced in the
DRIP Architecture [2]. This document defines the types of messages and asso-
ciated formats that are sent within the Authentication Message.

The document draft draft-ietf-drip-rid-32 descirbes how the Hierarchical Host
Identity Tags (HHIT) are generated and what information they should con-
tain. HHIT is structured as follows: IPV6 prefix (max 28 bits), Hierarchy ID
(HID) (28 bits), HHIT Suite ID (HHSI) (8 bits) and ORCHID hash (64 bits) [5].

The hardware used in the project is A raspberry pi 4 which represents the
drone. A GPS module to get the location information and a pi Juice, which is
a battery for the raspberry pi. Last an android app to receive the signals and
show the information about the drone. The phone represents the observer.

2.2 Bluetooth advertising

Bluetooth is a technology for short-range wireless communication. Bluetooth
advertising is one of its features that allows devices to broadcast information to
any other devices in the local area. Furthermore, Bluetooth 4 and later offers
a Low Energy mode suitable for battery-powered devices. In Bluetooth 5, new
encoding modes were added. One of them was called coded PHY, which enabled
communication at longer ranges, up to one kilometer, and larger packets, up to
255 bytes [1].

The Bluetooth stack is implemented in the official Linux kernel and is called
BlueZ |11]. To interact with BlueZ, Bluetooth Host Controller Interface (HCI)
is used. A useful interface for interacting with Bluetooth controllers on Linux
is hcitool, which allows the user to issue HCI commands. What commands can
be sent and how is specified in the Bluetooth Core Specification [1].

2.3 Google Maps for Android

Google offers a Software Development Kit for implementing Google Maps in
Android applications [6]. To use this, a developer account must be created and
personal API keys need to be retrieved. This API key is connected to the owner
of the developer account and keys must be specified when compiling the An-
droid application. This makes the distribution of the application outside of the
Google Play Store inconvenient. Also, reliance on Google Maps may pose other
challenges for an open-source application further down the line, such as costs.

An alternative tool is Osmdroid [10]. It is open source and does not require
any API keys.

2.4 WiFi

Wireless Fidelity (WiFi) is a family of wireless network protocols, based on the
IEEE 802.11 standard [7]. WiFi is used for local networking areas of devices
and network accesses. It allows devices to communicate with each other and
exchange data through radio waves with specific frequency signals instead of
using wires.

WiFi beacon is one of the protocols that one can use for wireless communi-
cation. It allows devices to exchange data by broadcasting to each other within
a specific range. Devices can be detected with the help of routers or access
points. WiFi beacon contains all the information about the network and the
beacon signals are transmitted periodically between 20ms to 65535ms [4], they
serve to announce the presence of a wireless LAN and to synchronize the mem-
bers of the service set.

For the WiFi beacon to work the hardware needs to have monitor mode con-
figured. Monitor mode is a feature that some hardware has that allows the
computer with a wireless network interface controller to monitor all traffic re-
ceived on the wireless channel. And besides that, it allows the computer to
perform packet sniffing, therefore the WiFi beacon script will be able to broad-
cast messages through WiFi.

3 Method

This section presents the methods used in the different parts of the project.

3.1 Pre-development

e Read and understand different documents to understand more about what
DRIP is.

e Read what the previous years’ students have already accomplished.

e Understand what the goals for this year are and discuss them with the
supervisor and the examiner.

e Identify the different components of the project and divide the work into
two subgroups.

3.2

3.3

3.4

3.5

DRIP drafts

Attend the online hackathon with the others who are working on DRIP
from the US. Discuss with them what needs to be done to update the code
to meet the goal version of the drafts.

Read and compare the current implemented version of each draft with the
goal version of each draft.

Identify the differences between the drafts’ versions and search in code
where it needs to be implemented.

Implement the differences to meet the goal version of the drafts and per-
form tests.

Reciever Android application development

Check the code of the application and try to get a general understanding
of how it works and the different components of it.

Identify where in the code is needed to be changed.
Search and read about an alternative for Google maps.

Implement the alternative maps by searching for similar alternatives to
the functionality that Google maps had.

Test the application and make sure it performs what it is supposed to do
without any issues.

Make it ready for being published on the Google play store.

Bluetooth sender development
Check what can be the issue with the Bluetooth 5 dongle and solve it.
Read and understand the code that is already implemented.
Read about Bluetooth 5 and the extended advertising feature.

Identify where in the code is needed to be changed to make Bluetooth 5
and extended advertising work.

Implement the new commands and test them with the Android app.

WiFi sender development
Understand the standards and the concept of monitor mode.
Understand the wifi beacon code written by the group from last year.
Implement wifi beacon broadcasting into transmitter application.

Find a suitable wifi adapter with a chip that supports monitor mode.

4 Results

This section presents the results of the work done this year for the different
parts of the project.

4.1 DRIP drafts

This part illustrates the conclusions about different drafts we have made through-
out the whole project.

After the hackathon which the team attended halftime through the project, a
good understanding of what is needed to update the drafts was gained.

4.1.1 draft-ietf-drip-rid-32

The transmitter has been updated according to the draft (rid-32) [8]. The for-
mat of the HHIT has been updated, see Figure[ll A new Prefix and Hash have
been introduced in the drone_identities.xml file. The implementation of the ver-
ification of the hash has been updated so those correct parameters are passed
to the cShakel28 function according to the rid-32 draft.

Also, checks on the receiver side have been done to make sure it is following the
rid-32.

14 bits| 14 bits 8 bits
+--—-m-- - + mmmmmmmmmmm oo +
| RAA | HDA | |HHIT Suite ID |
mmmm Fommmm - + Fmmmmmmmm oo +
\ I ooid /
\ \
\ \/ /
I p bits | 28 bits |8bits| 0=92-p bits |
mmmmmmmmmm e 4m-mmmmmmm e e B +
| IPV6 Prefix | HID [HHST | ORCHID hash |
ommmmmmmmm e 4m-mmmmmmmm e - dmmmmmmmm e +

Figure 1: A screenshot of the HHIT from rid-32.

4.1.2 draft-ietf-drip-auth-17

The authentication draft (auth-17) is about the format of authentication mes-
sages being broadcast from the drone. There are four main types of authentica-
tion broadcast messages. Each type contains specific relative information, which
makes it possible to authenticate the drone and increase trust in the broadcasted
information. The functionality of Drip-Link and Drip-Wrapper was updated.
New functionality for the Drip-Manifests was implemented. For Drip-Link, the
proposed structure for endorsement broadcast was introduced as mentioned in
draft-ietf-drip-auth-17 Appendix B [13].

] 1 2 3
©123456789612345678901234567898071

DRIP
Entity Tag of DIME

| |
| |
| |
| |
| |
I DRIP |
I Entity Tag of UA |
| |

Host Identity of UA

| Not Before Timestamp by DIME |

| Not After Timestamp by DIME |

Signature by DIME

Figure 2: A screenshot of the Broadcast Endorsement: DIME, UA

Drip-Wrapper was updated as well to work with the new update, such as the
introduction of Drip-Manifest, moreover, Drip-Wrapper structure was updated
according to the draft-ietf-drip-auth-17.

] 1 2 3
©1234567896123456789061234567898071

DRIP
Entity Tag of DIME

|
|
|
|
|
| DRIP

| Entity Tag of UA
|

Host Identity of UA

| Not Before Timestamp by DIME |

| Not After Timestamp by DIME |

Signature by DIME

Figure 3: A screenshot of the Drip Wrapper over Legacy Transport

Drip-Manifest is implemented to broadcast the hashes of the location mes-
sages to increase trust and security. It was also implemented according to draft-
ietf-drip-auth-17. The number of hashes in a single manifest, which we are
sending in manifests for now, is discussed in Discussion 5.1.1.

[1 2 3
©12345678901234567890123456789801

UA
DRIP Entity Tag

Current Manifest Hash

|
|
|
|
|
Previous Manifest Hash |
|
|
|
|
|

ASTM Message Hash(es)

Not Before Timestamp by UA

Not After Timestamp by UA

UA Signature

Figure 4: A screenshot of the Drip Manifest

We updated the session-id /flight-id for the drone to be set as the same as the
Drone Host ID. We will discuss this in section 5.1.1. In the repository, we have
"beacon_1.py” file in which all of the above functionality is implemented. As
mentioned before, we did not have enough time to implement the functionality
on the application on the android side. So when running the beacon_1.py, the
android app will not receive anything due to the message format we implement
being different from the old version and the app cannot decode that. Therefore
we kept another file named ”beacon.py”, which is the original file that came
from the last 2021 group, and we only added wifi function options to it.

4.2 Android application

An alternative has been successfully found, osmdroid, which is an abbreviation
for OpenStreetMap and Android. It is an open-source tool that replaces An-
droid’s MapView class [10].

osmdroid has successfully replaced the already existing implementation of Google
maps in the receiver application. Similar functionalities of Google maps have
been found and replaced in the application. Meanwhile, the appearance is dif-
ferent from Google maps; as shown in figure [5| the osmdroid has a simpler view
and lacks a satellite view. The current location icon is also different, as well as
other icons but the other ones are not osmdroid own icons.

In figure [6] the view of the drone information in the application can be seen. No
changes have been made from the previous year’s work.

The Android application has been successfully updated to the latest Android
SDK version and deprecated methods have been replaced. Most works was re-
lated to the update concerning runtime permissions for Bluetooth and location
access. The application was also successfully published to the Google Play store.

1 drones

1 drones

& 1T

()

SPeter Harrisol

Planetarium! l { | 18

1
i 5/
4= H i
§
7 i =
L A y
200100250b3fatdcTcees22e . ko
ABCDF1FGO16003A12345 S OO 25add5b0
25.5m, 425 m/s
(a) Google Maps. (b) Osmdroid.

Figure 5: Screenshots of the receiver Android application before and after the
switch to Osmdroid.

1439 M @

Connection
Rssi -57 mac 54:6C:0E:9B:59:77

started 00:20 ago Rate -

Basic ID
Type Rotorcraft D Type Serial_Number

uasio ABCDF1FG916003A12345

Location
Latitude 51.4770016 Longitude 0.0000000

Altitude Press, 37.5 m Alt. Geod. 36.5m
pirection 27 deg status Airborne
Hori. speed 4.25 m/s Vert. speed 4.50 m/s
Height 25.5 m Height Over Ground
Hori. Accuracy < 3 M Vert.Ace. < 1M
Baro Ace. <3 M Speed Acc. <1 m/s
Time Ace. <0.1'8 Timestamp 06:00

Self ID

operation Description of flight Type 0

Operator
Latitude 51.4770016 Longitude 0.0005000
Loc. source TakeOff
Area Count 350 AreaRadius 50 M
AreaCeiling 75.5 M Area Floor 26.0 M

Authentication
Type UAS_ID_Signature Length 86 bytes
Timestamp 2019-01-01 13:56:40.0

3938373635343332313041424344
454647 313233 3435 363738393031
323334 3536373839303132333132
333435 36 3038 39 30 31 3233 3435 36
373839 3031323331323334353637
38 39303132333435363738393031

Authentication 32 33

Operator ID
Operator 1D ABCDEFGHIJKLMNOPQRST Type 0

Figure 6: A screenshot of the information screen in the receiver Android app.

4.3 Bluetooth

A new appropriate Bluetooth USB dongle with support for Bluetooth 5 and
long-range extended advertising support was acquired, called ASUS USB-BT500.
Connecting the dongle to the computer running an up-to-date Linux distribu-
tion with a recent kernel, appropriate drivers were present and it worked without
problems.

The beacon transmitter was successfully updated with the new HCI commands
to make use of the extended version of Bluetooth advertising, and its long-range
capabilities. All HCI commands, including the old ones, were documented thor-
oughly to make further development and debugging easier. The beacon trans-
mitter can now make use of both Bluetooth 4 advertising and Bluetooth 5
extended advertising, by simply changing a flag: ”-b 5”.

4.4 WiFi

To be able to send messages through WiFi, Scapy is being used [12], which is
a python-based interactive packet manipulation library that enables the user
to send, sniff and dissect and forge network packets. First, an interface must
be defined, in most cases, it should be wlan0. Its purpose is to allow Scapy
functions to use wireless channels. After that, a frame object needs to be cre-
ated, which will contain the actual message and additional information about
the sender, for instance, the MAC address and more. Inside the frame, a dot11
object should be included, which is a class defined in the scapy library that con-
tains the information. To send the message sendp(...) function is used which
takes the interface and frame as parameters.

To allow the WiFi beacon script to work with our transmitter code, it must
be integrated, so a new flag is added for running the transmitter that activates
the WiFi beacon script. If it is activated, then the transmitter will use WiFi
instead of Bluetooth as a transmitting medium. The flag is ”—wifi”

A search for a suitable WiFi adapter is made. Before finding the adapter, a
suitable WiFi chip must be researched first, which allows monitor mode. The
chipset Realtek RTL8812AU is compatible with monitor mode, therefore any
WiF1i adapter which contains this chipset is configured with monitor mode. The
best candidate according to our research is the adapter Alfa AWUS1900, which
is an excellent choice for enabling the transmitter beacon script to send mes-
sages through WiFi. [5] is another choice of WiFi adapter that uses the same
chipset.

4.5 NUC testing

Our supervisor, Andrei Gurtov, tested running the transmitter on a NUC device
and could successfully run it for several days without any hiccups.

5 Discussion

This section discusses the results of the work done this year for the different
parts of the project.

5.1 DRIP drafts

This subsection will separately discuss the drafts.

5.1.1 draft-ietf-drip-auth-17

In the previous work of the last group, they tried to implement the draft-ietf-
drip-auth-01, which is the very early version of the authentication draft, al-
though they did not finish the whole draft. We have discussed with Adam
Wiethuechter(USA Team) and implemented the draft with his suggestions:

e The DRIP-Link should send a Broadcast Endorsement according to Fig-
ure 1, that contains the contents in such order: DRIP Entity Tag of DIME
(DRIP Identity Management Entity), DRIP Entity Tag of drone, HI (host
identity) of the drone, VNB timestamp, VNA timestamp, and the Signa-
ture generated by the registry.

e The DRIP-Wrapper contains a Location message. Drip-Wrapper struc-
ture is according to Figure 2. It contains UA DRIP Entity Tag, ASTM
Message(s), Not Before Timestamp by UA, Not After Timestamp by UA
and UA Signature. However, for now, we just place a single Location
message in a wrapper.

e The DRIP-Manifest should be broadcasted according to Figure 3. It con-
tains UA Drip Entity Tag, Previous Manifest Hash, Current Manifest
Hash, ASTM Message Hash(es), Not Before Timestamp by UA, Not Af-
ter Timestamp by UA and UA Signature. As discussed with USA Team,
there can be a maximum of 11 hashes (8 bytes each), for now, we are
placing one hash of one message. Moreover, the other team in the U.S.
does not have Manifest fully interoperating.

e The Session ID is generated by a DIME during a UA DET, which is
actually the DIME HI over UA DET /HI, according to section 5.1 of draft
[13]. It is being used as a Session ID, registration. The session ID is used
to make a difference between each flight, which is a recommendation, not
a rule to follow. It is expected that the Session ID will be dynamically
registered to a registry, which requires an Internet connection. In our
code, we use "flight_id” as the session ID.

5.1.2 draft-ietf-drip-rid-32

After the changes between the different versions of the draft had been identified,
it was still not easy to identify where to make changes; since the code did not

10

always match the old draft it was supposed to follow.

We successfully updated every change we identified in the transmitter, how-
ever, it is unfortunately not possible to verify with a guarantee at this time.

5.2 Android application

The goal for the Android application for this year has been achieved. While suc-
cessfully implementing osmdroid it has been challenging with finding the same
functionality as in Google maps. Some functionality was not there in osmdroid
so an alternative way of implementing had to be searched for.

While implementing the new maps some issues from previous years’ implemen-
tation had been encountered; e.g. the toggling between clicking on the current
location and the drone location. The first time when starting the application, it
works then it was not moving the screen to where the drone is. Since the entire
map activity had to be re-implemented, a better understanding was gained and
such bugs could be found and fixed.

Some issues were faced when trying to publish the application on Google Play
store. Permission problems and the version of Android had to match. So loca-
tion and Bluetooth permissions had to handle different kinds of Android versions
to work and avoid the crash of the application. Another issue was when creating
the aab file; it had to be signed with a key which caused a problem when trying
to publish the application on the store.

5.3 Bluetooth

In the beginning, we had a lot of problems getting the new Bluetooth dongle up
and running. First, it turned out that the Raspbian OS on our Raspberry Pi 4
missed a necessary kernel module. After updating to the most recent Rapsbian
OS, the kernel module was present, but it was instead shipped with a too-old
version of Glibc. Since upgrading this package manually usually causes a lot of
new problems, a new OS had to be installed yet again. After installing Ubuntu
20.04, both the kernel and Glibc supported the dongle.

Implementing the extended advertising in the beacon transmitter required an
understanding of the structure of HCI commands, but good information was
found in the Bluetooth Core Specification [1]. A useful way we found to de-
bug the HCI commands was to open up a terminal in the background with a
Bluetooth monitor: ”sudo btmon”, which displayed the Bluetooth controller’s
status, responses and errors from any command currently being sent.

11

5.4 WiFi

The first half of the working time is spent researching different concepts sur-
rounding the WiFi part. A literature reading about monitor mode and the
required library for manipulating messages and sending them through WiFi.

The main challenge was to find a suitable chipset that allows monitor mode
because the default chipset in the Raspberry Pi 4 does not allow monitor mode.
Therefore, the messages are built correctly with the right size and content by
using the Scapy library, but these messages are stuck inside the Raspberry Pi.
By using an external WiFi adapter, the messages will be sent to other devices.

As mentioned in the result section, an external WiFi adapter was found, but
the problem is that it is too late to order the adapter, therefore we assume that
the WiFi script works if the adapter is being used.

6 Conclusion

This section presents the conclusions of the project, including challenges and a
proposal for future work.

6.1 Challenges

In this section, the project’s general challenges are presented. More specific
challenges to each part of the project are discussed in the Discussion chapter
above.

e Understanding the project and its parts took a lot of time in the beginning.
This is because the information needed to understand the project was
found in different sources.

e Difficulty to understand the drafts from the first time; we had to read
them several times.

e It was not clear how much the previous group has implemented the drafts.
So, it took us more time to understand what they have done and from
where we need to start the implementation.

e We got stuck on some issues which slowed down the progress of the project
in the first half of it.

e Information about specific parts was limited e.g. Bluetooth specific prob-
lems.

e The configuration phase was harder than we thought. A lot of libraries are
missing and outdated if we try to follow the instructions for configuration
in the readme file.

12

e Code challenges (No comments, uncompleted stuff that was mentioned as
completed). Actually, the last group tried to implement the 01 version
of the authentication draft but is not completed. Moreover, they did not
mention what they have implemented and which part is left

e In the code, the names of the functions were not appropriately used. For
example, in drafts, SAM types were not used according to the drip drafts.

6.2 Future work

This part presents future work that can be done by students in the coming
years.

6.2.1 draft-ietf-drip-auth-17

Before going for the updated version of draft-ietf-drip-auth, the next group
should know the work which is needed to complete for draft-ietf-drip-auth-17.
We can break down the future work into two parts such as: sender/beacon.py
and Android side. For the sender side, Drip-Link and Drip-Wrapper are com-
pleted on the beacon side according to the draft-ietf-drip-auth-17. However, for
the Drip-Manifests we followed the structure of draft-ietf-drip-auth-17 for send-
ing Manifest, but we are placing one hash in a manifest for now, as discussed
with the USA team. So, We placed a single hash of 8 bytes in each manifest
while the next group can increase these hashes to 11 where each should be of 8
bytes.

For the Android side, the next group needs to investigate the needed re-
quirements according to the changes being done on sender/beacon.py side. All
these changes are saved in a separate file named beacon_1.py file. After com-
pleting the updates on the android side, the next team just needs to run the
beacon_1.py or wifi_beacon.py (wih suiteable wifi) file code instead of beacon.py.

6.2.2 draft-moskowitz-drip-secure-nrid-c2

Due to time restraints, no progress was made for this draft. This draft needs to
be implemented.

6.2.3 WiFi

For future work, the specified WiFi adapter or a similar one that has the same
chipset is needed to be ordered. A Testing phase should be done to make sure
that the script and working and integrated correctly.

There is an alternative to finding a WiFi adapter, which is using Nexmon [9].
It is a firmware for patching framework that allows monitor mode inside the
raspberry pi, so signals are sent by using the default WiFi chipset. This can be
tested in the future but at your own risk as stated in their readme file, because
it might damage the hardware.

13

References

[1]

Bluetooth. Bluetooth Core Specification v5.3. 2021. URL: https://wuw.
bluetooth.com/specifications/specs/core-specification-5-3/
(visited on 11/23/2022).

Stuart W. Card et al. Drone Remote Identification Protocol (DRIP) Archi-
tecture. Internet-Draft draft-ietf-drip-arch-29. Work in Progress. Internet
Engineering Task Force, Aug. 2022. 30 pp. URL: https://datatracker.
ietf.org/doc/draft-ietf-drip-arch/29/.

Stuart W. Card et al. Drone Remote Identification Protocol (DRIP) Re-
quirements and Terminology. RFC 9153. Feb. 2022. po1: |10 . 17487 /
RFC9153. URL: https://www.rfc-editor.org/info/rfc91563/

ddwart. Advanced Wireless Settings. URL: https://wiki.dd-wrt.com/
wiki/index . php/Advanced _wireless _settings#Beacon _Interval

(visited on 11/27/2022).

ebay. Realtek RTL8812AU USB Dual-band 2.4,Ghz 5Ghz Wireless Dongle
Adapter 1200mbps. URL: https://wuw.ebay.com/itm/303442334248
(visited on 12/16/2022).

Google. Maps SDK for Android overview. URL: https://developers.
google.com/maps/documentation/android-sdk/overview (visited on
11/23/2022).

“IEEE Standard for Information technology—Telecommunications and in-
formation exchange between systems Local and metropolitan area net-
works—Specific requirements - Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications”. In: IEEE Std
802.11-2016 (Revision of IEEE Std 802.11-2012) (2016), pp. 1-3534. DOI:
10.1109/IEEESTD.2016.7786995.

Robert Moskowitz et al. DRIP FEntity Tag (DET) for Unmanned Air-
craft System Remote ID (UAS RID). Internet-Draft draft-ietf-drip-rid-32.
Work in Progress. Internet Engineering Task Force. 35 pp. URL: https:
//datatracker.ietf.org/doc/draft-ietf-drip-rid/32/.

nexmon. nexmon. URL: https://github.com/seemoo-1lab/nexmon (vis-
ited on 12/05/2022).

osmdroid. osmdroid. URL: https://osmdroid . github. io/osmdroid/
(visited on 11/23/2022).

Bluez Project. Official Linuz Bluetooth protocol stack. 2022. URL: http:
//www.bluez.org/| (visited on 11,/23/2022).

scapy. scapy. URL: https://scapy.net| (visited on 11/30/2022).

Adam Wiethuechter, Stuart W. Card, and Robert Moskowitz. DRIP En-
tity Tag Authentication Formats € Protocols for Broadcast Remote ID.
Internet-Draft draft-ietf-drip-auth-17. Work in Progress. Internet Engi-

neering Task Force. 47 pp. URL: https://datatracker.ietf.org/doc/
draft-ietf-drip-auth/17/.

14

https://www.bluetooth.com/specifications/specs/core-specification-5-3/
https://www.bluetooth.com/specifications/specs/core-specification-5-3/
https://datatracker.ietf.org/doc/draft-ietf-drip-arch/29/
https://datatracker.ietf.org/doc/draft-ietf-drip-arch/29/
https://doi.org/10.17487/RFC9153
https://doi.org/10.17487/RFC9153
https://www.rfc-editor.org/info/rfc9153
https://wiki.dd-wrt.com/wiki/index.php/Advanced_wireless_settings#Beacon_Interval
https://wiki.dd-wrt.com/wiki/index.php/Advanced_wireless_settings#Beacon_Interval
https://www.ebay.com/itm/303442334248
https://developers.google.com/maps/documentation/android-sdk/overview
https://developers.google.com/maps/documentation/android-sdk/overview
https://doi.org/10.1109/IEEESTD.2016.7786995
https://datatracker.ietf.org/doc/draft-ietf-drip-rid/32/
https://datatracker.ietf.org/doc/draft-ietf-drip-rid/32/
https://github.com/seemoo-lab/nexmon
https://osmdroid.github.io/osmdroid/
http://www.bluez.org/
http://www.bluez.org/
https://scapy.net
https://datatracker.ietf.org/doc/draft-ietf-drip-auth/17/
https://datatracker.ietf.org/doc/draft-ietf-drip-auth/17/

	Introduction
	Project goals

	Background
	DRIP
	Bluetooth advertising
	Google Maps for Android
	WiFi

	Method
	Pre-development
	DRIP drafts
	Reciever Android application development
	Bluetooth sender development
	WiFi sender development

	Results
	DRIP drafts
	draft-ietf-drip-rid-32
	draft-ietf-drip-auth-17

	Android application
	Bluetooth
	WiFi
	NUC testing

	Discussion
	DRIP drafts
	draft-ietf-drip-auth-17
	draft-ietf-drip-rid-32

	Android application
	Bluetooth
	WiFi

	Conclusion
	Challenges
	Future work
	draft-ietf-drip-auth-17
	draft-moskowitz-drip-secure-nrid-c2
	WiFi

