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1 Introduction
Chess is a world renowned two-player board game that dates back to ancient history. The goal is
to checkmate the opponent’s king using your own pieces while avoiding the opponent from doing
the same to yourself. The game is set up symmetrically on an 8x8 board where both players
have 16 pieces of 6 types each, and the different pieces can all move in different ways. Chess was
classified by Jon von Neumann from a game-theoretical standpoint as a zero-sum deterministic
perfect-information game [1]. In chess the amount of moves that each player can perform varies
depending on the position, but an average branching factor of 35 is often used. This high branching
factor along with the average game length of 80 full-moves gives the game of chess an astronomically
large estimated game-tree complexity of 10123 which makes it unfeasible to completely explore the
game-tree and "solve chess" [2]. However, it is still necessary to think several moves ahead to
capably reason about which moves to select. These factors combined with the discrete nature of the
game makes chess an interesting setting for developing computer agents that play games. In fact,
the field of computer chess has a rich history and is connected with the beginnings of the sciences
of Artificial Intelligence and general computing.

In computer chess, the main approach that is used is some form of searching algorithm that
explores the game tree and thus reasons about the future positions that can be reached, in combina-
tion with some evaluation function that evaluates the positions and some logic that backpropagates
this evaluation to the root state. Claude E. Shannon coined the concepts of Type A and Type B
search strategies for the game of chess [3]. Type A strategies can be seen as a form of brute-force
that searches all positions up to a certain depth, where the states are then evaluated in some way.
Type B strategies however, use some intuitive understanding of the game to explore more promising
lines deeper. Today, the most succesful chess engines, such as Stockfish and Leela Chess Zero [4],
still use these approaches.

Stockfish1 uses a Type A search strategy, namely a classical minimax search with alpha-beta
pruning, in combination with a Neural Network evaluation function based on the Efficiently Up-
datable Neural Network (NNUE) that was introduced for Shogi2, also known as Janapenese chess.
The minmax algorithm searches as deep as possible as the engine can during the time it is given,
evaluates the state with a neural network, and then, assuming that both players play optimally,
recursively backpropogates the maximum or minimum child node value (depending on if it is our
turn or the opponents turn at the specific depth) back all the way to the root state to select the
best move.

Leela Chess Zero3 on the other hand uses a Type B search strategy based on the Monte Carlo
tree search approach by AlphaZero, where a reinforcement learning agent learns a neural network
that guides the search tree to find good moves. AlphaZero learns through the reinforcement learning
framework of trial and error via self-play, where it plays against itself over and over again to become
better at the game.

In this project, we aim to implement both of these approaches, together with a third approach
that uses alpha-beta search in combination with an handcrafted evaluation function. However,
it is worth to note that both of the original implementations used large amounts of computational
resources to be able to train their neural networks, and with us only having access to a few GPUs, do
not aim to come close to the originals in terms of results. Nonetheless, the selected approaches offer
a good variety of methods and valuable experience to us, the developers, as they require efficiently
implemented code, large support systems such as a chess library, and are connected to state of the
art methods in the field of Artificial Intelligence.

1https://stockfishchess.org/
2https://github.com/asdfjkl/nnue/blob/main/nnue_en.pdf
3https://lczero.org/
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0b0000000011111111 lsl(0b0000000011111111, 8)
Swhite pawns = {A2, . . . ,H2} Swhite pawns = {A3, . . . ,H3}

Figure 1: To see how bitsets can be used to manipulate the board efficiently, we consider an example.
In the left bitset for white pawns, bit 8-15 are set so there are white pawns on square A2-H2. If
a logical left-shift is executed on this bitset’s bitstring 8 times, the board to the right is obtained
where all pawns have been pushed to rank 3.

2 Method
This chapter presents the methods used to establish the results.

2.1 Chess Library
Just as a human needs knowledge of the rules of chess to play it, so does a computer. In particular,
given a certain board state, a chess playing program needs to be able to compute the set of legal
moves and apply one of them to obtain the next board state. If the state space is to be searched,
these two operations also have to be fast.

We developed our own chess library for this project, libchess, which implements the rules of chess
and various utilities. The library uses bit arrays of size 64 to represent sets of squares on the chess
board. Bit 0 corresponds to square A1, bit 1 to square A2, etc. If a bit is set to 1, it is in the set.
The board consists of one bitset per piece type and color indicating which squares are occupied.
Bitwise operations allow these sets are queried and manipulated in parallel. An example of how this
is used for pawn pushes is presented in Figure 1.

2.2 Minimax search with alpha-beta pruning
The underlying principle for our first approach was the Minimax search algorithm with alpha-beta
pruning, similar to the Stockfish chess engine previously mentioned. The Minimax algorithm works
by creating a search tree in which the nodes are game states and the edges are actions. Each depth
level in the tree corresponds to a certain player’s turn, in our case alternating between black and
white. The algorithm will find the best action in a certain node by recursively calling itself on each
child node and taking the maximum or minimum value (depending on whose turn it is) of that. The
base cases of the recursion are the terminal nodes, or leaves in the tree, which would be a checkmate
or stalemate in our case. At the base cases the value of the node will be set to -1, 0, or 1 for a black
win, stalemate and white win respectively. After that, the action with the best value is chosen.

Since the branching factor in chess is high (around 35 on average) the search tree in the Min-
imax algorithm would become extremely large. A pure Minimax search would because of this be
impossible in practice. For this reason we used a heuristic to be able to evaluate nodes that are
not terminal. This makes it possible to set a maximum search depth. The heuristic can be either
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handcrafted (e.g. counting the pieces currently on the board) or learning based (e.g. an artificial
neural network).

To further speed up this algorithm alpha-beta pruning was implemented. Alpha-beta pruning
works by ignoring nodes where at least one case has been found to prove its value to be worse
than any of the previously explored nodes. This way, the number of nodes that are evaluated are
decreased.

A problem with this algorithm arises when using a heuristics that only looks at which pieces are
present on the board, and not their position. For example, if a queen can get captured in the next
move a heuristic like this would not reflect this in the evaluation and would be very misleading. To
mitigate this problem we extended the algorithm with quiescence search. Quiescence search works
by defining nodes as either stable or unstable, and if a node is unstable the maximum search depth
would be ignored and the algorithm keeps searching until there are no unstable children. In our
case we defined a node as unstable if a capture or promotion is possible in the next move.

2.3 Hand-crafted evaluation function
The hand-crafted evaluation function is based on the "Simplified Evaluation Function" designed
by Tomasz Mchniewsky, which is thoroughly described on chessprogramming.org4. The evaluation
function is based on combining piece values which represents the material in play for a player, as
well as positioning values that captures how it is better to have certain pieces on certain squares on
the board compared to others.

The piece values reflects how valuable different pieces are on the value scale of centipawn, which
basically details the value on a scale where a pawn is worth 100 points. The piece values are detailed
in Table 2.3. The piece value for a player is calculated as the sum of the piece values for the pieces
he has in play.

Piece type Centipawn value
Pawn 100
Knight 320
Bishop 330
Rook 500
Queen 900
King 20000

Table 1: Centipawn values of the different piece types.

The positional values are specific for each piece type, and are represented by an 8x8 matrix
which stores an integer value for each square to show how valuable a piece of that type is at that
square. The positional value matrix for pawns are shown in Table 2.3. In the positional value
matrix it can be seen that there is an incentive to advance the central pawns to get control over the
center squares, which is known to be a very powerful general strategy. In the value matrix it is also
reflected that it is very valuable to advance pawns to promote them, which is reflected by the fact
that the most valued positions for pawns are the position just before their promotion. The rest of
the position value matrices are detailed on chessprogramming.org5. The position value of a player
is then calculated by summing this positional values of all of his pieces.

The position values were then scaled to reflect the fact that material differences are more im-
portant than positional differences when less material is on board. This was done as shown below:

vpos_scaled = vpiece/Vpiece_max ∗ vpos,
4https://www.chessprogramming.org/Simplified_Evaluation_Function
5See footnote 4
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8 0 0 0 0 0 0 0 0
7 50 50 50 50 50 50 50 50
6 10 10 20 30 30 20 10 10
5 5 5 10 25 25 10 5 5
4 0 0 0 20 20 0 0 0
3 5 -5 -10 0 0 -10 -5 5
2 5 10 10 -20 -20 10 10 5
1 0 0 0 0 0 0 0 0

a b c d e f g h

Table 2: Positional values for pawns.

so as the piece values is decreased, the relative size of the positional value is decreased. Following
this, a player’s score is calculated by summing his piece values and positional values. Finally, the
difference between the ego player’s score and the opponent’s score is calculated to get the heuristic
score of the position from the ego player’s perspective.

2.4 NNUE evaluation function
Evaluating chess positions is an important step in the Alpha-Beta pruning algorithm. A simple,
yet effective method is to use a handcrafted heuristic based on specific features on the board, as
described in Section 1. Even though this method works fine with easy-to-implement heuristics,
making the evaluations reliable in all states of the game is difficult and requires a lot of expert
knowledge and weight fine-tuning.

To avoid this issue, a more modern approach is to train a neural network to evaluate chess
positions. This method has the advantage that the engine does not "inherit" chess knowledge from
the developers (from how features are weighted in the handcrafted heuristic). Instead, it relies on
the training data to tell whether a chess position is considered good or bad.

Unfortunately, during Alpha-Beta pruning, millions of positions need to be evaluated each sec-
ond. This puts a time constraint on position inference that is not possible to achieve with standard
forward passed through a complex enough network. Because of that neural networks have not been
used for evaluation by chess engines until recently, when Stockfish decided to partially add an Ef-
ficiently Updatable Neural Network (NNUE) [5] to their engine. This turned out to be successful,
in terms of performance, which makes the NNUE a promising evaluation approach to use in this
work. The following sections present how such an NNUE model was implemented and added to the
Alpha-Beta pruning algorithm.

2.4.1 Dataset Collection

To create a dataset that could be used to train the model over four million FEN strings (represen-
tation of chess positions) were downloaded from Stockfish open Github with positions for engine
development6. The most recent Stockfish engine was then used to evaluate each position. The
evaluation scores were stored in a text file together with the corresponding FEN strings. In order to
evaluate each position for a sufficient amount of time, the code was optimized and multi-threaded.

2.4.2 Model Implementation

The NNUE training model was implemented in libtorch (PyTorch C++ API). The aspect that
makes NNUE suitable for chess is the encoding of the chess position that is fed to the first layer of

6https://github.com/official-stockfish/books
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Figure 2: NNUE architecture.

the network, which enables fast inference. This encoding is called HalfKP [5]. HalfKP transforms
each position to a sparse binary vector, where the truth value of each entry is determined from the
following equation:

encoded_vectori = 1 if (king_color, king_square, piece_color, piece_type, piece_square)
∀king_color ∈ {own_king, enemy_king},
∀king_square ∈ {A1, ..., H8},
∀piece_color ∈ {own_perspective, enemy_perspective},
∀piece_type ∈ {pawn, rook, knight, bishop, queen}
∀piece_square ∈ {A1, ..., H8},

An important thing to note is that the piece colors are defined as own and enemy instead of black
and white. This is a trick that makes it possible to use the same model weights independent of if
it is black or white’s turn to play. However, in order for this to work the board has to be mirrored
vertically for all combinations where the king color is black.

When the input encoding logic was implemented the NNUE model could be created. The network
architecture can be seen in Figure 2. The data was divided 90%/5%/5% into train/validation/test
datasets. The loss function used during training was a squeezed version of the mean squared error,
as defined below:

Lossmse =
1

n

n∑
i=1

| sigmoid(prediction[i]
410

)− sigmoid( target[i]
410

) |2

During training different hyperparameters (optimizers, number of epochs, learning rate, and batch
size) were tested. However, since the training took a long time and the computational power on
the available hardware was limited, it was not possible to perform a grid search over different
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hyperparameter configurations. Instead, the final hyperparameters were decided by training a few
epochs with different configurations and choosing the one that seemed most promising based on
train and validation loss trends. The following hyperparameters were used in the final model:

Optimizer: Stochastic gradient descent

Number of epochs: 20

Batch size: 128

Learning rate: 0.1

2.4.3 Efficient inference

To evaluate positions during search special inference logic was added. This was done to avoid
expensive encoding of each position and to reduce the weight multiplications between the input and
the first hidden layer - which was possible due to the structure of the HalfKP encoding. Every time
a piece moved (unless it was a king) a maximum of three entries could change values in the encoded
vector. This was utilized by storing the output from the first hidden layer, for the own player and
the enemy player’s perspective. The weights of the moving pieces could then be added or subtracted
to that output and the result could then be propagated through the rest of the network. This is
more efficient since the encoding of the input is avoided and the multiplications are reduced. The
indices of the moving pieces were calculated with the following formula (for each perspective):

idx = 640 ∗ king_square+ 320 ∗ side+ 64 ∗ piece_type+ piece_square

Since the HalfKP encoding represents the relations between pieces and kings, every time a king
moves the position has to be encoded and propagated through the complete network. This is
expensive, but since it only happens rarely (in relation to other moves) the benefit of the HalfKP
encodings, in terms of inference time, is still large.

2.5 SigmaZero: Self-Play and a General Reinforcement Learning Algo-
rithm

The second approach used to create a chess-playing program is an implementation of the AlphaZero
algorithm described by Silver et al. (2017) [6]. AlphaZero is a deep neural network that is combined
with a tree search heuristic called Monte Carlo Tree Search (MCTS). In this section, we cover
our implementation of the MCTS algorithm, neural network, reinforcement learning algorithm and
the training of the model as well as some tricks we used for speeding up the model. We call our
implementation SigmaZero.

2.5.1 Monte Carlo Tree Search

Our variation of the MCTS algorithm was implemented as a C++ library wrapped around our chess
engine. In essence, the algorithm works by iteratively building up a tree of nodes that represent
different board states. When a new game starts, a main node representing the current board state
is initialized. For each real move that is to be made, the algorithm iteratively builds a tree of moves
from the initial position by choosing the most interesting position in the tree to evaluate, making
the most promising move given that position, and adding the state given by the new position to the
tree. When the algorithm has run for a sufficient amount of iterations and the tree is sufficiently
large (usually after a fixed number of iterations), the move that is the best according to the search
is selected [7]. Note that the algorithm needs some kind of evaluator that evaluates possible moves
and board states.
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More formally, a main node Nroot is initialized for the current board state S. A child node Nchild

is initialized for each possible move from Nroot. For each tree search iteration, the current tree is
traversed from Nroot. At each depth of the tree search, a node to traverse from is selected based on
the UCB1 score, which scores nodes based on their probability of leading to a win, how much our
policy, how many times they have been visited before. When a leaf node is reached, it is expanded
with child nodes if the reached state is not terminal. The evaluator’s policy ~π, i.e. probabilities
of selecting the moves corresponding to the child nodes, are assigned to each child node, and the
value of the traversed node is set according to its valuation V . Furthermore, the leaf nodes amount
of visits N is increased by one. The value and amount of visits are then backpropagated through
the tree, all the way back to Nroot. This means that for each iteration, one leaf node in the tree is
expanded (if it is not a terminal node). The variation of UCB1 used in our implementation is given
by equation 1.

UCB1 = γ · π + V,

γ = log
Nparent + C1 + 1

C1
+ C2 ·

√
Nparent

Nself + 1
,

C1 = 19652,

C2 = 1.25

(1)

When a total of I iterations have been made, the perceived best move to make in Nroot is made
by selecting the child node to Nroot that has the highest amount of visits, N . In our case, the
algorithm was implemented as a Node class that has a state, value, prior (move probability) and
amount of visits stored. Each nodes children and parent node are stored as pointers.

2.5.2 Deep Neural Network as an Evaluator

The evaluator that was used is a shallower version of the network introduced in [6]. The network
essentially consists of 4 parts - an input block, a residual stack and two heads, one value head and
one policy head. The input of the network is a 8∗8∗((12+2)∗H+9) tensor. H is an unsigned integer
and corresponds to the amount of previous board states that should be passed to the network. In
our case, only the current state of the board was fed to the network, so H = 1. The other 9 layers
correspond to other features. Table 2.5.2 describes what each layer in the input stack corresponds
to.

Input stack layer Contents
1-12 Each layer is a binary representation of positions for each piece type for both colors
13-14 Amount of repetitions of the position given by 1-12
15 layer of ones or zeros (white or black’s turn)
16 amount of total moves

17-18 white’s castling
19-20 black’s castling
21 amount of uneventful turns

Table 3: Explanation of input feature stack to the network given the case H = 1. If H > 1, layers
1-14 are repeated for each previous position

The network architecture is described by table 2.5.2. The policy head outputs a tensor of logits
for each possible move in the game of chess (8x8x73 in total). In each evaluation of a leaf node in
the monte carlo tree search, the outputs of the network are used to estimate the value of that node
and its children. The policy heads output is softmaxed, and mapped to the child nodes by a) setting
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the logits of moves that are non-valid to 0 and b) softmaxing the resulting logits. The value heads
output which is a scalar between -1 and 1 is simply assigned as the value of the leaf node.

Module Contents Connects to

Input

Input layer (8x8x21)
2d Conv (in: 128, out: 128, kernel size: 3x3, padding: 1)
2d BatchNorm (128 features)
ReLU Residual block

Residual
block (x10)

Residual layer (split)
2d Conv (in: 128, out: 128, kernel size: 3x3, padding: 1)
2d BatchNorm (128 features)
ReLU
2d Conv (in: 128, out: 128, kernel size: 3x3, stride: 1, padding: 1)
2d BatchNorm (128 features)
Residual layer (join)
ReLU Value head | Policy head

Value head

2d Conv (in: 128, out: 128, kernel size: 1x1)
2d BatchNorm (1 feature)
ReLU
Flatten
Linear (in: 64, out: 256)
ReLU
Flatten
Linear (in: 256, out: 1)
Tanh -

Policy head

2d Conv (in: 128, out: 2, kernel size: 1x1)
2d BatchNorm (2 features)
ReLU
Flatten
Linear (in: 128, out: 8x8x73 -

Table 4: Neural network architecture

When training the neural network, we use the loss function

L = (z − v)2 − pT ∗ log π (2)

where z is the output of the value head, v is the value of the node based on the MCTS, p is the
policy head’s output and π is a vector containing the child nodes posterior distribution, i.e. each
child’s total visits divided by the sum of the children’s total visits.

2.5.3 Self-play

The parameters of the network are updated through self-play reinforcement learning. Games are
continually played using MCTS guided by the neural network with the latest parameters. When a
self-play game reaches a terminal state, its outcome is recorded and it added to a fixed-size first in,
first out replay buffer. Board states, move probabilities and game outcomes are continually sampled
from the replay buffer and used to update the network’s parameters using the loss function and
gradient descent.

8



2.5.4 Implementation

The AlphaZero algorithm is sample-inefficient and requires a lot of computing power to converge
towards good play in reasonable time. For this reason we train the network on one GPU, and use
multiple GPUs for self-play. The replay buffer stores the 16384 latest self-play game replay states.
Each self-play agent receives updated network parameters after the network has been trained on
512 batches of size 256.

For self-play games, we run 600 Monte-Carlo iterations for each move. To speed up the game
completion rate, we take inspiration from Wu (2020) [8] and reduce the number of iterations to 100
on 75% of the moves. Reducing the number of iterations has an impact on the quality of the moves,
so these are not recorded and used for training. By spending less time on certain moves, we reach
board states where checkmates are more likely quicker. Although certain moves are discarded, we
found that this reduced the time needed to fill the replay buffer.

Despite this, we found that convergence towards good play was slow. This is likely due to the
credit assignment problem [9] (see Section 4.2). As an alternative approach we tried using material
score as value function, which is more immediate. Instead of labelling each move in a replay as
winning (1), losing (-1) or drawing (0), we score each non-terminal move according the normalized
material difference in relative piece value (1 for pawns, 3 for knights and bishops, 5 for rooks and 9
for queens). This should cause the algorithm to learn to make good piece exchanges.

2.6 Elo Estimation
The most common way of measuring the skill of a chess player is the Elo rating system [10]. It is
a comparative rating that is initialized to some value and then updated incrementally with each
played game. We use Elo rating as a way to evaluate our implementations. To simulate a pool of
opposing players we use Stockfish. For each estimation, we intialize the rating to R = 1500 and
tune Stockfish to play at that level. We calculate the expected outcome as E = 1

2 and update the
rating according to R′ = R + 40 · (S − E) where S is the actual score (1 if the game was won, 1

2
if the game was drawn and 0 if the game was lost). This process is repeated until a convergence
criterion is met. The final Elo rating can not be used as an absolute measure of the playing skill of
an implementation, but it can be used to compare the different implementations.
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Figure 3: Training and validations loss for NNUE.

3 Results
This section presents the results of the implemented methods.

3.1 Alpha-Beta with hand-crafted evaluation function
The alpha-beta pruning algorithm with a handcrafted heuristic was evaluated using the Elo esti-
mation method mentioned in section 2.5. The Elo was estimated to be around 1350, but since this
is the lowest possible score from our estimator we believe that there is a high uncertainty to this
result.

However, when playing against humans the engine managed to beat many of us, including all
challengers that played against it during the presentation.

3.2 Alpha-Beta with NNUE evaluation function
The NNUE based evaluation engine was not able to win a single game against the lowest rated (1350
Elo) engine, possible to play against through the Elo estimation script (see section 2.6). Further,
when played against, the moves made by the engine often seemed kind of random with a lack of
intuition.

During the training of the evaluation network, the model seemed to learn some kind of relation-
ship between positions and evaluation scores. Figure 3 shows how the training and validation loss
evolved during training.
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3.3 SigmaZero
As mentioned in the Section 2.5.4, we trained two different versions of SigmaZero. The first version
trained using the traditional value function of the end-outcome of the game. The second version
trained using difference in material as the value function, essentially encouraging the engine to
make moves that gain material. A graph of the training losses for the two engines can be found in
Figure 4 and 5. While the material-value version certainly felt a lot better than the end-outcome
version when looking at the games it played, no such conclusion could be draw from only looking
at the training loss of the two engines. Therefor we had to find another way to do a quantitative
comparison.

Figure 4: End-Outcome Training Loss
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Figure 5: Material-Value Training Loss

There were difficulties when trying to do an Elo estimation of the two engines, because both
engines lost every game. Thus we can conclude that neither engine was good enough to beat the
Stockfish versions that was used to measure Elo (the worst of which had an Elo of 1350). Instead
we had the group member Justus Karlsson play 3 games against each engine to do a quantitative
comparison between the two engines. For reference, Justus has an Elo of about 800 on chess.com.
The results were conclusive, the material-value version won its games by 3-0 and the end-outcome
version lost by 0-3. The full games can be found in Section A.
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4 Discussion
This section discusses the results obtained in Section 3.

4.1 Alpha-Beta
This section discuss the results of the two Alpha-Beta search engines: the one using handcrafted
features and the one using the NNUE for evaluation of positions.

4.1.1 Handcrafted heuristic

Even though the handcrafted heuristic only received an estimate of 1350 Elo, it still performed well
against humans players which it was tested against. For a Blitz game where the engine and the
opponent had 10 minutes each the engine spent around 10 seconds on each move and reached a
search depth of around 4. The consequence of this is that it will play perfectly, in respect to it’s own
evaluation function from 4 moves in the future, so it will catch any obvious piece blunders which
are common by human beginners. However beyond the 4 moves which it has searched it is fairly
naive. Quiescence search limits this naivety since it avoids finishing an evaluation in an unstable
state, but it is possible that the opponent has a checkmate available 5 moves in the future which is
entirely missed by the algorithm.

Additionally, the evaluation function is biased and completely based on human intuition. No
machine learning has been utilized, so no complex patterns are detected, only a simple formula that
combines piece and position values is returned. However, the upside of this is that the function
is extremely fast which allowed it to reach a search depth of 4 on average laptop hardware. This
is an enormous advantage compared to more advanced but slower methods as much more can be
inferred from a deeper search tree then a shallow one. Additionally, evaluating a chess position is a
very complex task, so creating a machine learning method that can do this fairly accurately is not
straight forward.

4.1.2 NNUE evaluation

When the handcrafted heuristic was exchanged for the NNUE model the engine played much worse.
This was unfortunate but not very unexpected, due to several reasons. Firstly, since chess is a
complicated game, in order to achieve good results the network had to be trained for many epochs on
a large dataset. This took a long time and since the hardware resources were limited hyperparameters
had to be chosen such that the training/validation loss converged in a reasonable amount of time.
By lowering the learning rate and increasing the number of epochs there is a chance that the model
would have found better relationships between positions and evaluations (converged to a better
global minimum).

The model could probably also have been further improved by spending more time on testing
and comparing hyperparameters, input encodings, and loss functions. For instance, in the Stockfish
implementation of the NNUE, the actual outcome of the game is included in the loss function. Also,
virtual feature encodings (over-representations of information) are concatenated with the HalfKP
encodings during training. This is said to make the NNUE less sensitive to hyperparameter changes
and reduce the convergence time.

Finally, in order for the NNUE to outperform the handcrafted evaluation function extremely fast
inference time is required. Even though the NNUE architecture was constructed for that purpose, an
efficient enough implementation is difficult to implement. As mentioned in section 3.2, to speed up
inference, intermediate results from earlier evaluations were stored and reused. During this process,
the weights of the moving pieces were added or subtracted batch-wise (vectorized calculations) by
using PyTorch tensors allocated on the GPU. This was probably faster than updating the weights
iteratively on the CPU, but an even more efficient approach would have been to perform vectorized
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calculations on the CPU (to avoid latency from moving memory between devices). However, this
is complicated to implement and would have required a lot of hours spent on learning about SIMD
optimization, which was considered out of topic for this project.

4.2 SigmaZero
It is somewhat difficult to come to any kind of conclusion based on our results. As mentioned
earlier, the loss graphs tell us very little about how well the two different methods actually play
chess. The games Justus played against both engines can however give us some limited insight into
the quality of the two engines’ play. It is clear that the classical end-outcome approach, losing all
three games, has not really had the time to learn much. It often seems to behave randomly and
frequently blunders pieces. It also often misses free material. The reason behind these results will
be discussed further later on.

The material-value approach performed significantly better, beating Justus in all three games.
This agent played significantly more aggressively, exploiting all situations where it could gain mate-
rial, even if the move had long-term negative consequences. This aggressive goal of taking material
makes the agent good at exploiting blunders where the opponent player leaves pieces hanging (i.e.
undefended), which subsequently makes the agent good at gaining a material advantage over inex-
perienced chess players. However, a downside of the materialistic attitude of the agent is that it
becomes bad at finding checkmates and finishing games.

It was clear that in both approaches, the amount of training resources we had access to was a
limiting factor when it came to the performance of the engines. The team at Deepmind used over
5000 TPUs to train AlphaZero over 9 hours [6], compared to the 16 GPUs we used to train over
48 hours. The resulting discrepancy in the number of games played is massive. During its training,
AlphaZero played 44 million games, while SigmaZero only played around 100 thousand. We were
aware that this would be a problem, but we were initially hoping that the training resources we
had would be enough to at least get some intelligent level of chess play using methods similar to
AlphaZero.

One central issue with AlphaZero and its end-outcome approach is that reward is uniformly
assigned to all moves of a given player. Meaning that a player could play terribly all game, but if
it successfully exploits a blunder from the opponent and wins the game, all of its moves, including
the terrible ones will be marked as winning moves. This makes it hard to distinguish good moves
from bad moves and properly decide which moves made the agent win, presenting an instance of the
credit assignment problem. This issue makes the approach quite sample-inefficient, as the agent will
require a massive number of games to counteract this problem and properly identify which moves
regularly lead to a winning position.

One way to mitigate this problem is to introduce reward shaping. Reward shaping is a classical
extension in reinforcement learning, where the reward function is modified using domain knowledge
to give the agent intermediate rewards, guiding it towards winning states. Reward shaping has
been successfully applied in domains where an agent trained through simple self-play (as in our
end-outcome approach) performed no better than a random agent [11]. We had similar results, as
our material-value implementation that applied reward shaping gave us much better results in the
same limited training time than the end-outcome approach. Reward shaping partially addresses the
sample inefficiency of the end-outcome approach.
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A Justus vs SigmaZero

A.1 SigmaZero material version wins by 3-0
Game 1 - Black (bot) wins Link to game

1. d4 Na6 { A40 Australian Defense } 2. Nc3 h6 3. e3 Nb8 4. Ba6 bxa6 5. Nb5 axb5 6. Qd3 b4 7.
Qb3 e6 8. Qxb4 Bxb4+ 9. Bd2 Bxd2+ 10. Kxd2 Bb7 11. Nf3 g5 12. c4 g4 13. Ne5 f6 14. Nxg4 h5
15. Nxf6+ Nxf6 16. Rac1 Ne4+ 17. Kd3 Nxf2+ 18. Ke2 Nxh1 19. Rxh1 Rh6 20. Rd1 a6 21. d5 Rg6
22. dxe6 Ke7 23. exd7 Rxg2+ 24. Ke1 Rg8 25. b4 Rf8 26. c5 Ra7 27. a4 Rf6 28. b5 Ra8 29. c6
Bxc6 30. bxc6 Ke6 31. e4 Nxc6 32. a5 Nxa5 33. Ra1 Nc4 34. Rc1 Ne5 35. Rc5 Nxd7 36. e5 Nxe5
37. Rxe5+ Kxe5 38. h4 Rg6 39. Kf2 Rb6 40. Kf3 Rb2 41. Kg3 Qc8 42. Kf3 Qh3# { Black wins by
checkmate. } 0-1

Game 2 - Black (bot) wins Link to game

1. Nc3 { A00 Van Geet Opening } f5?! { (0.00 0.54) Inaccuracy. d5 was best. } (1... d5 2. d4
Nf6 3. Bf4 e6 4. Nb5 Na6 5. e3 Be7 6. h4) 2. e4 fxe4 3. Nxe4 Nf6 4. Nxf6+ exf6 5. d4 Nc6 6.
Nf3?! { (0.75 -0.13) Inaccuracy. d5 was best. } (6. d5 Ne5 7. Qh5+ g6 8. Qe2 Qe7 9. Bd2
b6 10. O-O-O Bb7) 6... Qe7+?! { (-0.13 0.75) Inaccuracy. d5 was best. } (6... d5 7. Bd3
Qe7+ 8. Be3 Be6 9. O-O Qd7 10. c3 Bd6 11. b4) 7. Be2 d5 8. O-O Bg4 9. h3 Bf5 10. Bb5 g6?? {
(0.31 3.87) Blunder. O-O-O was best. } (10... O-O-O) 11. Re1 Be4 12. Bf4?! { (3.84 2.92)
Inaccuracy. Nd2 was best. } (12. Nd2 O-O-O 13. Bxc6 bxc6 14. Qe2 Qb4 15. Nxe4 dxe4 16. c3
Qa4 17. Qxe4 Bd6 18. Qe6+ Kb7) 12... g5?! { (2.92 3.75) Inaccuracy. O-O-O was best. }
(12... O-O-O 13. Bxc6) 13. Bg3?! { (3.75 2.72) Inaccuracy. c4 was best. } (13. c4) 13...
a5?? { (2.72 6.67) Blunder. O-O-O was best. } (13... O-O-O 14. Bxc6 bxc6 15. Nd2 Qd7 16.
c3 Bd3 17. Re3 Bb5 18. a4 Ba6 19. b4 f5 20. Be5) 14. c3?! { (6.67 4.86) Inaccuracy. Nd2
was best. } (14. Nd2) 14... Rc8?! { (4.86 8.95) Inaccuracy. O-O-O was best. } (14... O-O-O
15. Bxc6) 15. Rc1 a4 16. c4 dxc4 17. Rxc4 a3 18. bxa3 Ra8 19. Bxc6+ bxc6 20. d5 cxd5 21.
Rcxe4?? { (8.90 2.92) Blunder. Rxc7 was best. } (21. Rxc7) 21... dxe4 22. Rxe4?? { (3.12
-7.61) Blunder. Qc2 was best. } (22. Qc2 exf3) 22... Qxe4 23. Bxc7 Qc6 24. Nd4 Qxc7 25. Qe1
+ Kd8?? { (-10.47 0.00) Blunder. Be7 was best. } (25... Be7 26. Qb1) 26. Ne6+ Kd7 27. Nxc7
Kxc7 28. Qc3+ Kb8?? { (0.00 5.86) Blunder. Kd7 was best. } (28... Kd7 29. Qd3+ Bd6 30.
Qb5+ Kc7 31. Qc4+ Kb6 32. Qb3+ Kc6 33. Qc4+) 29. a4?? { (5.86 -0.38) Blunder. Qxf6 was
best. } (29. Qxf6 Bg7 30. Qxg7 Rd8 31. Qxg5 Rd1+ 32. Kh2 Rd7 33. a4 Kc8 34. Qg8+ Kb7 35.
Qb3+ Kc7) 29... Ra6 30. a5? { (0.00 -1.02) Mistake. Qb3+ was best. } (30. Qb3+ Kc7 31. Qf7
+ Kd8 32. Qb7 Rd6 33. a5 Rd1+ 34. Kh2 Rd7 35. Qb8+ Ke7 36. a6 Kf7) 30... Ra8?? { (-1.02
6.49) Blunder. Be7 was best. } (30... Be7) 31. Qb4+?? { (6.49 -15.07) Blunder. Qxf6 was
best. } (31. Qxf6 Bg7 32. Qxg7 Rd8 33. Qxg5 Kc8 34. g4 Ra6 35. Qc5+ Kd7 36. Qf5+ Ke8 37.
Qxh7 Rd1+) 31... Kc7?? { (-15.07 8.07) Blunder. Bxb4 was best. } (31... Bxb4) 32. Qb6+ Kd7
33. a6?? { (9.72 0.00) Blunder. Qb7+ was best. } (33. Qb7+) 33... Be7 34. Qb7+ Kd6 35. a7
f5 36. a4 Rhf8 37. g3 g4 38. hxg4 fxg4 39. f4 Rfe8 40. f5?! { (-0.08 -0.73) Inaccuracy.
Kg2 was best. } (40. Kg2 Rec8) 40... h6?! { (-0.73 -0.17) Inaccuracy. Ke5 was best. }
(40... Ke5 41. Qb5+) 41. Qb6+ Kd5 42. f6?? { (0.00 Mate in 9) Checkmate is now unavoidable
. Qe6+ was best. } (42. Qe6+ Kd4 43. Qd7+ Kc3 44. Qc6+ Kb3 45. f6 Bb4 46. f7 Rec8 47. Qe6+
Ka3 48. Qxg4 Kxa4) 42... Bf8?? { (Mate in 9 -0.54) Lost forced checkmate sequence. Bc5+
was best. } (42... Bc5+ 43. Qxc5+ Kxc5 44. f7 Rf8 45. Kf2 Rxa7 46. Ke2 Rxa4 47. Kd2 Ra2+
48. Kc3 Rxf7 49. Kb3) 43. f7?? { (-0.54 -56.09) Blunder. Kg2 was best. } (43. Kg2 Red8 44.
Qe3 Kc6 45. Qe6+ Kb7 46. Qf7+ Kb6 47. Qe6+ Kxa7 48. Qe3+ Kb7 49. Qb3+ Kc7) 43... Re7?? {
(-56.09 0.00) Blunder. Bc5+ was best. } (43... Bc5+) 44. Qb3+ Kc5 45. Qb4+?? { (0.00 Mate
in 6) Checkmate is now unavoidable. Qc3+ was best. } (45. Qc3+ Kd5 46. Qb3+ Kd4 47. Qb4+
Kd5) 45... Kxb4 46. a5 Rxf7 47. a6 Rfxa7 48. Kf2 Rxa6 49. Ke3 Rd8 50. Kf4 Ra4 51. Kxg4 Rd7
52. Kh5 Ra3 53. g4 Ka4 54. g5 Ra2 55. g6 Rb2 56. Kg4 Rb4+ 57. Kf5 Rg7 58. Kf6 Ka3 59. Ke6
Rc4 60. Kf6 Rc1 61. Kf5 Be7 62. Ke6 Rg1 63. Kd7 Rg4 64. Ke8 Bf6 65. Kf8 R4xg6 66. Ke8 Rg5
67. Kf8 Rd5 68. Ke8 Rd8# { Black wins by checkmate. } 0-1

Game 3 - White (bot) wins Link to game
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1. Nf3 d5 { A06 Zukertort Opening } 2. Na3 Nf6 3. h3 e5 4. Nxe5 d4 5. g3 c5 6. Nb5 Bd6 7. Nf3
Bd7 8. Nxd6+ Ke7 9. Nxb7 Qc7 10. b4 Qxb7 11.

bxc5 Na6 12. Ba3 Rac8 13. c6+ Qb4 14. Bxb4+ Nxb4 15. cxd7 Nxd7 16. Nxd4 Rhd8 17. c3 Nc6 18. Nxc6
+ Rxc6 19. Bg2 Rcc8 20. Bf3 g5 21. Bg2 f5

22. Rh2 Rh8 23. Rc1 h5 24. Bb7 Rc7 25. Bf3 Rcc8 26. Bb7 Rb8 27. Bf3 g4 28. hxg4 fxg4 29. Bd5 Rh7
30. Be4 Rh6 31. Rh1 Nf6 32. f3 Nxe4 33.

fxe4 Rbh8 34. e5 h4 35. Rxh4 Rxh4 36. gxh4 Rxh4 37. d4 Rh1+ 38. Kf2 Rxd1 39. Rxd1 a5 40. Rc1 Kf7
41. Kg3 Kg6 42. Kxg4 Kf7 43. Kf5 Ke7 44.

Kg5 Kd7 45. c4 Kc6 46. Kf4 Kb6 47. Kg3 a4 48. d5 Ka5 49. d6 Kb4 50. d7 Ka3 51. d8=Q Kxa2 52. Qh4
a3 53. Qd4 Kb3 54. e6 a2 55. Qa1 Ka3 56.

e7 Kb3 57. e8=Q Ka3 58. Rh1 Kb4 59. Qe3 Kxc4 60. Qd2 Kb3 61. Qaxa2# { White wins by checkmate. }
1-0

A.2 SigmaZero end outcome version loses by 0-3
Game 1 - Black (human) wins Link to game

1. Nh3 { A00 Amar Opening } Nf6 2. a4 Nc6 3. Ra3 d5 4. b3 e5 5. e4 Bxa3 6. g4 Nxe4 7. Bxa3 Qf6
8. Bg2 Nxf2 9. Ke2 Nxd1 10. Bd6 Bxg4+ 11. Ke1 Bxh3 12. Be7 Kxe7 13. Rg1 Qf2+ 14. Kxd1 Qxg1+
15. Ke2 Qxg2+ 16. Ke3 d4+ 17. Kd3 Be6 18. c3 Qf3+ 19. Kc2 d3+ 20. Kb2 Rad8 21. h3 Qxh3 22.
c4 Nb4 23. Na3 Qh2 24. Nb1 Rd4 25. Na3 Qxd2+ 26. Kb1 Qa2+ 27. Kc1 d2+ 28. Kd1 Qa1+ 29. Ke2
d1=Q+ 30. Kf2 Rd3 31. Nb1 Qa2+ 32. Nd2 Qaxd2# { Black wins by checkmate. } 0-1

Game 2 - White (human) wins Link to game

1. d4 g6 { A40 Modern Defense } 2. Nc3 e6 3. e4 Qh4 4. Nf3 f5 5. Nxh4 a5 6. exf5 h6 7. fxg6 Ra7
8. Qh5 a4 9. Bg5 Be7 10. g7+ Kd8 11. gxh8=Q hxg5 12. Qxg8+ Bf8 13. Qxf8# { White wins by
checkmate. } 1-0

Game 3 - White (human) wins Link to game

1. Nh3 { A00 Amar Opening } e5 2. e4 Nf6 3. Qh5 Nxh5 4. g3 d5 5. Bb5+ c6 6. exd5 Qxd5 7. Bxc6+
Nxc6 8. a3 Nd4 9. b3 Nxc2+ 10. Kf1 Nxa1 11. a4 Qxh1+ 12. Ke2 Bxh3 13. Ba3 Qf1+ 14. Ke3 Bg2
15. d4 Nc2+ 16. Kd2 Qxb1 17. g4 Bxa3 18. h3 Bb4+ 19. Ke2 Be4 20. a5 Qe1# { Black wins by
checkmate. } 0-1
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