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1 Introduction

In today’s society technology is used more than ever and its widespread use generates tremendous
amounts of data. The data is commonly stored in databases, and to access the data knowledge of how
to communicate in a query language is required. The objective of this project is to make databases
more accessible by translating an English query into a database query. This will allow any user without
prior knowledge of database query languages to interact with the database.

The main interest is to query the semantic web using SPARQL queries. The term “Semantic Web”
refers to W3C’s vision of the Web of linked data, and it enables people to build vocabularies, write
rules for the handling of data and create data stores on the Web. SPARQL is one of the technologies
that empower linked data. [1] To find relevant methods the Question Answering over Linked Data
(QALD) challenge leaderboard was examined. From the leaderboard, the best-performing techniques
were examined closely, and based on that the initial methods were selected.

The chosen approach is to start with natural language to SPARQL queries. It is then hopefully
possible to use the knowledge but also the model in order to achieve the same objective for scQL which
is a custom query language. The problem can be split into two parts, first mapping each entity and
relation to its corresponding URI and then predicting a query from natural language combined with
the entity mappings.

The difficult part of this project is that the whole model needs to be state-of-the-art to be able to
perform the best on a dataset that is small. This is to be able to meet the customers’ demand to in
the end be able to have the objective for scQL on a small dataset.

2 Method

This section describes the method of the project.

2.1 Dataset

The original idea was to use the QALD-9 dataset, which consists of 408 training queries and 150 test
queries. Each query has a text prompt, a SPARQL query, and the corresponding results to that query.
All queries are manually created and reference DBpedia 2016-10. However, we could not find a copy of
DBpedia 2016-10 therefore we reran all the queries on DBpedia 2022-10, and only 90 queries worked.
We decided to create our own QALD dataset by combining the datasets from all the previous QALD
challenges and only keeping the queries that work on DBpedia 2022-10.

The LC-QUAD dataset was also used, it consists of 5000 SPARQL queries and references DBPedia
2016-04. These queries are automatically generated [2]. This dataset had the same problem as QALD-9
and we had to rerun the queries on DBpedia 2022-10 and 1400 queries worked.

The dataset for scQL consists of 893 programmatically-generated queries, each with a text prompt
and a corresponding query. The dataset was created late in the project but was known to be small
and therefore a small SPARQL dataset was chosen.

All datasets were split into an 80/20 train/test split. Meaning that we use 80 % of the queries for
training and the remaining 20 % to evaluate the models.

2.2 Implementation

There are two different implementations of this project and one consists of three different parts,

• Entity and relationship linker

• Seq2seq

• Neural graph search module

These three parts will be put together like a pipeline with the entity and relationship linker first,
then the seq2seq, and the last module will be the neural graph search module. The entity and re-
lationship linker will be implemented with Falcon [3]. There will be three different types of seq2seq
models that will be implemented which are the convolutional seq2seq [4], BART [5], and T5 [6]. The
BART and T5 will also be tested on being the whole standalone model. This is discussed more in
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Figure 1: Convolutional seq2seq pipeline.

the subsection about BART and T5. The last part which is the Neural graph search module will be
implemented with BERT [7]. These are the different implementations that are used in this project.

The other implementation consists of that the part is going to be standalone models. The models
that will be used for this are BART and T5. This implementation is discussed more in Section 2.3.

2.2.1 Entity and relationship linker

An entity and relation tagger maps each entity and relation to its URI which identifies it uniquely in
a knowledge graph. Two possible approaches to entity tagging are EARL [8] and Falcon [3]. Entity
tagger is especially dependent on training data to get good results.

Falcon will be used for entity and relationship linking. A natural language question is an input to
the linker which then predicts which part of the question is entities and which words are in relation to
each other. This is done in order to give more information to the seq2seq model and therefore improve
the resulting query. The entities and the relations in conjunction with the natural language question
are passed to the convolutional seq2seq model for further processing.

Falcon uses two data sources, an Elasticsearch database containing all entities and relations from
DBpedia and a connection to DBpedia. The Elasticsearch database allows it to query words from the
natural language question and rank them against entities and relations that exist in DBpedia. Queries
directly to DBpedia are used to check different triples of entities and relations that exist. [3]

Because of how Falcon works this approach might be difficult to recreate for an scQL implementa-
tion.

Another possible approach might be to use an approach similar to genRL for relation-linking which
shows good performance even without a database connection [9].

2.2.2 Convolutional seq2seq

A seq2seq (sequence to sequence) model in NLP is a model which can generate a sequence of tokens
from a different sequence of tokens. A normal use case for this is machine translation, translating from
one natural language to another. In this case, what is interesting is to translate the natural language
to SPARQL and in extension scQL. This type of model will be the backbone of research in this project
as there are many different pre-trained seq2seq models which have much better performance on natural
language than can be achieved in the scope of this course. To examples of these models are T5 [6] and
BART [5]. Through transfer learning, these models can be made to generate SPARQL or scQL queries
instead. With the help of an entity and relation linker, hopefully, this performance can be improved
even further.

The convolutional seq2seq model will have tokenized natural language as input. The tokenization is
created by the entity and relationship linker. The seq2seq model will then predict the output sequence
as a query containing tokens, which will be referred to as a query silhouette. The Neural Graph Search
module will be used to mend any potentially broken relations query silhouette output from the seq2seq
model.

2.3 BART & T5

BART is a model that combines Bidirectional and Auto-Regressive Transformers for sequence-to-
sequence generation created by Facebook AI in 2019 [5]. The model is meant to be fine-tuned to
downstream tasks such as translation, question answering, and summarization. The BART model has
406 million parameters.

T5 short for Text-To-Text Transfer Transformer is a model published by Google in 2020 [6]. The
largest variant of T5 has 11 billion parameters. This model is also meant to be fine-tuned for different

3



NLP tasks. It is shown that fine-tuning T5 with a small labeled dataset can achieve higher performance
than training on the dataset alone.

The BART and the T5 models will be used both as the seq2seq module in the pipeline above and
as standalone models. As standalone models, it is meant that a natural language question will be
sent into the BART model. Then the query in the dataset will be simplified to be able to train the
model easier. This will require that the output from the BART model which is a simplified query be
reconstructed into a real query in the end. This standalone pipeline is observed in Figure 2.

Figure 2: BART or T5 pipeline.

So, the BART and T5 models will fine-tune on a dataset that has simplified queries to hopefully
make it easier for the models to learn faster and get better performance.

2.4 Neural graph search

When using an entity linker and predicting with the BART or the T5 model the predicted queries
contain reasonable entities, but the same cannot be said for the relationship between the entities. The
relation linking task is difficult because of the complexities of natural language [10]. Therefore the
neural graph search module is built to address the problem of relation linking. The idea is to feed the
model the natural language question along with the subject/object in the question, then the model
should learn to predict the correct relation.

To implement the neural graph search model inspiration was taken from Purkayastha et al. [10].
It’s built as a BERT-base module, and the architecture is shown in Figure 3.

Figure 3: Structure of the neural graph search. Image taken from Purkayastha et al. [10].

The BERT layer outputs an encoding to a linear layer. The linear layer is fully connected to a
softmax layer, which has one node for each class that can be predicted, and the value of the node
represents the model’s confidence for that prediction. The final blue layer in Figure 3 queries DBpedia
to find valid relations between an entity and the sub/object. This limits the possible selections to
valid relations in DBpedia and is only used when training is completed. During training, the predicted
output is the relation with the highest probability from the softmax layer.
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The predicted queries are needed to be able to run the neural graph search module. That is because
the predicted queries have triplets which are in the format of e.g.

SELECT * FROM WHERE {Subject Relation 0bject},

where either subject or object should be a variable and the other two, URIs to specific things in
the database. For example, could a query look like this,

SELECT ?uri WHERE {

?uri <http://dbpedia.org/property/leaderTitle> <http://dbpedia.org/resource/President_of_France> .

<http://dbpedia.org/resource/cash> <http://dbpedia.org/ontology/currency> ?uri . }

In this example, the query has two triplets and every variable is defined as, ?x. So, in the first
triplet, the relation is, leaderTitle and object, President of France. These triplets are taken from every
predicted query and then concatenated into BERT [7] in the format of Figure 4 where [CLS] and [SEP]
is BERT-specific input and [CLS] denotes the start while [SEP] denotes a separator. This is the input
and the format of the input into the first layer of the neural graph search module.

Figure 4: BERT, input format.

The loss function was created by combining cross-entropy loss lc and a graph search loss lv as
l = lc(1 − α) + lgsα where alpha is a hyperparameter. Cross-entropy loss is calculated by comparing
the predicted outcome with the correct outcome and penalizing the probability depending on how far
away it is from the correct prediction [11].

The graph search loss punishes predictions of relations that do not exist for the sub/obj in DBpedia.
To do this DBpedia is queried for all relations between an entity and the subject/object as R =
⟨es, r?, eo/s⟩. Then the graph search loss of a predicted rpred relation is defined as:

lgs(rpred) =

{
0, if relation exists in R

1, if relation does not exist in R
(1)

To train the model the LC-QuAD training data set was used by taking all the subjects and objects
in every correct query and then saving the correct relation to the model to try and predict the correct
relation to the subject or object to each query. Note that the question was also saved for each query
to be able to create the input format that goes into BERT. The model predicts all the relations in
both the training set and the test set to make sure that the model has the possibility to get the correct
relation for each query. The test data from LC-QuAD was then used to create the same input into
BERT as the training data by dividing each query into subjects or objects.

To evaluate the model the accuracy of relation predictions is measured. Accuracy is defined as:

Accuracy =
Correct predictions

Total predictions
. (2)

2.5 Tokenization

To use the entities and relationships from the linker in previous steps, a way to add them to the
training data is needed. There are many ways to achieve this but this paper explores the following
four variants. The entity linker gives pairs of plain text strings and their corresponding URI, these are
then used to give as much information as possible to the Seq2Seq model.

2.5.1 None

For baseline to compare the tokenization strategies the model was trained with no addition of entities
or relationships.
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2.5.2 Append-1

Append-1 is the first variant of appending all information to the end of the natural language ques-
tion. The idea behind appending the information is that if the Seq2Seq model still can interpret this
information in the end, we keep the normal structure of the initial sentence also. Append-1 works by
appending one block per entity or relation that is found by the linker. The blocks have the structure
shown in 5.

Figure 5: Structure of the Append-1 blocks.

2.5.3 Append-2

Append-2 is the second append-based variant. In this case, the blocks are simply just the entities or
relations, see 6.

Figure 6: Structure of the Append-2 blocks.

2.5.4 Replace

Replace is the last tokenization variant tried. In this variant, the question is modified so all occurrences
of the plain text of each of the entities or relations are replaced by their matching entity or relation.

2.6 Prefixing

In SPARQL entities and relations are represented by their corresponding URI. This URI can be broken
down into two parts, the first part is a prefix which can only be one of the very few values. These
are replaced by a shortened form which the Seq2Seq model can interpret as one single word instead of
multiple ones, thus reducing the vocabulary and improving performance see 7 for the mapping.

Figure 7: Dictionary containing prefixes and their shortened form.

2.7 Post Processing

Since the Seq2Seq models used were designed for natural language and not for SPARQL. The main
problem with this is that the tokenizer does not understand the syntax of SPARQL fully. To remedy
this, some fixes were implemented as a last part of the pipeline to make as many predicted queries
runnable as possible.
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From observation, sometimes the BART model does not understand that there should be a space
between the question mark, which is normal since usually in natural language question marks are
immediately after another character. This could sometimes result in two ”words” being combined
without a space. To remedy this all instances of ”?” are prepended with a space, this makes sense in
SPARQL since there should always be a space before every ”?” and excess spaces can never impact
the query.

Another frequent part of SPARQL queries is a ”.” surrounded by spaces. This dot has to be
surrounded by spaces but sometimes the model generates sections similar to ”?xyz.” which needs to
be replaced by ”?xyz .”. This can easily be done by finding all instances of ”?”, finding the next space,
and checking if there is a dot just before that space. If there is, a space is added before the dot also.

2.8 Evaluation

The evaluation of the models will be done the same way that was stated in the QALD-9 challenge but
with an addition of the metrics on how similar the queries are [12].

Since scQL answers can vary over time they cannot be evaluated the same way as the datasets for
SPARQL. It will instead be evaluated by comparing the original query to the generated one.

To specify the evaluation a bit more there will be macro and micro scores of Precision, Recall, and
F1 score. Macro means that precision, recall, and F1 score will be evaluated per query and then the
average for the metrics over all queries is the final score. Micro means that true positives (TP), false
positives (FP) and false negatives (FN) are counted for each query and then the sum of all TP, FP,
and FN independently is used in the end to calculate the precision, recall, and F1 score.

For the evaluation stated in the QALD-9 challenge the answers from the database are compared
so, if the answer for the predicted query is in the ground truth answers, then it counts as a TP. If the
answer for the predicted query is not in the ground truth answers it counts as an FP. In the end, if
there are answers in the ground truth which have not been an answer for the predicted query, it counts
as FN.

For the evaluation of the query strings the TP, FP, and FN are counted differently. A TP for the
query strings is if a word from the predicted query is in the ground truth query. If the predicted query
has a word that is not in the ground truth query it is counted as a FP. A FN is then lastly counted as
if the ground truth query has a word that is not in the predicted query.

Precision is defined as,

Precision =
TP

TP + FP
, and (3)

the recall is defined as,

Recall =
TP

TP + FN
, and (4)

F1-score is defined as,

F1 = 2 · Precision ·Recall

Precision+Recall
. [13] (5)

2.9 ScQL

The final part of the project is to test the performance of the same model trained on scQL. The model
will be trained with similar questions as for the previous parts but will have the resulting queries be
valid scQL queries. For scQL there is no entity and relation linker meaning none of the tokenization
strategies can be used. The scQL dataset did not use any prefixes this model uses complete URI:s.

3 Results

This chapter presents the results of evaluating variations of the pipeline on different datasets.
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3.1 Base Model

In the following section, statistics about the pipeline up to, and including, the seq2seq model are
presented. During development, BART seemed to perform better than T5. Training the model with
T5 was also more computationally expensive making it slower to evaluate. Both pre-trained models
still outperformed the standalone seq-2-seq model. Therefore, we focused our evaluations with only
BART as the seq2seq part in the pipeline.

3.1.1 Fully correct results

In Table 1, Table 3 the percentage of fully correct queries is presented. This means that the model
must return a string that is exactly the same as the gold standard query. In Table 4 and Table 2
however, the percentage of test-data entries where the result of the executed generated query includes
exactly the same entities as the executed gold standard query is presented. In all four tables, the green
cell marks the optimal epoch number(s) for that tokenization on the given dataset.

Epoch None A-1 A-2 R
1 0% 0% 0% 0%
2 0% 0% 0% 0%
3 0% 0% 0% 0%
4 0% 0% 0% 0%
5 0% 0% 0% 0%
6 0% 1.12% 0% 0%
7 0% 0% 0% 1.12%
8 0% 0% 0% 0%
9 1.12% 0% 0% 0%
10 0% 0% 0% 0%

Table 1: String evaluation statistics on QALD.

Epoch None A-1 A-2 R
1 2.25% 13.48% 12.36% 12.36%
2 4.49% 8.99% 17.98% 17.98%
3 10.11% 11.24% 14.60% 14.60%
4 10.11% 11.24% 16.85% 16.85%
5 13.48% 17.98% 16.85% 16.85%
6 12.36% 14.60% 14.60% 14.60%
7 11.24% 17.98% 17.98% 17.98%
8 13.48% 14.61% 20.22% 20.22%
9 16.85% 17.98% 17.98% 17.98%
10 12.36% 17.98% 23.60% 23.60%

Table 2: Executed queries evaluation statistics on QALD.

3.1.2 More detailed statistics

In Table 5, Table 6, Table 7 and Table 8 more detailed evaluation metrics such as Precision, Recall
and F1 are presented on both Macro and Micro level.

In the previously mentioned tables, the green cells mark the best-performing instance of that metric.
In Table 7 it is shown that, for strings, Append-2 after 9 epochs is the best tokenization on all metrics
except Precision Micro. In Table 6 it is shown that, for those metrics, Append-1 after 3 epochs is
performing better. For the executed case it is shown in Table 6 that Append-1 after 3 epochs is best
in terms of the macro evaluation metrics while no tokenization is best in terms of the micro evaluation
metrics as shown in Table 5.
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Epoch None A-1 A-2 R
1 2.33% 9.92% 8.95% 2.92%
2 1.75% 11.09% 10.50% 6.23%
3 2.53% 12.84% 10.12% 8.56%
4 3.50% 12.26% 10.89% 7.00%
5 4.47% 12.45% 10.70% 8.17%
6 4.86% 13.23% 11.67% 8.95%
7 3.70% 12.66% 12.65% 7.78%
8 5.45% 13.23% 11.87% 9.14%
9 5.64% 13.23% 12.65% 9.92%
10 5.25% 12.26% 12.45% 8.37%

Table 3: String evaluation statistics on LC-QuAD.

Epoch None A-1 A-2 R
1 8.75% 27.82% 18.09% 8.75%
2 9.92% 30.16% 26.46% 16.73%
3 13.62% 35.21% 27.43% 22.18%
4 17.32% 31.12% 27.04% 20.43%
5 17.51% 31.32% 28.40% 23.35%
6 19.07% 31.52% 29.96% 25.88%
7 17.51% 30.16% 31.91% 24.90%
8 20.62% 29.38% 31.13% 27.24%
9 20.82% 28.99% 32.88% 26.07%
10 20.43% 28.21% 32.68% 26.46%

Table 4: Executed queries evaluation statistics on LC-QuAD.

None (epoch 9) Strings Executed
Precision Macro 0.7572238181187599 0.2336005939431804
Recall Macro 0.7535508482006541 0.2398016588434398
F1 Macro 0.7537410702145709 0.23121850577655148
Precision Micro 0.7491743119266056 0.7550957381099327
Recall Micro 0.7460259455508862 0.6321913380736829
F1 Micro 0.7475968140620708 0.6881992821965301

Table 5: String and executed evaluation statistics on LC-QuAD using no tokenization after 9 trained
epochs.

Append-1(epoch 3) Strings Executed
Precision Macro 0.8002376082629009 0.396077832204907
Recall Macro 0.788359235878692 0.40093088736786964
F1 Macro 0.7925030213519991 0.3929077473732153
Precision Micro 0.7926284437825764 0.7294998987649174
Recall Micro 0.7780010962908825 0.2745142857142836
F1 Micro 0.7852466574458276 0.39891496895937784

Table 6: String and executed evaluation statistics on LC-QuAD using append-1 tokenization after 3
trained epochs.

3.2 Neural graph search module

All results captured for the neural graph search module were only tested by themselves on the correct
queries where the correct relations were predicted from the subject or object. The hyperparameters
of the results are as observed in Table 9 if nothing else is stated.

An experiment was made where the result is shown in Figure 8. The experiment was made of
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Append-2(epoch 9) Strings Executed
Precision Macro 0.8003840949366244 0.37356019548862884
Recall Macro 0.7885176593834186 0.38305399548515034
F1 Macro 0.7922460285184943 0.3698258935866408
Precision Micro 0.7895126922364276 0.7133526850507879
Recall Micro 0.7785492417321396 0.5953967292549898
F1 Micro 0.7839926402943883 0.6490590953614244

Table 7: String and executed evaluation statistics on LC-QuAD using no Append-2 tokenization after
9 trained epochs.

Replace(epoch 8) Strings Executed
Precision Macro 0.773943598554494 0.3039276717863791
Recall Macro 0.7631454850812833 0.3054994848535596
F1 Macro 0.7662771340364111 0.2981294725095505
Precision Micro 0.7667844522968198 0.34752764713359163
Recall Micro 0.7533345514343139 0.3280537556995401
F1 Micro 0.7599999999999999 0.33751003019508397

Table 8: String and executed evaluation statistics on LC-QuAD using replace tokenization after 8
trained epochs.

Hyper params Value
Learning rate 0.001
Batch size 8
α 0

Table 9: Standard hyperparameters of the neural graph search model.

different alphas from 0 to 1 and their accuracy of them after 100 epochs was captured. The accuracy
with and without graph search is also captured. In the figures after this on the neural graph search
module, the α of 0.2 is deemed as the best one.

Figure 8: Neural graph search accuracy with different α for 100 epochs of training.

The best result on the neural graph search module is demonstrated in Figure 9 where the model
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is fitting well to the training data but not as well to the validation data. This result was captured
after 2400 epochs as observed in the figure. The same result as shown in the figure is observed in
Table 10 where it is seen that the graph search improves the validation and test accuracy by around
ten percentage points.

Figure 9: Training and validation accuracy for the neural graph search model with α of 0.2, batch size
of 8, and learning rate of 0.0005.

Train Valid Test
Accuracy without GS 88.5% 23.6% 26.2%
Accuracy with GS 75.8% 36.4% 37.5%

Table 10: Neural graph search model accuracy with and without graph search (GS).

3.3 scQL

From the results for SPARQL on QALD and LC-QUAD BART-base was selected as the most appro-
priate model for scQL. Splitting the scQL dataset into 80 % training samples and 20 % test samples
gave the model 714 training queries and 179 test queries.

After fine-tuning the BART-base model for one epoch on the training samples it correctly predicted
4 out of 179 test queries. Meaning it had an accuracy of approximately 2.2%. For ten epochs it
correctly predicts 5 out of 179 test queries, with approximately an accuracy of 2.8%. However, in all
of the queries, both variants correctly predicted whether it was a SELECT or a PERFORM query.

3.4 Website

A proof-of-concept website was developed in order to test the model from a user’s experience. The
website is simplistic with only a header, an input field for the question, a button for processing the
question, the predicted query, and the result of executing that query. The intended use is to enter
a question into the input field, press the button, retrieve the result, and potentially redirect to the
requested resources. In Figure 10 four instances of the website are shown.
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Figure 10: Four examples of questions asked on the website with the given response. The results are
links to the corresponding resource for DBpedia.
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4 Discussion

The results and method are discussed in this section, using the previous tables as a base.

4.1 Accuracy of base model

Since T5 is a larger model than BART leading to a larger training time. Training T5 for more epochs
might have led to better performance but due to computational constraints, we were not able to test
this. Using any of these two models might still be preferable compared to a standalone seq-2-seq model
since they already have an understanding of the English language.

The resulting model without the Neural Graph Search module performed quite well on the LC-
QuAD dataset. The best model had a 35.21% accuracy when comparing executed query results. From
a visual inspection of some of the incorrect results, the queries were all executable but usually, the
relations were incorrect or the SPARQL triple was shuffled meaning the result was for something else.
One observed example of the previously mentioned problem is that for the query ”How many states
are in the United States” the model formulated the query to answer the query ”How things are there
which has the United States as their state” which results in nothing since the United States is not a
state to anything in DBpedia.

Something which seemingly would have improved accuracy greatly would have been if the neural
graph search module would have been connected in the pipeline and evaluated. Since, from observation,
many of the incorrect queries had incorrect relations it seems feasible that accuracy would have been
improved. The reason this module was not evaluated in combination with the regular model was due
to time constraints. Theoretically, if the neural graph search model would have performed as well as it
did on test data on the incorrect already predicted queries, the resulting accuracy would be improved
to around (1 − 0.3521) · 0.375 = 0.2429625 = 24.29625% resulting in a total accuracy of 59.50625%.
This calculation assumes that the neural graph search model performs at a 37.5% accuracy on the set
of incorrectly generated queries. The main reason why this would probably have been an improvement
is that most of the incorrect relations were relations missed by the entity and relationship linking and
were nonexistent in DBpedia. If an initial check if the relationships existed for the chosen entity, it
would be possible to make sure that no correct relations were overwritten by the module.

When evaluating the pipeline on scQL two major parts were missing: the entity and relationship
linker, and comparing the results of the query instead of the query itself. The best string evaluations for
SPARQL improved from 5.6% to 13.23% when using the append-1 strategy for entities and relations.
It should also be fair to assume that we are not interested in a query itself but instead in what the
query returns. Even though the best accuracy of string comparisons for LC-QUAD is only 13.23 %
the queries generated return the correct response 35.21 % of the time.

4.2 Neural Graph Search module

The neural graph search module in its current state shows good potential for correcting relations. One
factor that limits the performance is the dataset used for training. The training data contains about
1400 example queries, and the model has 441 relation classes to predict. If an even distribution of the
dataset is assumed each relation has approximately 3 examples, which might be too little to learn a
general case for that relation. The neural graph search implemented by Purkayastha et al. [10] uses
the entire DBpedia as training examples and predicts relation among 61623 candidates. This scale was
not an option for us due to limited computational resources.

A delimitation was that the neural graph search module was only trained on specific triplets.
This simplified the process of extracting the triplets from the correct queries and makes sure that
the correct triplets are extracted. Also, this is a constraint because the model cannot predict all the
correct relations and is therefore a bit worse than it could have been if it could predict the relations
of all queries.

The alpha of 0.2 was deemed as the best one because it seemed the best from Figure 8 but also
lets the alpha stay at a relatively low value which makes the model prediction the heaviest factor of
the loss.
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5 Conclusion

This chapter describes the results shortly and what can be brought to a future project in this domain.

5.1 SPARQL generation

From the results, it is apparent that a somewhat decent SPARQL-generating model can be achieved
using a pipeline consisting of an entity linker and a seq2seq model with some additional minor fixes
after. However, since accuracy is around 35% there are many scenarios where it is not good enough.
Additionally, the neural graph search model seems to potentially be able to increase the overall accuracy
of the model greatly.

5.2 Future work

For future work, the application of using a neural graph search model connected to the generated
output of the SPARQL queries could be interesting. Furthermore, additional seq2seq models or other
tokenization techniques could be tried but ultimately it seems like, a new model structure entirely
would be needed for a model to perform much better. As it currently stands, the model cannot
generate scQL queries well but some of the results show promise and could potentially be improved
greatly if the model had an entity and relationship linker it seems like it can have comparable results
to the SPARQL results.
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