
TDDE19 - AI and Machine Learning

Music Generation Using Machine
Learning

Autoencoders and Long Short-Term Memory

Yohan Ayoub, Edvin Bergström, Edwin Forsberg

yohay608, edvbe696, edwfo764

Carl Harris, Rolf Kargén, Leon Li Persson

carha789, rolka274, leope892

Department of Computer and Information Science

Linköping University

December 20 2021

Contents

1 Introduction ii

2 Method iii
2.1 Data . iii
2.2 Autoencoder . iii
2.3 Long short-term memory . v
2.4 Evaluation . vii

3 Results viii
3.1 Survey . viii
3.2 Autoencoder . x
3.3 Long short-term memory . x

3.3.1 Basic note songs . xi
3.3.2 Varied note songs . xi
3.3.3 Overfitted songs . xii

4 Discussion xiii
4.1 Survey . xiii
4.2 Structure in songs . xiv

4.2.1 Autoencoder songs . xiv
4.2.2 LSTM songs . xiv

4.3 Models . xv
4.4 Future work . xv

4.4.1 Model improvements . xv
4.4.2 Survey . xvi

1 Introduction

Music is an integral part of human culture and for at least 40 000 years mankind
have found numerous ways of constructing tools for the sole purpose of producing
music. In our age of emerging artificial intelligence (AI) and machine learning
(ML) technologies, it is perhaps not surprising that these tools would be used
for creating music too.

While these technologies have traditionally been utilized for applications of
logical or analytical nature, AI in the context of arts and creative businesses is
something that is getting more relevant. As the main art form pertaining to
the sense of hearing, music is enjoyed by people from all ages and backgrounds.
Being able to automate music generation could have interesting and widespread
applications, such as being able to generate novel music on the fly in video
games or as custom ambience in shops or elevators.

The aim of this project is to use machine learning to create music that is
nearly indistinguishable from music made by humans. To solve this problem, a
small literature study was performed to research already existing solutions or
techniques that could be used. Out of these, two techniques were chosen for this
project: autoencoders (AEs) and long short-term memory (LSTM) networks.
To evaluate the outcome of the project, a Turing test was employed to see if
people could tell apart our machine learning generated songs to human produced
ones. To implement an AE model, an already existing project on GitHub,
HackerPoet, was used as a starting point1. Similarly, to implement the LSTM-
model, the pipeline created by Sigurkur Skúli was used as a foundation 2.

1https://github.com/HackerPoet/Composer
2https://towardsdatascience.com/how-to-generate-music-using-a-lstm-neural-network-in-

keras-68786834d4c5

2 Method

To investigate whether artificial intelligence can be used to create music in-
discernible from music created by humans, two ML models were created and
evaluated: one AE model and one based on LSTM. Randomly selected songs
generated from both models were compared to human composed music in a rat-
ing scale survey. The survey was sent out to 29 respondents wherein they were
asked to rate the likelihood of each song being generated by a computer or not,
without knowing the true source.

2.1 Data

To simplify pre-processing, interpretation and the easy [?] by which music could
be decomposed and re-composed as discrete notes or chords, MIDI format was
chosen for music data representation in the project. To use this data as input
to the ML models, pre-processing was used to make the input more suitable for
the models.

The data set used for training both models was the LPD-5 data set, originally
created by Collin Raffel in 2016 [9] and expanded by Hao-Wen Dong et al. in
2018 [5]. Music from this data was also used in the rating scale survey as the
authentic music to which the synthetically generated music by the models were
compared.

For both models, the data was pre-processed by removing all but the piano
MIDI tracks. For the LSTM model a vocabulary was created, mapping a note
or chord to an integer token. Using this vocabulary, all tracks were translated
from notes and chords to a sequence of such tokens. The training set was then
created by taking token sequences with length n as input to the network, where
the last token in the sequence was used for output prediction. When the input
data was fed to the network, every integer token was divided by the length of
the vocabulary to produce a value between 0 and 1.

For the AE, only songs with a tempo between 110 and 130 quarter-notes per
minute were used for training data. This was to avoid the model mixing tempo
when generating songs. To make sure that the AE trained on actual music and
not on silence, the first part of every songs were cut out by looking at when the
first note was played for every song. Lastly, to prevent the model from mixing
the key when generating songs, every training song was transposed to be in the
same key.

2.2 Autoencoder

Autoencoders are a type of neural network that compress a high-dimensional
input down to a smaller feature space and then decompress it back to the high-
dimensional space. It is often used as either a feature extractor or as a generator
by providing a vector in the feature space and decompressing it. Since it just
compares the input to the output there is no need for labelled data for learning a
representation of the input data. The model trains by attempting to reconstruct
the input data that is passed through the model and updating its weights to
minimize the difference between the input and the output. This is advantageous
for music generation as this unsupervised method does not require labelled data
or a human supervisor to grade the output [1].

The model can be split up into two parts, an encoder part and a decoder
part, see figure 1. The encoder is the first half of the model and its goal is
to learn a representation of the data that is to be generated. The decoder is
the second half of the model. In the training stage of the model, it is trying
to reconstruct the input to the model from the new representation of the data
that the encoder has generated. The loss function of the AE is measured by a
reconstruction loss, i.e. how close the output data is to the input data. Once
the model has been trained, the decoder can be used to generate new data by
taking noise as input as if it were a deconstructed song in the learned latent
vector space [1].

Figure 1: Representation of an autoencoder.

The input for the AE is a 16x24x96 matrix where there is 96 possible pitches
in every bar, which in turn is split up into 24 time steps with 16 bars in every
input. See figure 1 for input dimension representation. The input is first passed
into the encoder, which consists of five layers. In the first layer the dimensions
representing the pitches and time steps within a bar are concatenated. This gives
a layer of size 16x2304. This is passed onto a dense layer with size 16x2000,
then another dense layer of size 16x200. After that it is sent to a layer where
the remaining dimensions are concatenated to make a vector of length 3200.
This vector is sent to another layer that turns it into a vector of length 1600.
Lastly it is passed through a layer resulting in a vector of length 120. This final
vector representation is the new latent representation of the music that is to be
reproduced and learned from when creating new music.

The decoder is a mirror image of the encoder, taking the latent vector rep-
resentation of the music, decompressing it and reshaping it into the expected
output dimensions.

In every layer except for the last layer a ReLU activation function is used.
In the last layer a sigmoid activation function is used instead since the notes
that are to be generated are either playing (1) or not playing (0). The sigmoid
function returns a number between 0 and 1 which is then rounded to nearest
integer based on a threshold, which we set to be 0.5.

2.3 Long short-term memory

The other model implemented in the project is the LSTM-based one. LSTM
is a form of a recurrent neural network (RNN) architecture, which involves a
collection of deep neural networks (DNN) that operates on sequential data. It
is commonly used for temporal or ordinal machine learning tasks such as speech
recognition and natural language processing [3, 10]. LSTM and RNN networks
have previously been used to generate music, e.g. music by Keunwoo Choi et al
[4] and Kalingeri et al [7].

Traditional DNNs assume inputs (and corresponding outputs) to be inde-
pendent of each other. In RNNs, however, the current output and input are
influenced by prior elements within the input sequence. To accommodate this,
the individual layers of RNNs are organized as time steps, where each layer
maps to an input in the sequence in order, and prior elements are cumulatively
remembered within consecutive layers. For example, if the input of two prior
layers influence the output of a current layer, in addition to the current input,
the prior inputs would be stored as a hidden state in the current layer. Figure
2 contains a visual representation of a RNN. RNNs can be unrolled to visualize
how information is propagated through the network, an example of this can be
seen in figure 3.

Figure 2: A schematic RNN network.

Figure 3: A rolled out RNN network.

Hence, RNNs share weight parameters across each layer and cannot use the
same backpropagation algorithms that are used in traditional feedforward net-

works. Instead, backpropagation through time (BPTT) algorithms must be
used to adjust weight parameters. BPTT is similar to other backpropagation
algorithms in that the network trains itself by calculating the residual between
its input and output nodes, and uses gradient descent to update the weight
parameters. However, in BPTT the residuals are summed at each time step.
Thus, RNNs commonly suffer from the exploding and vanishing gradient prob-
lem, respectively [2, 8].

These exponentially decaying or exploding errors lead to long training times.
To solve this problem, Sepp Hochreiter and Jürgen Schmidhuber proposed the
LSTM model [6]. A LSTM layer typically has a state that can store previous
input, take new input, and take the output from the last time step as well
to produce a new state and output. The idea is that the state contains the
important information from the previous time steps, i.e. it facilitates memory
in the layer.

Figure 4: An LSTM layer.

In figure 4, H represents the state, Y represents the output, and X is the
input to the node. The input is stacked with the output from the last time step.
The new vector is used to update the state and create the output. The state
is updated in two steps. The first step is to forget parts of the state, the new
vector is scaled with the widths f and then passed through an activation function
(f = sig(Wf ∗ [Yt−1, Xt] + bf)). The second step is to add the new information
that should be stored in the state. The information is chosen with the i and g
weights and an activation function. The i weight describes what parts of the
state should be updated while the g weight describes what should be written
in the new state. After the state is updated the output is created; the new
state is combined with the input to create the output. In the backpropagation
calculations for LSTM, the weights that are updated are the weights f , I, g,
and o.

To generate music, the LSTM network’s task was to predict which element
from the vocabulary that should follow a given sequence of elements from the
same vocabulary. Two different networks were created to investigate the use-
fulness of LSTMs, one small network which consisted of two LSTM layers, both
with 256 nodes. The networks were followed by a dense layer with 256 nodes
and finally a dense layer with the same size as the vocabulary. Three dropout
layers with a dropout chance of 0.3 were also included in the model to reduce

overfitting. The model predicted the next note based on the 64 previous ones.
The small network was trained on two different-sized data sets to produce two
different models. The small data set consisted of 128 songs, while the big data
set consisted of 256 songs. The network was trained for over 200 epochs with
batch sizes of 64. When new music was generated, a sequence of 64 random
elements of the vocabulary was chosen and fed to the network. The input for
the second note was then the 63 last notes from the random sequence and the
generated node one.

The other network is a deeper version of the first one; it consists of ten LSTM
layers, where the number of nodes were investigated for better performance.
Layers of 128 nodes showed more promising results and was thus used in the
model. Similarly, for the shallower version, the network has two dense layers
after the LSTM layers (but with 128 nodes) and it also has dropout layers after
each LSTM layer. The dropout chance was investigated and was tested between
0.01 and 0.3, but the more appropriate values ended up being 0.01. The deep
network was trained on a small data set of 128 songs and a big set of 256 songs,
with 100 epochs of batch size 64.

2.4 Evaluation

To evaluate the songs generated by the two models, a survey was carried out
to determine how good the models were at replicating music that sounded like
”real” music. The survey was designed like a Turing test where every applicant
was asked to rate ten songs on a scale from 1 to 5 on how confident they were that
the song was computer-generated or created by a human. A rating of 1 signifies
that the participant was completely confident that the song was created by a
human and a rating of 5 signifies that the participant was completely confident
that the song was computer-generated. Two songs in the survey were taken
from the training data and thus created by humans. Note that these two songs
were pre-processed the same way as the training data used for the LSTM model.
The remaining 8 songs were generated by the models: two were created by an
AE trained on 10 songs, two were created by an AE trained on 256 songs, two
were generated by the LSTM model trained on 128 songs and the last two were
generated by the LSTM model trained on 256 songs.

3 Results

The results of this project are presented in three sections: first, the results of
the survey and the quantitative human blind test evaluation, then the different
characteristics of the AE and LSTM models, respectively.

3.1 Survey

In the survey, a total of ten songs were evaluated on their perceived authenticity;
eight were generated by the two models and two were randomly selected from
the training dataset to provide a point of comparison. Each of the five different
model sources of the songs had two songs randomly selected to represent that
source. The responses for these pairs of songs have been aggregated to give
more robust statistical material to analyse. There were 29 respondents to the
survey and thus there are 58 responses to each source, which are presented in
figure 5.

Figure 5: Aggregated comparison of experienced authenticity.

The bars in figure 5 represent the number of times a song from that category
was graded with that particular score. For example, 27 of the responses to the
songs generated from the LSTM-based model (trained on the smaller dataset)
had a score of 2, i.e. the song was experienced to be more likely to be natural
than artificial.

There were a few songs that got the grade 3, which would signify it is equally
likely to be natural as it is to be artificial, regardless of the source of the song.
The training data was most likely to be perceived as natural, but the LSTM
models and the autoencoder trained on the small dataset were also often per-
ceived as natural.

The probability to be perceived as natural is the proportion of grades 1 and
2 in comparison to the total number of responses. In other words, what is the
likelihood that one response for a given model is at least 2.

Table 1: Statistical measurements on the survey responses.

Training
data

LSTM
small

dataset

LSTM
large

dataset

AE small
dataset

AE large
dataset

Arithmetic
mean

2.40 2.53 2.67 2.72 4.02

Variance 1.79 1.66 1.52 2.13 1.49
Probability

to be
perceived
as natural

70.37 % 68 % 64.81 % 56.86 % 16.36 %

Figure 6: Comparison between the two individual songs from the autoencoder
model trained on the large dataset.

A limitations of the survey was that only two songs were selected per source.
In some cases there was also some significant difference between the two ran-
domly selected songs from the same source. In particular, the responses to the
songs generated by the autoencoder model trained on the large dataset, see
figure 6.

Table 2: Statistical measurements on the survey responses.

Song 1 Song 2
Arithmetic mean 4.45 3.59
Probability to be

perceived as natural
3.45 % 27.59 %

The difference between the two randomly selected songs from the same source
is also evident in the statistical metrics as can be seen in table 2.

3.2 Autoencoder

For the survey, four songs were generated using the autoencoder architecture.
Two songs were generated from a model trained on ten songs and the remaining
two songs were generated from a model that had been trained on 256 songs.
All four songs were generated with a tempo of 120 quarter-notes per minute. A
plot of their MIDI representation can be seen in figure 7 and 8.

(a) Song 1 generated from model trained
on 10 songs.

(b) Song 2 generated from model trained
on 10 songs.

Figure 7: Plot of MIDI representation for the 2 songs generated from the au-
toencoder model trained on 10 songs.

(a) Song 3 generated from model trained
on 256 songs.

(b) Song 4 generated from model trained
on 256 songs.

Figure 8: Plot of MIDI representation for the 2 songs generated from the au-
toencoder model trained on 256 songs.

3.3 Long short-term memory

For the survey, four songs were generated using the LSTM architecture, where
two songs were generated by training on a dataset of 128 songs, and the other
two were trained on 256 songs. The plots of the songs were not saved, but a
general pattern of song quality was detected for all songs that were generated
throughout the project.

3.3.1 Basic note songs

(a) Song generated with two notes. (b) Song generated with few notes.

Figure 9: Plot of MIDI representation for two songs generated in a simple fashion
using LSTM.

In figure 9, one can see a clear behaviour of the songs, generating a couple of
notes only, where the same notes are pressed throughout the entire song.

3.3.2 Varied note songs

(a) Song generated with varied notes. (b) Song generated with varied notes.

Figure 10: Plot of MIDI representation for two songs generated in a more varied
fashion using LSTM.

In figure 10, one can see a wider range of notes being generated throughout
the songs in a more “randomized” fashion. However, in some cases the songs
tend to alter structure toward the end. The songs either play some single notes
throughout the end as a finisher, or they copy a snippet of a song which is
repeated throughout the rest of the song.

3.3.3 Overfitted songs

(a) Song generated with overfitted
sequence of notes.

(b) Song generated with overfitted
sequence of notes.

Figure 11: MIDI representation of two songs generated in a more overfitted
fashion using LSTM.

Lastly, in figure 11, one can see very structured songs with repeated notes. This
is due to the model taking snippets from the training set and repeating them
endlessly.

4 Discussion

In this chapter the results will be discussed, as well as the choice of method.
Lastly, a brief outlook on possible improvements and future work is discussed.

4.1 Survey

The results from the survey suggest that the perceived authenticity of the songs
generated are not much worse than the training data. This could suggest that
the best performing model performs almost as well as the human equivalent.
Thus, the project’s aim was achieved.

There is a spread in the results and notable differences between the models,
as well as the amount of data used to train on. The results from the survey
suggest that the LSTM-based model trained on the smaller dataset performed
the best, and with the same model trained on the larger dataset being slightly
worse. The autoencoder model performed slightly worse than the LSTM when
it was trained on the small dataset and a lot worse when it was trained on the
larger dataset.

The reason that the models performed better with less training data could
be a sign that the model overfitted on the data instead of generalizing the task
to generate truly novel data. In some cases parts of the generated music could
be very similar to songs from the training data, this was mostly noticed in the
models with smaller training data.

When making the survey it is desirable to have lots of questions and to
sample many songs from each of the sources in order to have strong statistical
backing when making claims about the results. However, it is not feasible to
have too long surveys as the respondents might not bother finishing the survey
at all, resulting in even less data being obtained. Therefore a trade-off was
necessary, where only two songs from each source could be used in the survey,
as well as using only excerpts of the whole songs. This means that there is
some risk that the randomly sampled songs from each source do not accurately
represent the general quality of the sources. For example, the two songs selected
from the AE model trained on the large dataset had a significant difference in
quality, as are presented in the results chapter.

The possibility of the randomly selected songs not being entirely represen-
tative of their sources would mean that the results have some additional uncer-
tainty in what the models’ true performances are. A future study attempting
to replicate this project could arrive at other results. However, deeming on the
overall quality of all songs generated, including those that could not be part
of the survey, it would seem reasonable that the same general trend would be
observed. That is, the models perform slightly below the training data in terms
of perceived authenticity.

The survey had 29 respondents in total, meaning each type of source had
a total of 58 grades, this is not a statistically insignificant amount, but as the
grades have some variance within them, a larger survey would have been more
desirable. It can be argued that it could have been better to have a survey
that focused on fewer models, but more in-depth. This could have given a
statistically more reliable result. However, it would not have been able to answer
the question of how the amount of training data affect the resulting quality of
the model.

4.2 Structure in songs

In this section, the structures observed in the songs will be discussed.

4.2.1 Autoencoder songs

The AE model generated four songs that were used in the survey, two of which
were generated from the smaller dataset and two from the larger dataset. The
songs generated from the smaller dataset got a significantly lower arithmetic
mean and a lot higher probability to be perceived as natural sounding. The
reason for this may be that the model does not have to adapt and adjust to as
many songs. This may result in the model becoming very good at recreating the
ten songs that it is trained on. A common trait for most of the generated songs
were random notes being played that disrupted the melody. However one of the
songs generated by the AE sounded significantly better and more natural with
only a few notes disrupting the melody. The reason for this is probably that
when the random noise vector was generated and combined with the feature
space vector it became very similar to one of the songs in the training data.
This results in the model recreating that training song almost identically. Since
most songs created by the AE did not sound natural, this is likely the reason
why one of the generated songs sounded more natural than the rest. The model
did not learn enough characteristics of natural songs. Also, the reason that the
AE trained on the smaller dataset got a better arithmetic mean is probably
because it was better at replicating the training songs.

As mentioned above, random notes were often generated in places that you
would normally not expect. This is probably due to the fact that the model did
not completely learn how notes interact with each other. The model seemed
to learn the general trend of how notes progress but there seems to be a lot
of noise. The model outputs a number between 0 and 1 of how certain it is if
a note should be played or not. In this project we choose a threshold of 0.5,
however, you could set this to be lower in the hopes of removing these seemingly
disruptive notes.

4.2.2 LSTM songs

Songs generated using the LSTM model were generally perceived as more nat-
ural sounding according to the survey results. However, as in the case of the
autoencoder model, they also contain randomly occurring notes that sound dis-
sonant or disharmonious. Also, sequences of long repetitions of the same key
appear in the songs generated by the LSTM model.

We believe that the leading cause for these problems is insufficient training,
which could be ameliorated by using larger training sets and longer training
periods. Long repeats of the same note could simply be overfitting to the most
commonly occurring note in the training set. Another possibility is that the
imposed limitation to the generated music tempo, i.e. using a static duration of
0.5 seconds for each note, might cause the system to try and model drawn-out
notes or chords in the training data, as multiple recurring presses of the same
note. If that is the case, extending the system to learn how to model varying
note duration might alleviate this problem.

4.3 Models

Both models generated music with varying degrees of success. According to
the results of the survey, the LSTM model was better than the AE. However,
as discussed above, the model may have overfitted and just reproduced the
training data. Thus, any well-grounded conclusions are hard to draw. It is also
possible that with different parameters, depth, and/or layer sizes the models
could have performed better. Therefore, no general conclusions regarding the
different techniques as such can be drawn.

One advantage with using LSTM over AE is the ability to generate songs
of any length. The AE has a fixed-sized output, while the LSTM can generate
music of any length. This could be useful in applications such as generating
music in video games.

4.4 Future work

This study presents a way to generate music using LSTM and AE. Given the
chosen methods, there were some limitations in performance that could have
been further explored if time allowed.

4.4.1 Model improvements

Given the generated songs, one could conclude that the current models perform
decently, but that there are areas that could be further improved. Hyperpa-
rameters, as well as the size and depth of the model, were chosen in a way that
worked for the project. But no further investigations were made to find better
performing models due to the lack of time. It is thus concluded that this could
be a candidate problem for future works, where research of suitable models is
to be made.

Some other aspects also affected the models’ performances, e.g. the size of
the data set. There were not enough data to properly train the models. As a
result, overfitting became a common problem. Therefore, future studies should
investigate the performance of the models when using larger sets of training
data.

When implementing the LSTM model, there were several problems that had
to be considered. For instance, the implementation cannot model the tempo of
the songs, nor if a note is drawn out, i.e. played for a longer period of time. It
only considers which notes are played at a certain time point. Thus, it became a
discrete version of a song. When a note is played for multiple consecutive ticks,
it gets represented as several distinct notes, one for each tick. Thus, one area
of improvement would be to make the model able to encode notes for multiple
consecutive ticks as one token instead of several separate ones. Since the entire
generated song has a constant tempo, one could also investigate whether one
can generate songs with varied tempo.

Lastly, an idea that the group had, but could not execute due to lack of
time, is the usage of generative adversarial networks (GANs) in the system to
generate songs. This could be an improvement that could be tested and added
in future works.

4.4.2 Survey

An improvement for future work is to make the survey more exhaustive, to cap-
ture more of the opinions of the respondents. For instance, some of the real
songs, mixed with the artificial songs, could sound artificial themselves. So it
could be imagined that the participants struggled with the survey itself and had
opinions that they wanted to express. One could for instance allow the respon-
dents the options to provide feedback at the end of the survey. Another way to
expand the survey in a more general and unbiased way is to have a bigger vari-
ety of participants, where they differ in age, sex, cultural background, musical
background, etc. Since we mostly had participants in the age range of 20-30
who were interested in technology (we mostly got answers from participants in
the course TDDE19), it would be interesting to investigate how people from
other backgrounds and professions would rate the generated music.

References

[1] Pierre Baldi. Autoencoders, unsupervised learning, and deep architectures.
In Isabelle Guyon, Gideon Dror, Vincent Lemaire, Graham Taylor, and
Daniel Silver, editors, Proceedings of ICML Workshop on Unsupervised and
Transfer Learning, volume 27 of Proceedings of Machine Learning Research,
pages 37–49, Bellevue, Washington, USA, 02 Jul 2012. PMLR.

[2] Yoshua Bengio, Paolo Frasconi, and Patrice Simard. The problem of learn-
ing long-term dependencies in recurrent networks. In IEEE international
conference on neural networks, pages 1183–1188. IEEE, 1993.

[3] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning
phrase representations using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078, 2014.

[4] Keunwoo Choi, George Fazekas, and Mark Sandler. Text-based lstm net-
works for automatic music composition. arXiv preprint arXiv:1604.05358,
2016.

[5] Li-Chia Yang Hao-Wen Dong, Wen-Yi Hsiao and Yi-Hsuan Yang. Musegan:
Multi-track sequential generative adversarial networks for symbolic music
generation and accompaniment. 2018.

[6] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neu-
ral computation, 9(8):1735–1780, 1997.

[7] Vasanth Kalingeri and Srikanth Grandhe. Music generation with deep
learning. arXiv preprint arXiv:1612.04928, 2016.

[8] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of
training recurrent neural networks. In International conference on machine
learning, pages 1310–1318. PMLR, 2013.

[9] Colin Raffel. Learning-based methods for comparing sequences, with ap-
plications to audio-to-midi alignment and matching. 2016.

[10] Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich Schütze. Compara-
tive study of cnn and rnn for natural language processing. arXiv preprint
arXiv:1702.01923, 2017.

	Introduction
	Method
	Data
	Autoencoder
	Long short-term memory
	Evaluation

	Results
	Survey
	Autoencoder
	Long short-term memory
	Basic note songs
	Varied note songs
	Overfitted songs

	Discussion
	Survey
	Structure in songs
	Autoencoder songs
	LSTM songs

	Models
	Future work
	Model improvements
	Survey

