TDDE19 Project | Group 6 | Image diversity

Anton Hansson
IDA Linkoping University
antha652@student.liu.se

ABSTRACT

Many of today’s modern applications such as social media recom-
mend similar content to users based on what the user has previously
consumed. This leads to users missing out on original content. One
way of solving this is to instead recommend divergent content. In
this project two approaches for finding divergent images are studied:
1) using a deep ranking model; 2) using a Xception-CNN model. The
deep ranking model builds on a pre-trained convolutional neural
network that is fine-tuned for the task, using a triplet of images as
input. The Xception-CNN model takes a different approach, where
a pre-trained convolutional Neural Network is used for generating
captions for a given image. The text-similarity between generated
captions is then used to find divergent images. Both models are
concluded to be viable choices for learning fine-grained image
similarity and diversity, that can capture both between-class and
within-class image differences.

1 INTRODUCTION

Many of today’s popular applications have functionality for sug-
gesting content that is similar to what the user has already seen or
liked. This tends to corner the user in a bubble and limit the content
that the user is exposed to. This could be negative for the user’s cre-
ativity and therefore approaches that suggest more original content
for the user is of interest.

The aim of this project is to get experience regarding the task
of image diversity. In this report, two different approaches that try
to find divergent images have been implemented and evaluated.
Like most tasks in the field of image similarity, these approaches
utilize the ability of deep neural networks to extract image features.
Given a query image, these models try to find the N most divergent
images among a set of images. Two approaches are suggested: 1) a
Deep Ranking Model (DRM) creating image embeddings; and 2) an
Xception-CNN Model for generating captions of images and using
text-similarity.

1.1 Deep Ranking Model

One approach to achieve a fine-grained image similarity and di-
vergence is to employ deep ranking architecture. Deep ranking
uses deep convolutional neural networks (CNNs) that interpret the
relation between input image pairs, and have shown promising
performance in image similarity tasks [15]. The goal is to create an
image classifier that does not only consider two images to be similar
if they belong to the same category, but also can recognize more
fine-grained differences between images within the same class. A
hypothesis is that a simplified implementation of the deep ranking
image similarity model proposed by Wang et al. [15] also can find
image similarities. Subsequently, the model can be used to find
divergent images.

Dylan Maenpaa
IDA Linkoping University
dylma900@student.liu.se

Lawrence Thanakumar
Rajappa
IDA Linképing University
lawra776@student.liu.se

2 METHOD
2.1 Deep Ranking Model

Recently, Convolutional neural networks pre-trained on natural
images have been used in many different tasks [12]. The lower
layers of a CNN, tend to learn to find local features of a picture, such
as edges. The higher layers find features that give more semantic
meaning, such as shapes and objects [10]. These learned models
can then be utilized for many different tasks through fine-tuning,
e.g. classification.

In order to find image diversity, a model which have been learned
to find image similarity can be employed. The idea is that the met-
ric used to find similar images, also can be used to find dissimilar
images. Wang et al. [15] propose a fine-grained image similarity
model, that employs deep learning techniques called deep ranking
to learn similarity metrics. The implementation improves upon a
pre-trained CNN, and is proven to outperform models based on
hand-crafted visual features and deep classification models [15].
In this paper, a simpler implementation of the deep ranking ar-
chitecture is explored. Training CNNs from scratch requires large
amounts of labeled data, but also excessive time and resources.
Therefore, a transfer learning approach has been implemented,
where a pre-trained network is utilized and then fine-tuned.

2.1.1 Model architecture. The architecture, illustrated in Figure 1,
is a simplified version of the DRM proposed by Wang et al. [15]. The
simpler implemented architecture is referred to as Deep Ranking
Model Light (DRML). Inspired by DRM, DRML takes a triplet as
input. A triplets consists of a query image p;, positive image p;r,
and a negative image p; . This approach builds on the fact that
the positive image is more similar to the query image than the
negative image. Training three parallel multi-scale networks, as
suggested by Wang et al. [15] is too time-consuming for the scope
of this project, therefore only one single-scale network has been
implemented. The triplets are passed sequentially to this network.
The model consists of modified version of a pre-trained CNN, f(.),
called ResNet-18 [3]. The output of the ResNet-18 is forwarded to
a linear embedding layer, e(.), with a dimension of 4096. Finally,
the outputs of the embedding layers are forwarded to the ranking
layer.

2.1.2 Ranking layer. The ranking layer computes the model error
using the triplet loss function [which is illustrated in eq. 1. Triplet
loss is a ranking-based loss function that is often used to compare
the similarity of images [15]. It teaches the network to produce
similar feature embeddings of similar images, and different embed-
dings for images that differ from each other. To minimize the triplet
loss during learning, the model’s obedience of the ranking system
is evaluated, and the model’s gradients are back-propagated to the
lower layers so that their weights can be adjusted.

Ranking layer

e(f(Di))T e(f{pﬁ))I e(f(pi’) I
Linear Linear Linear
emb. emb. emb.

f(pi)x f(Dﬁ)W f(pi) W
CNN

Figure 1: An overview of the triplet-based architecture

1(pi, pi. p;) = max{0,g +D(f(pi). f(p})) = D(f (pi). f(p;))}
1)

D notes the Euclidean distance and g regularizes the gap between
two image pairs (p;, p) and (pi, p;). Consequently, the model is
optimized so that the distance between the query image and the
positive image is g lesser than the distance between the query image
and the negative image. Based on results by Wang et al.[15], the
parameter g is set to 1.0.

2.1.3 Tiny ImageNet 200. The organization ImageNet host an an-
nual computer vision competition, ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) . The competition has been devel-
oped upon a subset of ImageNet’s large visual database containing
more than 14 million hand-annotated images [4]. Some of today’s
most important deep learning neural network techniques, espe-
cially in the field of CNN, stem from this competition. For this
project, the Tiny ImageNet dataset [6] was used, which is a similar
challenge based on a smaller dataset of fewer image classes. Tiny
Imagenet contains 200 classes. Each class has 500 training images,
50 validation images, and 50 test images. All images are of size
64x64.

2.1.4 Generating triplets. A simpler version of triplet sampling
than of the original deep ranking paper was implemented. Triplets
are pre-computed where paths to images are stored in a text file.
Each line in the text file contains paths to the images in the order
of query image, positive image, and the negative image, denoted
pi p}, p; respectively.

A related triplet sampling implementation by Wang et al. [15]
have negative samples that are composed of two different types of
samples: in-class and out-of-class. For this project, only out-of-class
samples will be implemented. Again, out-of-class samples are im-
ages sampled randomly from any class except the class of the query

Thttp://www.image-net.org/challenges/LSVRC/

image. This way, many triplets can be created by using different
combinations of query, positive, and negative images. Ergo, the
model is trained on data where positive images are sampled from
the same class as the query image; and negative images from any
other class.

pi: Input to the Q (Query) network. This image is randomly sampled
across any class.

pi: Input to the P (Positive) network. This image is randomly sam-
pled from the SAME class as the query image.

p; : Input to the N (Negative) network. This image is randomly
sampled from any class EXCEPT the class of ‘p;°.

2.1.5 Training. The network was trained using Pytorch [11], and
the implementation was designed to run on both CPU and GPU.
However, memory problems may occur while handling image load-
ing on computers without a dedicated GPU. Therefore, all training
was done on a NVIDIA GeForce GTX 1080 GPU with 8GB memory
utilizing the CUDA platform available in Pytorch [11].

When applying deep learning models, the dataset used for train-
ing has a great impact on the result. For example, a variation in the
number of classes, class imbalance, and the total number of images
used will cause different outcomes. The most common obstacle
when working with CNNs is the limited amount of training images.
To address this problem and reduce the risk of overfitting, image
augmentation was applied to all training images. This was done by
applying a horizontal flip and a resize-crop operation with a certain
probability. Before training, images were also normalized in re-
gards to the mean and the standard deviation of the Tiny ImageNet
dataset.

The model was fine-tuned during 21 epochs, iterating over the
triplets described in section 2.1.4 once per epoch. After each epoch,
the triplet loss and accuracy were calculated both on training images
and validation images. It took approximately 12 hours to train the
network for 21 epochs. The model accepts parameters such as the
regularization gap, learning rate, and 12-regularization coefficient.
However, these hyperparameters were declared once and never
optimized due to the learning process being very time-consuming.
These values were, however, based on default values and optimal
values found by Wang et al. [15].

2.1.6 Evaluation. Two evaluation metrics were used: accuracy; and
a more subjective analysis of the image search results. Accuracy is
defined as if the model classifies a triplet sample correctly. In other
words, if the euclidean distance D(.,.) between the query image p;
and the positive image p; than the distance between the positive
image p; and the negative image p; . This means that the prediction
is interpreted as correct if D(p;, p7) < D(p;, p;). This definition of
accuracy is also employed by Wang et al. [15] and thus considered
suitable for the task at hand.

In order to evaluate the model visually, a more subjective ap-
proach was also taken. Given a query image, randomly sampled
from the validation set, the five most similar images were identi-
fied. This was done by propagating all training images through
the DRML to generate a space embedding of all training images.
Randomly chosen query embeddings were retrieved in the same

manner. The five closest neighbors were then identified with re-
spect to the euclidean distance of the embeddings. The analysis
of the five most similar images to a query image can give an un-
derstanding of what the model classifies as similar. Furthermore,
the 5 most divergent images to the query image were identified
by finding the images with the largest euclidean distance from the
query image.

2.2 Xception Model

Currently, image processing and image-related problems such as
object detection, image classification, etc. are solved using CNNs
[12]. The layers present in the CNN learns or extracts features such
as pixels and shapes of objects as well as other characteristics of
images which help solve various problems [10]. Once pre-trained
models such as VGG16, Xception are applied on CNNs, the feature
extraction is improved, increasing the performance of the model.
After the introduction of deep learning network architectures such
as LSTM (Long Short Term Memory), Bi-LSTM (Bidirectional Long
Short Term Memory), etc; Natural Language Processing (NLP) re-
lated tasks are becoming easier to solve [9]. The combination of
image and NLP techniques has led to solving many complex tasks
such as emotion detection and text-generation from sign language
for physically challenged people. This paper proposes a model solv-
ing the Image Diversity task by combining both CNN and LSTM
architectures.

Image diversity, i.e finding images that are similar to the given
input image can be solved in numerous ways, such as using Deep
Ranking [15] or SimNet [1], etc. Another way of solving this task
is to perform NLP tasks such as generating captions for a given
image and calculating the text-similarity between the generated
caption and the captions which are already available in the system
(database, cloud, etc). The suggested model requires a lot of sys-
tem resources and excessive time for training. To overcome this
bottleneck, a transfer learning approach has been implemented, us-
ing, Xception [2], which is a pre-trained model applied on a CNN.
As a result, this implementation achieves faster training times, im-
proved model predictions, usage of fewer system resources, etc. The
LSTM architecture is mainly used for sequence prediction problems
such as text-generation [8]. This architecture is used for generat-
ing captions by using the details and information from the CNN
architecture.

2.2.1 Model architecture.
The architecture, illustrated in Figure 2, is a simplified version based
on the CNN-LSTM architecture proposed by Moses Soh [13]. Using
this simplified model on images for caption generation is a time-
consuming process. Hence, a pre-trained model is added before
the final layer in the architecture to extract the features of given
images. These features are saved to a file that can be loaded and
used later. As a result, training times can be significantly reduced.
Simultaneously, the text data for each image undergoes pre-
processing steps such as text to lower, removing stop words, re-
moving symbols and numbers, and adding a start and end to each
sentence. The reason behind adding a start and end tag for each
sentence is that the start tag is a signal for the LSTM architecture to
start predicting the next word based on the previous word and the
end tag is to end the sequence prediction. These encoded sentences

Feature Vector at fully
connected Layer
(IX X 2048)

Pretrained GNN using
ImageNet Dataset - Xception

Input Imag: CNN

229X 229 X3

jumping

Figure 2: Image Caption Generator

are then saved to a file for further process. Figure 3 presents the
deep learning architecture with input and output size.

. mput: | (None, 32)
input_2: InputLayer
output: | (None, 32)

. input: | (None, 2048)
input_1: InputLayer
output: | (None, 2048)

mput:

(None, 32)

embedding_1: Embedding
(None, 32, 256)

output:

I l

input: [(None, 32, 256)

input: one, 2048
dropout_1: Dropout ! o)

dropout_2: Dropout
output: | (None, 2048)

oufput: | (None, 32, 256)

\

input:

-

nput: | (None, 2048)
output: | (None, 256)

(None, 32, 256)
(None, 256)

Istm_1: LSTM

denge_1: Denge
output:

‘ mput: | [(None, 256), (None, 256)] |

add_1: Add
‘ output: | (None, 256) |

input: | (None, 256)

dense_2: Dense

output: | (None, 256)

}

mput:

(None, 256)
(None, 7577)

dense_3: Dense

output:

Figure 3: CNN-LSTM Deep Learning Architecture

The architecture consists of three major parts,

(1) Image feature extractor - The features extracted from images,
of 2048 dimensions, are passed into the input layer of size
2048, then the output of the input layer is passed into the
dropout layer to drop randomly chosen neurons to avoid
overfitting. Now, regularized data is passed to the dense layer
where the output is

output = activation(dot(input, kernel) + bias) (2)

. The dimension of the final output is squeezed to 256. The

final layer in the actual CNN, i.e. classification layer, is re-
moved, as the task at hand is not classification.

Embedding - LSTM layer - Textual input is passed into the

embedding layer of input size 32 (maximum size of all textual

input). The embedding layer will use the index of the input

texts and find the corresponding vectors from the Table

of vectors. The output of the embedding layer is sent to

the dropout layer for regularization. Finally, the regularized

output is passed into the LSTM layer for sequence prediction.

Final Layer - Merging Image feature extractor and Embedding-
LSTM layer leads to the final prediction. This final layer is

equal to the size of the vocabulary.

—
)
~

—
SY)
=

2.2.2 Text-similarity.

Text-similarity is a way to determine how closely two sentences
are related to each other in terms of the lexical and semantic re-
lationships. There are numerous ways to calculate text-similarity
such as Cosine similarity, Euclidean distance, etc. In general, Cosine
similarity is widely used for all similarity related tasks [16]. The
formula for Cosine Similarity is illustrated in Figure 4.

A-B
IAllIB

cos(f) =

Figure 4: Cosine Similarity

The reason behind using Cosine Similarity is that at 8 = 0, the
cosine value is 1 and at 6 = 180, the cosine value is -1. That is, when
two vectors overlap with each other the cosine value will be higher
and when two vectors are exactly opposite, the cosine value will
be lower. The distance between vectors using cosine is measured
as a 1-cosine value.

Similar images are fetched from the system (Database, cloud, etc)
based on the text-similarity score between the generated caption
for an input image using the CNN-LSTM model and a list of all
captions available in the system. The threshold for text-similarity
score is >= 0.90. That is, if the score between two sentences is
greater than or equal to 0.90, then the corresponding image file is
fetched and displayed to the user.

2.2.3 Training.

The network was trained using Keras [7] and the implementation
was designed to run on both CPU and GPU. However, memory
problems may occur while handling image loading on computers
without a dedicated GPU. Hence, the model was trained on a OMEN
1 7T-CB100 laptop.

Data plays a vital role in the success of deep learning models.
Hence, variations such as lower/higher size of datasets, imbalanced
classes, etc. will have impacts on the results [14]. Hence, both image
data and text data are pre-processed before feeding into the model.
The following processes are applied to images:

(1) Images are resized to 299 X 299.
(2) Images are normalized to bring the pixel values in the range
of -1.0 to 1.0.

Once the images are pre-processed, the feature vector of the
pre-processed images is extracted by using the Xception model and
saved into a file for later use. The feature vectors are saved to a
file to remove the need to run the Xception model on these pre-
processed images again. Next, text data (captions) are read from the
file which is separated by the next line (\n) character, which is then
further split based on tab character(\t). The following processes are
applied to the text data, that is, the captions.

(1) Captions are converted to lower case.

(2) Punctuations are removed from captions.

(3) Captions whose length greater than 1 are retained.

image vector text sequence Predicted sequence

feature vector start Man

feature vector start,Man is

feature vector start,Man,is jumping
feature vector start,Man,is,jumping here
feature vector | start,Man,is,jumping,here end

Table 1: Structure of input and output data

(4) Numbers from captions are removed.

A vocabulary is created using the final output. The vocabulary
and cleaned text along with the image names are saved into each
files for later use. The structure of input and output data is illus-
trated in Table 1.

In Table 1, image vector and text sequence are inputs and Predicted
sequence is output. The input is passed to the proposed model for 20
epochs. During the first and second epoch, there was a significant
change in accuracy and loss on both training images and validation
images. It took approximately 7.5 hours to train the network for 20
epochs. The model’s hyperparameters were set to default values
and were not optimized due to time constraints. The default values
of the hyperparameters were the same as used in the Xception
model [2].

2.24 Evaluation.

The deep learning model, that is, CNN-LSTM is evaluated on three
metrics: accuracy, validation loss, and Bilingual Evaluation Under-
study (BLEU); which is a comprehensive metric to test caption or
text-generation models [17]. The accuracy is defined as if the model
predicts captions correctly, that is, the number of correctly pre-
dicted captions divided by the total number of captions. To evaluate
the performance of the model, the model is tested with validation
data not previously seen by the model. The validation loss is an-
other metric in the field of Machine Learning and Deep Learning to
evaluate a model’s performance. That is, the lower the validation
loss, the better the model [5]. Finally, BLEU is a score obtained by
comparing a generated caption to one or more reference captions
or actual captions, as said in Xception pre-trained model [2].

In order to further analyze the performance of the model, a
more practical approach was also taken. A query image, randomly
selected from the given validation image dataset was chosen. This
image, after passing through necessary pre-processing steps, was
given as an input image to the trained model. The trained model
generated the caption in less than 6-7 seconds. Once the caption was
generated, it was compared with the actual caption for the particular
input image and the text-similarity was calculated. The validation
data went trough this process, resulting in a score above 0.80. Text-
similarity was later calculated between the generated caption and
all other captions available in the system and selected images whose
text-similarity scores were above or equal to 0.90. This score yielded
a list of similar images for the given query image along with their
captions, Figure 14. In order to yield a list of dissimilar images, this
text-similarity threshold was reduced from 0.90 to a value between
0.50 and 0.60. These scores yielded a list of divergent images along
with their captions, presented in Figure 15.

3 RESULTS
3.1 Deep ranking model

Accuracy and loss for the training and validation set are presented
in Figures 5, 6, 7 and 8. The training and validation accuracy are
quite high, reaching more than 99%, and slightly less than 99%

respectively. The loss decreases gradually without any major spikes.

Note that Figures have varying scale on the y-axis and no smoothing
has been applied.

The 5 most similar, and 5 most divergent images are presented
in Figures 9 and 10 respectively. When observing the 5 most similar
images, the model seems to have found some similarities, such as
color and shape. The 5 most divergent images are quite unlike the

query image, for example, a yellow bus is surely not similar to a fish.
However, we consider it harder to determine what is ’divergent’

as it might as well be random. Therefore, these results are harder
to draw any conclusion from compared to the results displaying
similar images.

0.99

0.98

0.96

0 2 4 6 8 1012 14 16 18 20

Figure 5: Training accuracy for 21 epochs (DRML).

0.99
0.98
0.97
0.96

0.95

0 2 4 & 8 10 12 14 16 18 20

Figure 6: Validation accuracy for 21 epochs (DRML).

0.07

0.03

ge-3
4e-3

0 2 4 6 8 10 12 14 16 18 20

Figure 7: Training loss during 21 epochs (DRML).

016
012 +
0.08 +

004

0 2 4 6 8 1012 14 16 18 20

Figure 8: Validation loss during 21 epochs (DRML).

Figure 10: The 5 most divergent images to a car and fish
(DRML).

3.2 Xception Model

Accuracy and loss for the training and validation set are presented in
Figures 11, and 12. The training and validation accuracy is around
33% at epoch 4. The training and validation loss are 3.3206 and
3.6385 after 4 epochs. After 4 epochs, the validation and training
loss did not significantly decrease any more. Hence, the model
trained for 4 epochs was chosen as the final model.

The query image for which a caption is generated using the
CNN-LSTM model, and the 10 most similar images are presented in
Figures 13 and 14 respectively. When observing the 10 most similar
images, 4 images are irrelevant to the given query image. From this,
we can observe that out of 10 images, 6 similar images are fetched.
That is, roughly 60% of the predictions were correct. The reason
behind the poor performance of the model is explained in section
4.2.

— train validation
model accuracy
0.34
032
=
]
5 0.30 A
3
b
0.28
0.26 4
——T T T T T T T T T T T T T
12345678 9%510111213141516171819 20

epoch

Figure 11: Training and Validation accuracy for 20 epochs
(CNN-LSTM).

— ftrain validation

model loss

loss

Figure 12: Training and Validation Loss for 20 epochs (CNN-
LSTM).

Query Image

100

150

200

250

A i '("1’||.' i,
0 50 100 150 200 250

snowboarder is jumping over the ramp in the air

Figure 13: Query image with CNN-LSTM model generated
caption.

Output Images

the

the the the

girls man snowboarder dog person
faming : kA

into on the the in

the middle air the

air snowboard of running air

on ig very after over

the the tall the ramp
beach jump. frisbee

air

the
there the
is man ohe. snowboarder snowboarder
snowboard through ﬂ\ral:;ler?e 2 Sffl‘;';‘l
A s
o hoang ram| mountains air
air bicycle p =

Figure 14: Similar images with captions using text-
similarity.

Output Images

the
man

little young laying
qirl o, girl on “’e”‘r‘c"ed
in ped with bench e
pink v ent pigtails holding o
dress P painting leash wearin
into
wooden sgfe"r the sitting "’;‘:
cabin grass on orange
hat

dog
the dog with
small runs brown the
child on e black
climbs the e dog
on green o jumped
red grass Wa.m the
ropes near e tree
on wooden e stump
playground fence o
one
side

overalls
behind
him

Figure 15: Divergent images with captions using text-
similarity.

4 CONCLUSIONS AND DISCUSSION
4.1 Deep ranking model

The training and validation accuracy are quite high, reaching ap-
proximately 99.5% for the training set, and slightly less than 99% for
the validation set. Initially, the high performance was a bit surpris-
ing. However, the ResNet-18 has been trained to classify more than
1000 classes, thus it is reasonable for the DRML to have quite good
accuracy as well, especially due to the choice of in- and out-of-class
images for the triplets. Furthermore, a downward trend of the loss
and training can be observed. Thus, training for a longer period of
time would perhaps result in even better accuracy. During the last
epoch, there is a spike in the training loss, see Figure 7. However,
this spike has no significant meaning as the scale of the y-axis is
quite small compared to the other plots.

Image similarity has no definite answer and thus is not an easy
task. How similar two images are interpreted can vary from person
to person. The DRML needs to decide the degree of similarity be-
tween images based on different patterns in the images. Only using
the ResNet-18, image similarity would be considered on a category-
level, where, two images would be considered similar if they belong
to the same category. The goal of the DRM was to create a more
fine-grained image similarity classifier that is able to recognize
more fine-grained differences between images of the same class.
The DRML seems to have found some similar traits in images, e.g.
the color and shape. As seen in Figure 9, in the example with a car
as query, other cars and buses are considered similar. However, a
red car and a meat counter are also considered to be similar, which
implies that the model has identified some fine-grained features
such as color. This was also quite evident in the second example
with a fish as a query image.

The choice of triplets impacts what the model considers as sim-
ilar, and consequently also dissimilar. When generating triples,
positive images were sampled from the same class as the query
image, while negative images were sampled from the out-of-class
images. Thus it would be reasonable to think that the choice of
triplets would entail that images of the same class are similar. How-
ever, the results show signs of more fine-grained behavior. For
example, using the fish query in Figure 9, it was initially believed
that other fish would be considered similar. Nevertheless, it turned
out that no other fish was considered to be similar.

In conclusion, using DRML to find divergent images can be a
valid choice. However, one has to consider what divergent means,
and take this into account when generating triplets. The imple-
mented model is perhaps better suited for image similarity, as these
results are more intuitive and provide a better understanding of the
model’s behavior than it does regarding image diversity. A possible
approach to make the model better suited for image diversity could
be to look at how similar new images are to the images the user
has already seen or liked. Thus, also considering user history.

Furthermore, a multi-scale network architecture could be used
instead of single scale CNN, as a single-scale CNN has very strong
invariance encoded in the model, which may hinder fine-grained
image similarity recognition [15]. Another improvement would be
to include of in-class negative samples. Intuitively, such an improve-
ment will increase the model’s capability to recognize differences
between images of the same class. This is further supported by

Wang et al. [15], who discovered that the score-at-top-30 increased
as they increased the proportion in-class negative samples increased.
However, they found having at least a fraction, about 20%, of out of
class negative samples improved the accuracy a lot, which favors
the simplified triplet sampling implemented in this project. The
score-at-top-30 is defined as the number of correctly ranked triplets
minus the number of incorrectly ranked ones on the number of
triplets whose positive image or negative image is among the top
30 closest images of the query image [15].

4.2 Xception model

The training and validation accuracy of the final model is quite
low, reaching around 33% for both training and validation data. The
training and validation loss are 3.32 and 3.64. However, these results
were expected as the model was trained on only 12,000 images. In
order to attain better model predictions, the model most likely has
to be trained using more than 50.000 images along with captions.
However, this model does pretty well in predicting or generating
captions for a given input image.

The Xception model was chosen over other pre-trained image
models because, as per Francois Chollet [2], Xception models yield a
good accuracy when used on image classification tasks. Hence, fea-
tures extracted from images would be used to get good predictions
when applied on a CNN architecture for image-related tasks such as
image classification. Moreover, applying text-similarity techniques
paved a new approach of fetching similar images and divergent
images based on the similarity between generated captions, rather
than relying on image pixels comparisons.

In conclusion, Using CNN-LSTM along with text-similarity to
find divergent images is a new approach that joins Image Processing
and NLP together. The model trained is very well suited to predict
both similar images and divergent images by altering the threshold
for text similarity. But, before using this model, one should carefully
consider what makes two images similar or divergent to each other.
The results produced by this model may contain some divergent
images, in case of similar image search and vice versa. To avoid
this, the feature comparison between the given image and the set
of images can be implemented to remove any irrelevant images.

4.2.1 Further improvements.
This approach could be further improved by performing any one
of the following items,

(1) Applying various pre-trained image models such as VGG16,
ResNet-152, Inception V3, etc.

(2) Using COCO dataset which consists of around 100,000 im-
ages to train the model.

(3) Fine tuning the model’s hyperparameters.

(4) Using pre-trained word embeddings for text generation or
using Transformers; a new Deep Learning approach for se-
quence generation.

REFERENCES

[1] Srikar Appalaraju and Vineet Chaoji. 2017. Image similarity using deep CNN
and curriculum learning. arXiv preprint arXiv:1709.08761 (2017).

[2] Francois Chollet. 2017. Xception: Deep learning with depthwise separable con-
volutions. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 1251-1258.

(3]

(4]

[10]

(1]

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2015. Deep Residual
Learning for Image Recognition. arXiv:1512.03385 [cs] (Dec. 2015). http://arxiv.
org/abs/1512.03385 arXiv: 1512.03385.
ImageNet. 2020. About ImageNet.
//image-net.org/about-overview
Jacob Kasche and Fredrik Nordstrom. 2020. Regularization Methods in Neural
Networks.

Keggle. 2016. Tiny ImageNet. Retrieved November 25, 2020 from https://www.
kaggle.com/c/tiny-imagenet/overview

Keras. 2020. Keras. Retrieved December 13, 2020 from https://keras.io/
Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang, and Zhifang Sui. 2017.
Table-to-text generation by structure-aware seq2seq learning. arXiv preprint
arXiv:1711.09724 (2017).

Zhengdong Lu and Hang Li. 2016. Recent progress in deep learning for NLP. In
Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Tutorial Abstracts. 11-13.

Joe Yue-Hei Ng, Fan Yang, and Larry S. Davis. 2015. Exploiting local features
from deep networks for image retrieval. In 2015 IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW). IEEE, Boston, MA, USA,
53-61. https://doi.org/10.1109/CVPRW.2015.7301272

Pytorch. 2020. Pytorch. Retrieved November 26, 2020 from https://pytorch.org

Retrieved November 25, 2020 from http:

[12

[13

(14

[16

[17

H. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and
R. M. Summers. 2016. Deep Convolutional Neural Networks for Computer-Aided
Detection: CNN Architectures, Dataset Characteristics and Transfer Learning.
IEEE Transactions on Medical Imaging 35, 5 (May 2016), 1285-1298. https://doi.
0rg/10.1109/TMI.2016.2528162 Conference Name: IEEE Transactions on Medical
Imaging.

Moses Soh. 2016. Learning CNN-LSTM architectures for image caption genera-
tion. Dept. Comput. Sci., Stanford Univ., Stanford, CA, USA, Tech. Rep (2016).
Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. 2017. Re-
visiting unreasonable effectiveness of data in deep learning era. In Proceedings of
the IEEE international conference on computer vision. 843-852.

J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen, and
Y. Wu. 2014. Learning Fine-Grained Image Similarity with Deep Ranking. In
2014 IEEE Conference on Computer Vision and Pattern Recognition. 1386-1393.
https://doi.org/10.1109/CVPR.2014.180

Peipei Xia, Li Zhang, and Fanzhang Li. 2015. Learning similarity with cosine
similarity ensemble. Information Sciences 307 (2015), 39-52.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan Zhang, Jun Wang, and
Yong Yu. 2018. Texygen: A benchmarking platform for text generation models.
In The 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval. 1097-1100.

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://image-net.org/about-overview
http://image-net.org/about-overview
https://www.kaggle.com/c/tiny-imagenet/overview
https://www.kaggle.com/c/tiny-imagenet/overview
https://keras.io/
https://doi.org/10.1109/CVPRW.2015.7301272
https://pytorch.org
https://doi.org/10.1109/TMI.2016.2528162
https://doi.org/10.1109/TMI.2016.2528162
https://doi.org/10.1109/CVPR.2014.180

	Abstract
	1 Introduction
	1.1 Deep Ranking Model

	2 Method
	2.1 Deep Ranking Model
	2.2 Xception Model

	3 Results
	3.1 Deep ranking model
	3.2 Xception Model

	4 Conclusions and discussion
	4.1 Deep ranking model
	4.2 Xception model

	References

