TDDE21 - DRIP

Joakim Forsberg Oliver Johns Niklas Larsson
Hampus Runesson Mattias Salo

November 2020

Examiner: Andrei Gurtov

Contents

(1 Introductionl

[2__Background|
B1 Drone Remote Tdentification Protocoll . . . . . . ... .. .. ..

2.2 Bluetooth advertising] . . . .. ... .. ... ... .00,

3 Method

4_Resulil
4.1 Bashscript| . ... ... ... . ... ...
4.2 Receiver Android Application| . . . . . . . .. ..o
M3 Webserverl . .. ... .o

6 _Future workl
6.1 Wik broadcastingl . . . . ... ... L oo
6.2  Bluetooth broadcasting] . . .. .. ... .. ... .........

7 Conclusion



1 Introduction

This report will present the results of the project Cryptographic Drone ID made
in the course TDDE21 - Advanced Project: Secure Distributed and Embedded
Systems. The goal of the project was to create a prototype drone ID as specified
by DRIP IETF Working Group [5], where the ID broadcasts over Bluetooth or
WiFi in the form of a HIP Host Identity TAG (HIT). The project was performed
by five students from Linkoping University, the supervisor provided resources
such as Raspberry Pis to make the project possible.

2 Background

In this chapter some necessary background information is presented.

2.1 Drone Remote Identification Protocol

The Drone Remote Identification Protocol (DRIP) is a protocol created by
IETF Working Group to enable remote identification and tracking of unmanned
aircraft systems (UAS). The purpose of the protocol is to provide safety and
security by giving both civilians and law-enforcement a way to identify UAS.

DRIP specifies how a trustworthy remote ID can be produced and shared
for others to identify. The identification of the drone is broadcast over WiFi or
Bluetooth as and Host Identity Tag (HIT). The HIT tag should be broadcast
in 20 bytes to make the protocol viable in areas where network and device
bandwidth, processing power, and battery life are severely limited. Devices can
thereby receive the drone ID in the form of a generated HIT tag and do a lookup
against a database to both identify and fetch information about the particular
drone [5].

2.2 Bluetooth advertising

With the release of Bluetooth 4 BLE (Bluetooth Low Energy) advertising was
introduced. BLE advertising allows devices to broadcast advertising packets up
to 32 bytes. This type of broadcasting also includes an RSSI value to allow for
distance estimation. When Bluetooth 5 released, extensions to the LE advertis-
ing were added. Most notably, the range increased, and the advertising packet
size increased from 32 bytes to 255 bytes [7].

2.3 WiFi

IEEE 802.11 is the collection of network standards that constitute the backbone
of today’s wireless network communication. Networks constructed accordingly
are commonly referred to as WiFi networks [4]. These types of networks typi-
cally broadcast a Service Set Identifier (SSID) which can be used by devices to
connect to the network. The SSID byte sequence can be used to broadcast any
data.



3 Method

In this project, the goal was to create an implementation of the DRIP protocol
using both WiFi and Bluetooth to broadcast a remote ID in the form of a HIT
tag. The project started with a period of information gathering on the DRIP
protocol and the other material given by our supervisor. When we understood
how the protocol was supposed to work, we started the development. The
development process focused initially on WiFi broadcasting, later on, however,
the focus shifted towards Bluetooth broadcasting instead. With the use of
Raspberry Pis substituting actual drones, development of DRIP broadcasting
could begin. In parallel, an Android application began development to receive
DRIP messages via WiFi and Bluetooth broadcasts. The application would be
able to query information about the drone with the received HIT tag from a
remote server. Below is a more detailed plan of what and in which order each
task has been done.

1. Gathered relevant information in order to create a plan for the project

e Read about DRIP

Gathered information from other sources supplied by our supervisor

Reviewed sample code from OpenDronelD [2]

Created a model of how the different parts worked together as can
be seen in Figure

2. Development of Wi-Fi sender

e Installed OS on the Raspberry Pis

e Cloned the git repository from OpenDronelD and tried to get it to
work

e Contacted the author of the repository in order to get further under-
standing on how to get the sender part to work

e Evaluated if we could get the Wi-Fi sender to work
3. Development of Bluetooth sender

e Looked into different possible bluetooth beacon methods
e Tried iBeacon, Eddystone and PyBeacon
e Decided to use iBeacon in order to send the ID from the Raspberry
Pi
4. Generation of HIT tag

e Tried to get the HIT generation tool to work from the HIP repository
e Downgraded the OpenSSL library in order for it to work
e Generated the HIT tag



5. Complete the Bluetooth sender

e Created a script that automatically generated a HIT tag
e The script also automatically broadcast the HIT tag on startup
6. Development of receiver application
e Looked into libraries that could be helpful for discovering Bluetooth
broadcasts
e Used AltBeacon in order to recieve the broadcasts [I]
e Created a web server in order to store information about a drone ID

e Implemented http requests in the application in order to get infor-
mation from the server about a specific drone ID

e Initialized Google Maps API in to enable tracking of the drone in the

application
broadcast DRIF (Bluetooth) broadcast DRIP (Wi-FI)
¥ h 4
App e > App
Info about drone Info about drone
Semver
query with DRIP—————————» [ —query with DRIP

Figure 1: Initial model of the project

4 Result

The result of the project was a prototype of the DRIP with broadcasting over
Bluetooth. For this prototype some bash scripts were created, an android appli-
cation and a simple back end for the android application. The Scripts that were



created was a HIT gen script and the second one was for starting the Bluetooth
broadcast and setting the payload for that broadcast. The android application
can read the Bluetooth broadcast and read the HIT from the message. It can
then use this HIT to do a search in the database for more information about the
drone. In this information, there are some fields that indicate where the drone
is located.

4.1 Bash script

The First script is supposed to generate a HIT tag for the Raspberry Pi if it
doesn’t have one. It does this by first downgrading the OpenSSL package to
1.0.2, when it has done this it clones the bitbucket repository OpenHip. After
this it compiles the source code for OpenHip, this gives the file a hitgen file
which the script executes. When hitgen executes, it requests a seed and then it
writes the HIT and the different variables to a .xml file.

The second script starts the Bluetooth broadcast by using the hcitool. It
takes the HIT as input in the format of 2001:15:76a9:34cc:a0bb:cf1b:63a7:b712.
It then takes this HIT and modifies this HIT to look like
20 01 1576 a9 34 cc a0 bb cf 1b 63 a7 b7 12. Sets the payload of the broadcast
message to this HIT and then starts the broadcast with and broadcast interval
of 1 sec.

4.2 Receiver Android Application

The Android application’s primary purpose is to receive Bluetooth broadcasts
from drones. It utilizes the AltBeacon[I] Android package, licensed under the
Apache-2.0 license, to receive BLE broadcasts. It identifies drones by matching
patterns to the detected broadcasts, which might be sending out drone-IDs.
These broadcasts are used to query a web server for additional information
about the drones. If the web server provides information about one or more
drones, this will be shown in the app in a list along with markers on a map and
a path where the drones have moved. The map requires a Google Maps API
key. The application is not capable of receiving WiFi broadcasts from drones
as originally planned.



GM1913

2058 @ 04 @

Bluetooth Drone Scanner

WRE O e 8%

GM1913

210 @™ @ WREDD P 8%

Bluetooth Drone Scanner

GM1913

248 M@ @ 2 RO 0 @ 4 52

Bluetooth Drone Scanner

&7/ =7/ &7/
1ab5dc2beed1f 1ab5dc2beedtf * Tab5dc2beed1f
est.model_1 test_model123 est_model_12
&7 <, &7
0xa0: 0a0a0a0a0a0a0a0: 0Oxa0a0a0a0a0a0a0a0a0a0a0a0a0a0a0al 0xa0: 0a0a0a0a0a0a0a0:
Ko 5] a., o
e 3 Tomuey
@
North
Allaiic LT
Ocean

0Oxa0a0a0a0a0a0a0a0a0a0a0a0a0a0a0a0 Glytting: 1abSdc2bee91f

Malmsitt [absdes
Glyttinge.
Linkdping
e TANNEFC 23]
u'mmwkm;aw
iLinkbping

South =
Atlantic 2]

Ocean South Atica Galstad

A Linkoping
O sitetssjukhuset
i g et )

,,,,,,,,,

DY

Gélstad o L2
Google Google Google

(a) List of drones

(b) Marker information (c) Path of drone

Figure 2: Collection of Android application screenshots

The application is written in Java and built using Gradle; the application is
using the AltBeacon library to receive Bluetooth broadcasts, the Google Maps
API to show a map, and OkHttp to make HTTP requests. Since the appli-
cation is written in Java and is using object-oriented programming, changing
the Bluetooth receiver module of the application could be done with minimal
modification to the program as a whole.

4.3 Web server

The web server is a simple docker-compose system consisting of a Python Flask
container, a MySQL container, and a PHPMyAdmin container. The Flask
container hosts a server with a REST API with support for several different
requests, such as adding drones or getting drone information. The MySQL
container provides the system with a database containing all the drones, and
the PHPMyAdmin container serves as a graphical interface for observing and
changing the database. Currently, the database saves information about:

e ID
e DRIP ID
e Timestamp

e Model of aircraft



e Latitude
e Longitude

e Owner

5 Discussion

5.1 WiFi

As mentioned in the chapter about the method, the first approach taken was
to try to use WiFi to broadcast the HIT. According to the DRIP protocol this
should be done by using Neighborhood Area Network (NaN). As mentioned in
chapter 3 there was a some sample code in the OpenDronelD repository that
will broadcast a Remote ID over Bluetooth or WiFi-NaN, so in the beginning
some work was done to try to get this repository to work, and if that works the
idea was that then the payload of the messages could be swapped to the HIT.
Unfortunately we weren’t able to get this repository to work as intended. The
code compiled and could be started on a device, the problem was that there was
no broadcast happening even when it had been started. Some different methods
was tried to see if the broadcast was started. Most of the methods that was tried
involved some sniffing on the network with the help of wireshark. As mentioned
also in chapter 3 we contacted the author of the repository and ask how to test
the code and sniff some network packages from the broadcast. The answer that
was given was to start the broadcast on the raspberry pi, and also convert the
raspberry pi to an access point, then connect to that access point with another
device and then sniff the network on that device. Unfortunately this didn’t give
any results either. This was one of the reasons that a switch to Bluetooth was
made.

5.2 Bluetooth

With the addition of LE advertising in Bluetooth 4 broadcasting turned out
to be much easier then first suspected. There were much information already
available on how the low level Bluetooth controller commands worked. Since all
three standards, iBeacon, AltBeacon and Eddystone, are so similar in structure
the application could be very easy to convert to any standard should the need
arise. The standards could even be dropped in it’s entirety since all they do is
determine a structure to followed. Although for this project having a predeter-
mined structure helps with app development. When broadcasting was working
as intended we moved onto changing the payload. The HIT is according to it’s
definition 16 bytes which fits well with the available payload in all three broad-
casting standards. There was however a part missing. A HIT is not secure, as
in you can not ensure that the owner sent the HIT with an attached signature.
This is covered in the RFC for the DRIP protocol and there it is stated that
the signature should be 64 bytes (using ECDSA). As previously mentioned the



available payload is only 16 bytes with LE advertising on Bluetooth 4. How-
ever, with the introduction of Bluetooth 5 that advertising has been extended
to 255 bytes. We had a Raspberry Pi 4 available and expected to be able to use
its new Bluetooth 5 ready controller. Unfortunately the "new” Bluetooth con-
troller is in fact not new. It’s the same one used in the Raspberry Pi 3b+ with
an extended firmware to support some of the new features of Bluetooth 5. The
extended advertising packets was not included in this extension of the firmware.
This meant the Raspberry Pi 4 needs a third party Bluetooth 5 sender /receiver.
When this was discovered there was to little time left in the course to get the
needed device and thus more focus was instead aimed at the finalizing what we
had.

5.3 Android Application

The application in its current state captures Bluetooth broadcasting with the
AltBeacon API, which uses Bluetooth 4 Low Energy. Bluetooth 4 might be a
bad fit for sending drone IDs since the range could be short for Bluetooth 4
Low Energy applications. However, this is a limitation of the current built-in
Bluetooth hardware of the Raspberry Pi. If the drone IDs were sent out using
Bluetooth 5, a higher strength, and thus hopefully providing a longer range, the
functionality of the system might closer match the aim. The support of this for
mobile handsets using the Android operating system started appearing around
2017, with the Samsung flagship, the Samsung Galaxy S8 being the first to
support the standard [6]. The handsets are also not required to support all the
broadcasting standards for Bluetooth 5 [§], which might cause compatibility
errors for phones of different manufacturers where not every phone supports
all the features of the Bluetooth 5 standard. This might pose a problem in
application development if phones that don’t support all features should be
catered to as well with differing solutions.

Further, the communication between application and web server is now not
using encryption. This was allowed since we wanted something fast and some-
thing that worked with minimal development time and a solution that was only
used when testing functionality internally.

6 Future work

6.1 WiFi broadcasting

The WiFi solution still has a lot of work to be done to resemble the proposed
DRIP implementation. As mentioned in the discussion, the open drone id
project lacks some features that are important for DRIP implementation. Most
notably, the lack of real broadcasting. Because of this, we think that future work
relating to the WiFi implementation should focus on building and implementing
support for the NaN protocol to enable broadcasting over WiFi. We would also
suggest that a development kit for WiFi is used for such a task. This, to ensure



that the needed functionality is available, something that can be a problem on
devices such as the Raspberry Pi.

Another area of great interest to the WiFi implementation is an Android/iOS
app that also supports the NaN protocol. To make a complete solution sup-
porting both Bluetooth and WiFi. The new functionality could be added to
our Android app since it already supports Bluetooth broadcasting drones. The
Android operating system has some support for WiFi NaN, in Android called
WiFi Aware [3].

6.2 Bluetooth broadcasting

As we mentioned in the discussion, the Raspberry Pi did not have full support for
some of the functionality that Bluetooth 5 adds. Specifically a broadcast of 256
bytes instead of the 32 bytes that Bluetooth 4 supports. Thus, we suggest that
some future work could be directed towards working with modules/development
kits that support the full functionality of Bluetooth 5. The HIT/HHIT is 16
bytes large, and the signature is 64 bytes large. Using full Bluetooth 5 func-
tionality would mean that there is plenty of space in the extended broadcast
message format to send the identity with its signature.

7 Conclusion

Working with the Drone Remote ID Protocol has been both fun and interesting.
We spent alot of time researching and trying to get the Wi-Fi implementation of
DRIP to work. Unfortunately, we bumped into alot of problems along the way
and never found a good solution. Instead, we switched focus to the Bluetooth
implementation, which we found easier to implement and did not suffer from
the same problems as the Wi-Fi implementation.

In summary, our goal was to create both a Wi-Fi and a Bluetooth implemen-
tation, which we were unable to fulfill. However, we have found the difficulties
regarding the Wi-Fi implementation and created a working Bluetooth prototype
which we, in the end, are satisfied with.



References

1]

2]

Altbeacon. https://github.com/AltBeacon/android-beacon-libraryl
Accessed: 2020-12-07.

Open drone id. https://www.opendroneid.org/code/. Accessed: 2020-
12-03.

Wi-fi aware overview. https://developer.android.com/guide/topics/
connectivity/wifi-awarel Accessed: 2020-12-09.

Teee standard for information technology—telecommunications and in-
formation exchange between systems local and metropolitan area net-
works—specific requirements - part 11: Wireless lan medium access con-
trol (mac) and physical layer (phy) specifications. TEEE Std 802.11-2016
(Revision of IEEE Std 802.11-2012), pages 1-3534, 2016.

DRIP IETF Working Group. Drone Remote ID Protocol (drip). IETF.

John Leonard. Bluetooth 5 in smartphones. https://blog.nordicsemi.
com/getconnected/bluetooth-5-in-smartphones, Jun 2018. Accessed:
2020-12-09.

Daniel Murfet. Foundations for category theory. https://www.bluetooth.
com/bluetooth-resources/bluetooth-5-go-faster-go-further/.

Jack  Price. Not all  bluetooth  5-enabled smartphones
are created equally. https://www.xda-developers.com/
check-bluetooth-5-all-features-supported/, Mar 2019. Accessed:
2020-12-09.

10


https://github.com/AltBeacon/android-beacon-library
https://www.opendroneid.org/code/
https://developer.android.com/guide/topics/connectivity/wifi-aware
https://developer.android.com/guide/topics/connectivity/wifi-aware
https://blog.nordicsemi.com/getconnected/bluetooth-5-in-smartphones
https://blog.nordicsemi.com/getconnected/bluetooth-5-in-smartphones
https://www.bluetooth.com/bluetooth-resources/bluetooth-5-go-faster-go-further/
https://www.bluetooth.com/bluetooth-resources/bluetooth-5-go-faster-go-further/
https://www.xda-developers.com/check-bluetooth-5-all-features-supported/
https://www.xda-developers.com/check-bluetooth-5-all-features-supported/

	Introduction
	Background
	Drone Remote Identification Protocol
	Bluetooth advertising
	WiFi

	Method
	Result
	Bash script
	Receiver Android Application
	Web server

	Discussion
	WiFi
	Bluetooth
	Android Application

	Future work
	WiFi broadcasting
	Bluetooth broadcasting

	Conclusion

