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1 Introduction

As the consumption and production of music moves toward digital forms, un-
precedented opportunities for data collection and analysis have emerged. One
interesting idea is to label music with the emotions that they bring to people.
This idea, along with other music information retrieval, is explored in a paper
by R.Castellon et al [1]. They manage to achieve promising results for several
music information retrieval tasks, one of them being labeling the emotions of
songs.

In order to retrieve and extrapolate information from music, there is typically
a need for a lot of labeled data. The process of creating this data can be tedious
and time consuming, and it is desirable to have to label as little data as possible.
Furthermore, training models with a lot of data typically takes more resources
either in terms of time, computing power or memory. One method that can be
used to mitigate these problems is active learning. In active learning the goal is
typically to choose what data to label so that as much as possible is gained in
terms of model performance. The process is iterative, where an initial labeled
dataset is the starting point. Then a model is trained using this data and a
batch of unlabeled data is chosen for labeling based on some informativeness
measure. The model is then retrained using the new larger labeled dataset and
the performance is evaluated. This process is then repeated until some stopping
condition is met.

The project described in this report is about combining active learning with
the idea of labeling emotions in music. The aim is to create an application
that can be used to efficiently choose songs for labeling so that a model can
be trained to accurately predict the emotions of songs. To facilitate this, a
dataset containing 1,000 songs that are 45 second long with 90 emotion labels
sampled at frequency 2. In order to get features that can be used to train
machine learning models to predict emotions from these songs, feature extrac-
tion will be performed. To reduce the sheer amount of data used for training,
feature selection will also be done using strategies such as principal component
analysis (PCA) and variance threshold selection (VT). We also propose a way
to capture the chronological correlation of emotions in music by enabling the
data to be configured with a sliding window. To perform the active learning
iterations several different regression models will be implemented as well several
different approaches to choosing data points to label, so called query strategies.
Finally, the different combinations of regression models, query strategies and
other parameters will be evaluated and compared.

The hypothesis is that the results will vary quite a bit depending on which
combinations of active learning query strategies are used along with which ma-
chine learning models and hyperparameters. It is also predicted that the active
learning will help the model reach a good performance using only a subset of all
the available data. Finally, it is predicted that the sliding window configuration
will increase the performance of the models.



2 Methods

The methods and techniques that were used during the project are introduced
in this section. First the data and some pre-processing steps are introduced
followed by the architecture and the processes of the application. Finally some
specifics about the methods and techniques that were used for active learning
and machine learning are presented.

2.1 Dataset

The dataset used in the project is called Emotion in Music Database [5] or Emo-
music for short. It consists of 1000 songs gathered from Free Music Archiveﬂ
under CC license. However, duplicates were found in the data, and after their
removal, only 744 songs remain. All the songs have a sampling frequency of
44100Hz and are 45 seconds in length, but due to instability of the annotations
for the first 15 seconds, only the last 30 seconds are considered.

After successfully passing a qualification test, crowdworkers via Amazon
Mechanical TurkE| annotated the dataset. The labeling used are arousal and
valence. Arousal measures how excited /annoying versus how calm/sleepy a song
is, while valence measures how pleasing/relaxing versus how sad/nervous a song
is, see Figure[]] The annotations were continuous throughout the song, and were

Arousal

Excited

Annoying
Angry Happy

Valence
Nervous Pleased

Peaceful

Figure 1: Emotional representation of valence and arousal.

done individually for arousal and valence. All annotations were provided on a
scale from -1 to 1.

Along with the annotations, the standard deviation of the annotations were
also reported. It was shown that the distribution of the annotations for each
sample follows an approximate normal distribution. Thus, in an effort to remove
outliers, only songs with all samples within the 99% confidence interval was used
in this project.

Lastly, a dataframe with 6669 features |2] was provided along with the rest
of the data.

Thttps://freemusicarchive.org/
*https://www.mturk.com/
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2.2

Feature Extraction

In this project, we extracted features for all songs instead of using the provided
set of features. The reasoning behind this was: 1) to enable feature extraction
for songs not seen in the dataset; 2) the provided list is too large - ambiguity in
what features to use.

For our own feature extraction we used the code provided from Free Music
ArchiveEL which needed a lot of modifications to fit this application. The library
Librosa was used to extract interesting features [1]

Features were extracted in the following areas:

Chroma
Related to the 12 pitch classes.

Tonnetz
Computes the tonal centroid features.

RMS - Root Mean Square
Which is an indicator of the loudness in the music.

MFCC - Mel-Frequency Cepstral Coefficients
Which scales the signal to behave as in accordance with human hearing.

Spectral
Relates to analyses of different frequency spectrums.

Zero-Crossing Rate
Measures where signals cross between positive and negative.

And for each feature the following attributes were calculated:

This

Mean
Std
Skew
Kurtosis
Median
Min
Max

resulted 518 features instead of the 6669 from Emo-music, which signifi-

cantly reduces the dimensions of the data.

Shttps://github.com/mdeff/fma/tree/0ea2c9c83c84022fbf369¢9dd258c7603baf33c4
4https://librosa.org/
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2.3 Feature Selection

This section aims to explain the chosen process of reducing the number of fea-
tures, while still maintaining relevant information from the original features.
Feature selection for this project consists of two different unsupervised fea-
ture selection techniques: Principal component analysis (PCA)E| and Variance
threshold (VT)[]

2.3.1 PCA

PCA is a non-parametric technique for feature selection. As discussed by Schlens
et al [4], this attribute is both a blessing and a curse: it is effective and easy
to use but offers no way to use prior knowledge to control the principal compo-
nents. The only choice that matters is the selection of the generated principal
components.

In this project PCA is used in two ways, as a feature selection tool, and as a
visualization tool. The basic concept of reducing the amount of features the data
have is applicable to both cases, what differs is the root cause. Furthermore,
with the purpose of using PCA as feature selection, the dimension reduction
should not be too aggressive, since reducing dimensions often goes hand in with
losing information. With the assumption that information of features is strongly
correlated with the variance of the features, then one could rephrase the goal of
feature selection in terms of PCA; select principal components which maximises
the variance of the data. PCA in the context of visualization works in a similar
way, the number of selected principal components get severely restricted by the
number of dimension an human can make sense of and the complexity to plot
high dimension on the monitor to the computer. Thus, in this context, only
three principal components are chosen.

Visualization was done mostly for the presentation and as a reality check to
ensure our training and test data split are following the same distribution. In
the feature selection context, the PCA yielded in a ~99% reduction in amount
of features while still maintaining 99% variance of the data, i.e., PCA reduced
the amount of features to 7, down from 518.

2.3.2 VT

VT is often referred to as a baseline feature selection technique. Similarly
as the PCA, it is based on the assumption that the variance of the data is
correlated to the information contained in the data. VT calculates the variance
for each feature and selects those features which have a variance over a specified
threshold, this gives a similar control to the amount of features as with PCA.
With a threshold of 100, the VT resulted in going from 518 features to 39.

Shttps://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.
html

®https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.
VarianceThreshold.html
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2.4 Learning Profiles

The concept of a learning profile is something that is introduced in this project.
A learning profile is an object that contains information about the following:
what training and test datasets should be used for training and evaluation,
what machine learning model should be trained and what active learning query
strategy that should be used. A few examples of how a learning profile can look
like is shown in Figure [2| Since there are several required fields in a learning
profile there are many different combinations of learning profiles that can be
created. In this section these different options will be further explained.

Train Test ML model AL query strategy | Hyper-parameters Batch size
PCA train PCA test Linear regression | Input greedy { 5
VT train VT test Decision tree Output greedy { 5
Original train Original test Neural network | Input output greedy |{learning_rate = 0.01} 3

Figure 2: Examples of what learning profiles can look like.

2.4.1 Machine Learning Models

6 different multi-output regression models were implemented as part of the
project. The implementations were made using the scikit-learn machine learning
library [3]. The different models that were implemented are listed below.

Linear Regression

K-Nearest Neighbor (KNN)

Neural Network

Decision Trees

Gradient Tree Boosting
Ensemble Model

2.4.2 Active Learning

An important part of the project was pool-based active learning. Pool-based
active learning is a form of active learning where the data to query on is chosen
from a large pool of unlabeled data. All data in this unlabeled pool is considered
for querying, and a batch of data points are selected according to some query
strategy. An algorithm for pool-based active learning follows below.

1. Split the dataset D into an unlabeled pool U and a labeled seed S.
2. Train the chosen model using the seed S

3. Evaluate all data points in U and choose a batch of them according to a
selected query strategy and a user defined batch size.



4. Query an oracle about the selected batch of data points

5. Move the selected batch of data points from U to S and add the oracle
assigned labels to S as well.

6. Evaluate if more active learning iterations are required according to some
pre-defined stopping condition. If so repeat the process from step 2, oth-
erwise terminate the process.

In this project, 4 different query strategies were implemented with the pur-
pose of comparing how well they work for the task at hand. Out of all the
query strategies 3 of them are so called greedy strategies. The inspiration for
the implementations of these came from a paper by D.Wu et al [6], but some
modifications were made to fit the needs for this project. All 4 query strategies
along with descriptions and details about their workings are found under the
headings below.

Input Greedy Sampling

Input greedy sampling looks at the feature space when determining which points
should be selected for querying. This has the advantage that the query strategy
is not dependent on the model used in the active learning, and thus it has low
computational cost. The process for selecting data points in the implementation
used in this project is as follows.

1. Let U be the set of unlabeled data points and S be the set of labeled data
points.

2. Calculate the distances d;; = ||u; — s;|| for all data points u; € U and all
data points s; € S.

3. For each u; find the minimum distance d;; and assign this distance to ;.

4. Sum up the assigned distances for every sample u; belonging to a song
and return the batch of songs that have the largest sums.

Output Greedy Sampling

Output greedy sampling looks at the labels and predictions when determining
which points should be selected for querying. The aim is to increase the diver-
sity in the output space. This strategy is model dependent and requires more
computational power than input greedy sampling. The process for selecting
data points in the implementation used in this project is as follows.

1. Let P be the set of predictions for the unlabeled data points and L be the
set of labels for the labeled data points.

2. Calculate the distances d;; = ||p; — ;]| for all predictions p; € P and all
labels I; € L.

3. For each p; find the minimum distance d;; and assign this distance to p;.



4. Sum up the assigned distances for every prediction p; belonging to a song
and return the batch of songs that have the largest sums.

Input-output Greedy Sampling

Input-output greedy sampling looks at the labels and predictions as well as the
features when determining which points should be selected for querying. The
aim is to increase the diversity in the output space and input space. The process
for selecting data points in the implementation used in this project is as follows.

1. Let U be the set of unlabeled data points and P be the set of predictions
for the unlabeled data points, also let S be the set of labeled data points
and L be the set of labels for the labeled data points.

2. Calculate the distances df; = ||u; — s;]| for all data points u; € U and all
data points s; € S.

3. Calculate the distances dfj = ||p; — ;]| for all predictions p; € P and all
labels I; € L.

4. For each u; find the minimum distance d?j, also find the minimum distance
dfj and assign the minimum of the two distances to the sample.

5. Sum up the assigned distances for every sample belonging to a song and
return the batch of songs that have the largest sums.

2.4.3 Datasets and Sliding Window

In the project three different kinds of datasets are used. One of these is a dataset
that consists of extracted features from songs as well as labels for arousal and
valence. The other two datasets consist of a subset of the features in the first
dataset that are selected using PCA and variance threshold selection, as well as
labels for arousal and valence.

In addition to the three kinds of datasets the ability to create more datasets
exist by adding a sliding window to the different datasets. The motivation
behind this is that there is a chronological correlation of emotion in music - if a
song is sad, it is likely sad a few seconds later. In order to capture this correlation
the data is augmented by adding indicators of the emotion in previous samples
of a song to every sample. The idea is illustrated in Figure [3]

In the implementation a separation is made between how training and test
data is configured with a sliding window. For training data the labels from the
training data set are used as indicators of emotion for the previous samples,
while for test data a basic linear regressor is used to predict the emotion of
previous samples in order to get an indication of the emotion. The reason this
separation is made is because, when using a model trained with a sliding window
to predict on new unlabeled songs there is no way to configure the data in sliding
window format using labels, since there are none. Thus, it made the most sense
to use test data that is constructed without the use of labels.

In order to handle the fact that there is no natural good indicator of emotion
for the first few samples in every song, an emotional prior was introduced. The



prior was used to fill the slots for the sliding window features, as can be seen in
Figure[3l The implementation allows for the prior to be passed in a few different
formats, and the options vary depending on if the configuration is to be made
for training or test data. The options for training data are, one prior for all
songs and no prior at all. When no prior is passed, the labels from the first few
samples are used and those samples are then not used during the training. The
options for test data are either one prior for all songs or a different prior for
each song. An overview of all the used datasets can be seen in Table

Prior [PA,, PVy, ..., PAq, PV;]

Original Features Sliding Window Featrues (Arousal, Valence) Labels
Sample 1 2 m SWAr | SWVr | SWAr-1 | SWvr-1 SW_A1 | SW_V1 | Arousal | Valence
1 f1.1 f12 fim PAr PVr PAr1 PVr-1 PA1 PV1 Aq W1
2 f21 f22 f2m A1 Vi PAr PVr PA2 PV2 A2 vz
3 f3,1 f32 fam A2 % A1 Vi PA3 PV3 A3 V3
r+d fre1,1 fre1,2 frat,m Ar Vr Ar1 V1 Al V1 Aret Vi1
n fn, 1 fn2 fam | Am1 | Vna | An2z | Vn2 Anr Vner An Vn

Figure 3: Ilustration of sliding window configuration for one song, with a prior.

Name ‘ Feature selection ‘ Sliding window | Train prior | Test prior.

dsl PCA No - -
ds2 vT No - -
ds3 PCA Yes 0 0
ds4 vT Yes 0 0
ds5 PCA Yes T 0
ds6 VT Yes T 0
ds7 PCA Yes T R
ds8 vT Yes T R

Table 1: Description of the datasets, where "I’ = prior from target/labels of
the data, and 'R’ = prior predicted by linear regressor.

2.5 Model Selection Process

This process is used as a preliminary investigation into what learning profiles
perform well on the Emo-music dataset. Our end goal is, however, to test the
learning profiles against an annotating user, but doing this for every learning




profile is unfeasible. (700+ songs with an optimistic annotation time per song
on 1.5 minutes, we get over 16 hours of labeling. No thanks.) As such, we use
this process to select a few promising learning profiles to use in model evaluation

(see section [2.6).

2.5.1 Init Phase

The main purpose of the init phase is to initialize the learning profiles (see
that will be used in either viability and user phase. Here, an active learning
method is bundled with a machine learning method, a training dataset, and a
validation dataset (with or without sliding window applied, see [2.4.3). When
a machine learning method has hyperparameters to vary, we create a learning
profile for each set of hyperparameters we test for. All learning profiles have
a batch size as well, but we use the same batch size for all learning profiles to
simplify comparison between them. The created learning profiles is then used
in the viability phase.

2.5.2 Viability Phase

In the viability phase, our learning profiles are tested against the labels in Emo-
music. Using the methods and datasets bundled in a learning profile, we do the
following:

1. Initialize a seed dataset with one random song.

2. Perform machine learning to get predictions on unlabeled data points.
(Used in some active learning methods.)

3. Perform active learning to select a set of songs to query for labels from
the Emo-music dataset. The number of songs selected is equal to the
batch-size.

4. Add the selected songs to the seed dataset.

5. Perform machine learning to get new predictions on unlabeled data points
and stores the MSE value that is measured on the validation data.

6. Repeat step 3 to 5 until there are no more unlabeled songs in the emo-
music dataset.

The process above is performed with every learning profile.

2.5.3 Evaluation Phase

The evaluation phase is responsible for summing up the MSE values for each
learning profile acquired in the validation phase. This corresponds to calculating
the area-under-curve of the graphs discussed earlier. The idea is that the lower
the area-under-curve, the better the learning profile performs on our task. We
can use this to compare our dataset modifications, machine learning methods,

10



and active learning methods. This can be presented visually to the user, which
will be explained further in the Presentation Process.

2.6 Model Evaluation Process

This process involves users annotating songs, which is very time consuming.
As such, we would like to evaluate only a selection of learning profiles in this
process. In fact, we select a subset of the learning profiles that performed well
in the model selection process.

To save time with the annotating part, a dictionary of all completed anno-
tations are stored to disk. This is done to ensure that the user does not have to
annotate the same song multiple times.

2.6.1 Init Phase

This phase is identical to the init phase described in section [2.5.1] except that
we bundle each learning profile with a training+validation dataset and a testing
dataset.

2.6.2 User Phase

This phase is very similar to the viability phase described in section [2.5.2] with
a key difference. The difference is that in step 3, we do not query the labels
from the Emo-music dataset. We instead query a user for labels using a GUI we
developed for data annotation. These labels are then used to train the machine
learning models. The GUI starts in one of two modes: arousal or valence. An
image of the GUI can be seen in Figure

? Dynamic Emotion Capture =

Playback Controller

rMode ‘ File Time

Arousal 69.mp3 27.T4s [ 45.06s

Active / Aroused

Figure 4: Annotation of arousal using the GUI for song 69.mp3.
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2.6.3 Evaluation Phase
This phase is fully identical to the evaluation phase described in section 2.5.3]

2.7 Presentation Process

The presentation process is responsible for presenting the results to the user.
The profiles that are presented here can either come from the output of the
Model Selection Process or the [2.8 Model Evaluation Process.

In this process, plots are shown to the user. This can be done based on three
different evaluation modes: arousal, valence or mean. Furthermore, the possi-
bility to choose from three different presentation modes exist. These modes will
let the user filter learning profiles in order to compare either different datasets,
machine learning models, or active learning techniques more clearly.

2.7.1 Presentation Phase

This phase allows the creation of graphs that plot the MSE scores of each model.
One can choose between plotting all profiles in one graph, or plot based on a
choice of a specific machine learning method; active learning method or specific
dataset. The user is given the option to specify the number of profiles to be
shown, which displays the best ones according to their area-under-curve score
(calculated by summing the MSE score for each profile).

12



3 Results

In this section we present the results from Model Selection and Model Evalua-
tion.

3.1 Model Selection Process

All models described below were tested with a batch size of 100 songs and a
sliding-window size of 5.

A total of 384 learning profiles were tested with the Emo-music dataset.
Among these, the best performing learning profiles used VT without sliding
window and gradient tree boosting. The best learning profile achieved a RMSE
of 0.1935 (MSE of 0.03744) for arousal and 0.2187 (MSE of 0.04782) for valence
after full training.

Due to the sheer number of learning profiles, we will only present a subset
of our results. For a full presentation of the performance of all learning profiles
we refer the keen reader to run the presentation process and explore for oneself.

Figure [5] and [6] show the best learning profile for each machine learning
method for arousal and valence respectively. Figure [7] and [§] show the best
learning profile for each active learning method for arousal and valence respec-
tively. Figure [] and [I0] show the best profile for each dataset.

MSE AROUSAL over each AL iteration

—— ds2_train ds2_test input_output_greedy sampling  gradient_tree_boosting (Batch Size: 100)
T~ ds2_train ds2_test input_greedy_sampling linear_regression (Batch Size: 100)
008 —. dsl train dsl test input_greedy_sampling neural_network (Batch Size: 100)
.-+ dsd_train dsd_test input_output_greedy sampling K neighbors (Batch Size: 100)
—— ds2train ds2_test input_greedy_sampling decision_tree (Batch Size: 100)

Batch

Figure 5: MSE values for arousal over each machine learning method’s best
learning profile (model selection).

13



MSE VALENCE over each AL iteration

0.056 -
0.054 -
—— ds2_train ds2_test output_greedy_sampling gradient_tree_boosting  (Batch Size: 100)
» ~~ ds2_train ds2_test input_greedy_sampling linear_regression (Batch Size: 100)
& —- dsl_train dsl_test output_greedy_sampling neural_network (Batch Size: 100)
= - ds5_train ds5_test output_greedy_sampling decision_tree (Batch Size: 100)
~. —— ds3_train ds3_test input_output_greedy_sampling  k_neighbors (Batch Size: 100)
0.052 - .
0.050 -

Batch

Figure 6: MSE values for valence over each machine learning method’s best
learning profile (model selection).

MSE AROUSAL over each AL iteration

—— ds2_train ds2_test input_output_greedy sampling gradient_tree_boosting  (Batch Size: 100)
~~ ds2_train ds2_test output_greedy_sampling gradient_tree_boosting  (Batch Size: 100)
—- ds2_train ds2_test input_greedy_sampling gradient_tree_boosting  (Batch Size: 100)

0.041 -

0.040 -

MSE

0.039 -

0.038 -

Figure 7: MSE values for arousal over each active learning method’s best learn-
ing profile (model selection).
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MSE VALENCE over each AL iteration

0.05000 -
0.04975 -
0.04950 -
w
)
= 0.04925 -
0.04900 -
0.04875 -
—— ds2_train ds2_test output_greedy sampling gradient_tree_boosting  (Batch Size: 100)
0.04850 -~ ds2_train ds2_test input output greedy sampling gradient tree boosting  (Batch Size: 100)
: — - ds2_train ds2_test input_greedy_sampling gradient_tree_boosting  (Batch Size: 100)
10 15 2.0 25 3.0 35 4.0 45 5.0
Batch

Figure 8: MSE values for valence over each active learning method’s best learn-
ing profile (model selection).

MSE AROUSAL over each AL iteration

0.08 -
007~
006"
a
=
0.05-
— ds2_train ds2_test input_output_greedy sampling  gradient tree_boosting  (Batch Size: 100)
~~ dsl_train ds1_test output_greedy_sampling gradient tree_boosting  (Batch Size: 100)
ds4_train dsé_test input_output_greedy_sampling  k_neighbors (Batch size: 100)
<+ ds6_train ds6_test input_greedy_sampling K_neighbors (Batch Size: 100)
.04 — dsB_train ds8_test input_greedy_sampling K_neighbors (Batch size: 100)
~ = ds3_train ds3_test input_greedy_sampling K_neighbors (Batch Size: 100)
- ds5_train ds5_test input_greedy_sampling K_neighbors (Batch size: 100)
- ds7_train ds7_test input_greedy_sampling K_neighbors (Batch Size: 100)
10 15 20 25 30 35 40 45 50
Batch

Figure 9: MSE values for arousal over each dataset’s best learning profile (model
selection).

15



0,056 -

0,054

MSE

0052~

0,050 -

Figure 10: MSE values for valence over each dataset’s best learning profile

MSE VALENCE over each AL iteration

—— ds2_train ds2_test output_greedy_sampling gradient_tree_boosting _ (Batch Size: 100)
~~ ds1_train ds1_test output_greedy_sampling neural_network (Batch Size: 100)
—- dsa_train dsd_test input_greedy_sampling gradient_tree_boosting  (Batch Size: 100)
-+ ds3_train ds3_test input_output_greedy_sampling  neural_network (Batch Size: 100)
—— ds5_train ds5_test output_greedy_sampling neural network (Batch Size: 100)
~ —~ ds6_train dse_test input_output_greedy_sampling  gradient tree _boosting  (Batch Size: 100)
=S ds7_train ds7_test input_output_greedy_sampling  neural_network (Batch size: 100)
S=al +++ ds8_train ds8_test output greedy_sampling gradient_tree_boosting  (Batch Size: 100)
10 15 20 25 30 35 o as 50
Batch

(model selection).

3.2 Model Evaluation Process

All models described below were tested with a batch size of 2 songs and a sliding-
window size of 5. As described in [3.] the interested reader should try running
the presentation process oneself for a more complete presentation of the results.

Figure [11] and show the best learning profiles for each machine learning
method, Figure[I3]and [[4]show the best profiles for each active learning method,

and Figure [I5] and [I6] show the best profiles for each dataset.

0070

0.065 -

MSE

0,060 -

0055

0,050

Figure 11: MSE values for arousal over each machine learning method’s best

MSE AROUSAL over each AL iteration

—— ds2_train ds2_test input_output_greedy_sampling  gradient_tree_boosting (Batch Size: 2)
~~ ds2_train ds2_test input_greedy_sampling linear_regression (Batch Size: 2)

T — ds3.train dsatest input_output_greedy_sampling ~ k_neighbors (Batch size: 2)
-+ ds1_train ds1_test input_output_greedy_sampling  neural_network (BatchSize:2) ——
—— ds5_train ds5_test input_greedy_sampling decision_tree (Batch size: 2)

6 s 10

Batch

learning profile (model evaluation).
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MSE VALENCE over each AL iteration

0,054~
0,052
w
@
2
0,050
0.048 -
—— ds2_train ds2_test input_greedy_sampling gradient tree_boosting  (Batch Size: 2)
~~ ds2_train ds2_test input_greedy_sampling linear_regression (Batch Size: 2)
--= —- ds1_train ds1_test input_output_greedy_sampling  neural_network (Batch size: 2)
0046 - +:+ ds3_train ds3_test input_output_greedy_sampling  k neighbors. (Batch size: 2)
—— ds5_train ds5_test input_greedy_sampling decision_tree (Batch Size: 2)
2 a 6 s 10

Batch

Figure 12: MSE values for valence over each machine learning method’s best
learning profile (model evaluation).

MSE AROUSAL over each AL iteration

—— ds2_train ds2_test input_output_greedy sampling gradient_tree_boosting  (Batch Size: 2)
~~ ds2_train ds2_test output_greedy_sampling gradient tree boosting  (Batch Size: 2)
—- ds2_train ds2_test input_greedy_sampling linear_regression (Batch size: 2)

0.055 -

0.054- = —

0053

0.052-

0051~

Batch

Figure 13: MSE values for arousal over each active learning method’s best
learning profile (model evaluation).
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— ds2_train ds2_test input_greedy_sampling

—- ds2_train ds2_test output_greedy_sampling

0.0495 -

0.0490 -

0.0485 -

MSE

0.0480 -

0.0475 -

0.0470 -

0.0465 -

ds2_train ds2_test input_output_greedy_sampling

MSE VALENCE over each AL iteration

gradient tree_boosting  (Batch Size: 2)
gradient_tree_boosting  (Batch Size: 2) /
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Figure 14: MSE values for valence over each active learning method’s best
learning profile (model evaluation).
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Figure 16: MSE values for valence over each dataset’s best learning profile
(model evaluation).
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4 Discussion

In this sections the results are discussed and some conclusions about the project
as well future work are presented.

4.1 Results

This section presents our discussion of the results.

4.1.1 Model Selection

It is of great interest that the best performing datasets did not use a sliding
window. It seems then that most machine learning models fail to make good
use of the sliding window values, which is not what was expected. This may
in part be because of how test datasets with a sliding window are generated.
The sliding window features are not actual target labels, they are predictions
generated using a linear regression model. Thus, if the linear regressor provides
bad predictions, the test data used for evaluation will not be similar to the
data used when training the model. This difference in train and test data could
explain why the datasets with a sliding window did not perform better. It is
worth mentioning that it is not ideal to use a linear regressor when generating
the test data, it would be better if the trained model that is to be evaluated was
used instead. However, for implementation reasons this could not be realized
in this project, but it is definitely something that should be considered in any
future work.

Changing between the greedy active learning methods seemed to make very
little difference in performance. At times one method selects better songs early,
while others may do better later (as illustrated in Figure . None of these
consistently outperformed the others. Unfortunately we did not have time to
get ensemble models working, and could therefore not test maximum standard
deviation sampling.

In general, predictions for arousal were better than those for valence. For
example, the best model for arousal had a summed MSE of 0.191, while the
best model for valence had a summed MSE of 0.245. These results match those
derived by Soleymani et al [5]. This indicates that valence is to a larger extent
prone to subjectivity, compared to arousal.

For most combinations of datasets and active learning methods, gradient
tree boosting performed the best. The second best model was linear regression,
outperforming neural nets and k-neighbors. Most machine learning seemed to
already have good default values for their hyperparameter. k-neighbors per-
formed the worst, and in fact gave increasingly worse prediction as the songs in
the seed dataset continued to increase above 200.

One thing of great interest is that different machine learning models per-
formed best on different variations of our datasets. For example, gradient
tree boosting preferred the dataset using VT without sliding window, while
k-neighbors preferred the dataset with PCA and sliding-window with no prior.
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Figure 17: Comparison of active learning methods using linear regression (model
selection).

But the best performing machine learning models (gradient tree boosting and
linear regression) prefer datasets without sliding window. Additionally, datasets
with VT consistently outperform those with PCA, indicating that PCA overly
reduces the dimensionality of the data.

The most decisive factors in determining performance was which machine
learning model and which dataset variation were used. The least important
factors for performance were hyperparameters and active learning method.

4.1.2 Model Evaluation

It is of great interest that arousal MSE values stays even or decrease as we
add songs to the dataset, while valence MSE increase as we add songs. This
indicates that it is easier to have consensus on the arousal values than on the
valence values.

It is unfortunately rather difficult to draw solid conclusions from the results
of this process due to the limited number of annotated songs. Perhaps the
initial seed dataset is too large in relation to the annotated songs. Perhaps it
was a poor idea to split the annotating between multiple people, introducing
additional inconsistency in the annotations.

4.2 Validity of Dataset

The dataset used in the project is somewhat diverse in what songs are included.
Some songs are poor in recording quality, while others are not really songs, or
parts of songs that does not contain clear characteristics of music. The genres
of songs included in the dataset are ranging from classical- to rock-music, with
everything in-between. Due to some quality inconsistencies, the overall results

21



of the project might not be the most accurate. To conclude which learning
profiles that performs best, different datasets should be tested to conclude a
more balanced result.

4.3 Conclusions and Future Work

The implemented sliding window configurations did not increase performance
of the models, the baseline datasets outperforms the sliding window variants in
all cases. The lack of a baseline for active learning makes it harder to evaluate
and compare different techniques. Thus, a baseline that samples random songs
to be annotated instead of using active learning query strategies would be a
great addition. This enables a fair comparison between the implemented query
strategies and the baseline, and thus shows if our implementation was of benefit
to the project.

As a consequences of the project’s limitations and delimitations discussed in
section we are unable to use our results to answer whether active learning
models can help find subsets of data such that test error converges. This is
rather unfortunate, but due to time limitations we were unable to address this.

We would have liked to explore more active learning models, which would be
a great way to extend to the project. We also had quite the explosion of number
of learning profiles, which limited our ability to try various hyperparameters for
our models. As such, they may not be fully optimized, which somewhat impairs
our ability to draw general conclusions.

We would also like to test supervised feature extraction, as this would help
us find key features while still reducing the dimensionality of our data. Also,
another extension would be to extract more diverse features, such as timbral and
rhythmic features. We could even include features such as genre or subgenre.

We would also like to try to use our processes to create personalized models.
This would mean that we assign a model to a user, where the model queries the
user and becomes better and better at predicting the emotions the user will feel
on any given piece of music.
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