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Introduction

Recent years have seen much improvement in object recognition. Many newly developed
sophisticated Artificial Intelligence (Al) systems, like self-driving cars, require trustworthy
methods to generate precise knowledge about the surrounding environment [6]. One of the
key applications used for this problem today is Semantic Segmentation which refers to the pro-
cess of clustering parts of an image together which belong to the same kind of object class
[6]. Semantic segmentation provides a way for machine learning algorithms such as Convo-
lutional neural networks (CNN) to detect objects in images, by training on annotated images.
The annotation process consists of labeling each pixel in the image with a corresponding class,
which can be used as ground truth in a network model to obtain a label map by classifying
each region based on a selected number of features [7].

1.1 Problem

One of the practical challenges in robotics is to acquire enough knowledge of the surrounding
environment to make a decision. Since this decision-support can be crucial to accomplish
an assigned task it is important that a model can deliver accurate and credible results. A
possible approach to detect objects in an image is to use CNN models trained for semantic
segmentation.

1.2 Approach

To solve this problem the group decided to examine how the choice of CNN architecture can
affect the performance on the same problem instance. The architectures that were chosen for
this project were VGG16, Unet and Segnet. The networks were trained on a number of differ-
ent sized datasets for semantic segmentation and the models were evaluated using metrics
such as Accuracy, Precision, Recall, F1-Score, Mean Intersection Over Union (mIOU) and loss over
epochs.



1.3. Delimitations

1.3 Delimitations

The scope of the project has been limited by a number of aspects. One of these is the hardware
available during the course. To limit the scope of the project the group have chosen to focus
on semantic segmentation, instead of tracking and 3d-reconstruction. This provides grounds
for further work. The results are tied to the choice of datasets. To limit training time of the
CNN models only a certain amount of objects is detected in the images.



Method

This sections describes the relevant theoretical background needed to understand the scope
of the project. All CNN architectures were implemented using Keras and tensorflow 1.9
backend.

21 CNN

CNN (Convolutional Neural Network) is a neural network architecture that uses the mathe-
matical operation convolutions in layers with images as input.
2.1.1 Types of layers

A CNN can consist of several different types of layers, here are the types of layers used in
this report described.

1. Convolution: A convolution layer uses the convolution operation and in most cases an
activation function.

2. Pooling: Pooling reduces the resolution of the image e.g. by using the maximum value
of pixels in areas in the image (Max pooling).

3. Deconvolution: A deconvolution layer is a convolution layer that can be used to scale
up the image.

4. Unpooling: Unpooling performs the inverse operation of pooling by scaling up the
image.

5. Batch normalization: Batch normalization normalizes the values for one input batch.

2.2 Dataset

The Cambridge-driving Labeled Video Database (CamVid) is a collection of videos with ob-
ject class semantic labels, complete with metadata. The video is collected by researchers in
Cambridge and from captured from the perspective of a driving automobile. Each pixel in
the video frames has been marked with ground truth labels that associate that pixel to one
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2.3. Segnet

of 32 different semantic classes. Due to memory limitations of the hardware only a subset
with 12 classes and 700 labeled classes is used in this study. This subset is further divided
into training, validation and test sets with pairs of unprocessed images and annotations that
contain the ground truth for each pixel in the image. A list of the classes used in the study
can be found in table 2.1}
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Sky
House
Pole
Road
Sidewalk
Tree

Sign
Fence
Car
People
Bicycle
None
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Table 2.1: The classes of the CamVid dataset used in the study.

2.3 Segnet

Segnet is a deep fully convolutional network that is used for pixel-wise segmentation [1].
Segnet was developed by the research group in Computer vision and robotics at Cambridge
university. The architecture of Segnet can be seen in figure 2.1} The first part of the network
can be seen as the encoder part, and the second part as a decoder. This type of architectures
are called deep encoder-decoder architecture [1]. The encoder part of Segnet is the same as
the fully convolutional part in VGG16 (see @ . For each encoder layers, there is a decoder
layer and lastly a pixel wise classification layer (Softmax classifier) [1].

Convolutional Encoder-Decoder

Output

Pooling Indices

RGB Image I conv + Batch Normalisation + ReLU Segmentation
I Pooling M Upsampling Softmax

Figure 2.1: Segnet architecture. The pooling used is a max pooling and up-sampling is done
by reusing the max indices from the respective pooling layers.

The encoder part consists of 13 convolutional layers. After each convolution, a batch
normalization is done and then a element-wise rectified-linear non-linearity (ReLU) activation
function is applied [1]. The ReLU function can be expressed as max (0, x) were x is the input
tensor. The encoder part also consists of five pooling layers that perform max pooling. What
makes Segnet special is that the indices from the max poolings are stored and reused in the
decoder. This ensures no information is lost when up-sampling [1].

The decoder part consists of five up-sampling layers, 13 convolutions, batch normaliza-
tion’s and ReLU activation functions. Lastly a Softmax classifier is applied, which returns
class probabilities for each pixel in the image. The pixel is then colored according to the most
probable class [1].



2.4. FCN with CRF postprocessing

2.4 FCN with CRF postprocessing

This approach uses a combination of a fully-convolutional deep learning model and the statis-
tical modeling method Conditional Random Fields (CRF). In this report, We tested the model
of FCN-CRF that Hao Zhou et al. wrote in their paper Image Segmentation Based on FCN-CRF
Model [11].

The process of the FCN-CRF model, as shown in figure[2.2} takes the original image which
is then trained using the FCN and the output is then sent to the CRF part of the model. Hoa
Zhou et al. explained in their paper [11] that this model is trained end-to-end which the error
is then transferred from output to the input. The reason is that FCN alone can not get high
accuracy in image segmentation because of the maxpooling layers which can cause that some
parts of the image to be discarded.

Energy function

CRF [ 1

Unary Pairwise

I

Prediction

Prediction

FCN

Max-pooling
Max-pooling
Max-pooling

I

Original image data

Figure 2.2: The process of FCN-CREF [11]

2.4.1 FCN (VGG16)

The FCN architecture used is the VGG16 architecture. The model takes an RGB image as
input and outputs one image for each class with the pixel-wise probabilities. The architecture
consists of convolution with ReLU (Rectified Linear Unit) activation, batch normalization
and max pooling in the down sampling phase. Three predictions are made in three different
resolutions from the In the up-sampling phase, it consists of deconvolution and summing of
the three predictions from the down-sampling layers. [10]

ReLU(z) = max(0,2) (2.1)

Layers

This section gives a description of the layers in figure



2.4. FCN with CRF postprocessing

¢ Conv + ReLu layers
Convolution layers that uses 3x3 kernels and ReLu activation function.

* Pool layers:
These layers are maxpooling layers that downsamples the image to a

* Predict layers: These layers use 1x1 convolution to output a predictions from three
different levels in the down-sampling phase.

¢ Deconv layers
The deconvolution layers uses strides to upsample the image. The strides are set to 2,
4, and 8 to Deconvl, Deconv2, and Deconv3 respectively.

Pooll Pool2 Pool3 Pool4 Pool5 Predictl  Deconvl Deconv2 Deconv3  Softmax

+
4096
512 *
256
. >O—
64 Predict2
6
Predict3
' Conv +ReLu ' Max Pooling ' Prediction | Deconv ' Softmax

Figure 2.3: Vggl6 architecture

24.2 CRF

CREF is a discriminative probability graph model that combines the best properties of hidden
Markov models and maximum entropy model [5]. As Hao Zhou et al. wrote in their paper
[11], CRF mdoels have a very strong reasoning ability. This gives CRF models the ability to
train and inference with complex, overlapping and non-independent features.

The top part of figure shows the different stages of the CRF part. The CRF model
has three main parts: the Unary function, the Pairwise function and the Energy function
which is a combination of the unary and pairwise functions. The formulas mentioned below,
taken from Hao Zhou et al. paper [11], explains the CRF model’s main parts. Unfortunately,
we refer to the original paper for more explanation and understanding of what these
formulas do.

P(Y|X) = Z(lx)exp(E(Y, X)) 22)
E(Y,X)= ) ®@y",x)+ >, @,y x) (2.3)
peEN (pa)es

The first equation (2.2) is the Gibbs distribution of the CRF model and the second equation
(2.3) is the energy function. The first part of equation 2.3 is the unary function and the second
part of equation 2.3 is the pairwise function.



2.5. Unet

2.5 Unet

U-Net is a fully convolutional neural network that was developed for biomedical image seg-
mentation. The network architecture is based on FCN, but its has been modified to work with
fewer training images and yield more precise segmentations. It is called Unet because of its
u-shaped architecture that can be seen in figure [8]
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Figure 2.4: Unet architecture. 8]

1. Contraction Path - Each block takes an input and applies two 3x3 convolution layers
followed by 2x2 max pooling.

2. Bottleneck - Applies two 3x3 CNN layers followed by 2x2 up-convolutional layers.

3. Expansive Path - Each block passes the input from the corresponding block in the con-
traction path to two 3x3 CNN layers followed by a 2x2 up-sampling layer.

The processing of the image in the contraction path consists of several blocks that apply
max pooling with stride 2 for down-sampling, which will halve the complexity of the image
and reduce it to its most prominent features. At each down-sampling step the number of
feature channels is doubled until the lowest level where the bottleneck is reached. The main
goal of the contraction path is to produce a a scaled down image representation that is easy
for the neural net to learn.

The expansive path in the decoder is more or less symmetric to the contraction path; the
number of expansion blocks is as same as the number of contraction blocks, but instead use
"up-convolution” to expand the image to its original size. For each down-sampling feature in
the contraction path information is lost regarding where features are located in favour of the
what features that are most prominent in the image. Since this information is still present at
each level we can regain it by concatenating the matrix at the right level between the corre-
sponding blocks in each path.

Lastly, the resulting mapping passes through another 3x3 CNN layer with the number
of feature maps equal to the number of output segments desired. Something that we have
appreciated when working with this architecture is that it is very modular. In our imple-
mentation we have reduced it to functions for down-blocks, bottleneck and up-blocks, which
potentially could be used to expand the architecture in the future.



Results

This section contains the results of how the CNN-architectures performed on the selected
datasets. The architectures models were evaluated using various performance metrics such
as loss over epochs and mean intersection over union on validation data. By checking against test
data, a confusion matrix was generated, where it is possible to see which classes that are most
commonly misclassified and vice versa. From the training, the epoch that generated the best
accuracy was chosen as the model to evaluate.

3.1 Segnet

Segnet was trained on the Camvid dataset using the built in Adam optimizer in Keras with a
learning rate of 5- 107°. All images in the data set was normalized using the mean and stan-
dard deviation of the entire training set. Further, a decay factor of 0.5 and a decay interval of
5 was chosen, this helped with avoiding overfitting. Also, the classes in the dataset was not
weighted, and the patience parameter for early stopping was set to 5 and the validation loss
was monitored. This means that training will stop after 5 epochs if no decrease in validation
loss can be seen. The training was set to run for a maximum of 50 epochs, but it stopped train-
ing earlier because of early stopping at epoch 31. This configuration resulted in an accuracy
of 77% and a mean IoU-score of 34.5%, this was also best result for Segnet. All parameters
used can be seen in table[3.1]

In figure the learning rate decay schedule can be seen. This shows which learning
rate will be used in each epoch. The figure [3.2| shows trining loss, validation loss, training
accuracy and validation accuracy during training. In figure (3.3|a confusion matrix for Segnet
is shown. The confusion matrix shows that Segnet classified class 0 and 3 correctly 91% and
93% of the time, respectively. Class 6 was classified as class 2 71% of the time and classes 6,7,9
and 10 was never classified correctly. Lastly, in[3.2) the precision, recall and f1-score for each
class can be seen together with the overall accuracy. In figure (3.4 the resulting segmentation
from Segnet is presented (middle row) together with the original image (top row) and the
true segmented image (bottom row).



3.1. Segnet
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Figure 3.1: Step decay schedule used during segnet training.

Parameter Value
Dataset CamVid
Net Segnet
Batch size 10
CRF iterations 0
Learning rate 5e-05
Learning rate decay type Step
Learning rate decay interval | 5
Learning rate decay factor 0.5
Max epochs 50
Normalize data Yes
Optimizer Adam
Early stopping patience 5

Use class weighting No

Table 3.1: Training parameters for segnet

Learning Rate Schedule

1‘0 2‘0 3‘0
Epoch #

40 50



3.1. Segnet
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Figure 3.2: Loss over epochs, training accuracy and validation accuracy for Segnet on the
Camvid dataset.
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Figure 3.3: Confusion matrix for segnet.
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3.2. FCN with CRF post-processing

class precision | recall | fl-score | support
0 0.94 091 0.93 2012022
1 0.73 0.75 0.74 2879855

2 0.03 0.00 0.00 136961
3 0.96 0.91 0.94 2994758
4 0.68 0.90 0.77 1083948
5 0.78 0.54 0.63 1322424

6 0.03 0.00 0.00 118279

7 0.05 0.01 0.02 138654

8 0.69 0.70 0.70 463292

9 0.02 0.00 0.00 74214

10 0.01 0.00 0.00 22106

11 0.20 0.51 0.29 444495
accuracy 0.77 11691008
macro avg 0.43 0.44 0.42 11691008
weighted avg 0.78 0.77 0.76 11691008

Table 3.2: Precision, recall and f1-score for each class

Figure 3.4: Image, prediction and ground truth for 5 images.

3.2 FCN with CRF post-processing
The fully convolutional architecture was trained on the CamVid dataset with the parameters

set according to table The data was not normalized before it was fed into the network,
instead batch normalization layers where used in the model.
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3.2. FCN with CRF post-processing

Parameter Value
Dataset CamVid
Net FCN
Batch size 16

CREF iterations 10
Learning rate 8-10*
Learning rate decay type None
Learning rate decay interval | 0
Learning rate decay factor 0

Max epochs 100
Normalize data No
Optimizer Adam
Early stopping patience 10

Use class weighting Yes

Table 3.3: Training parameters for FCN + CRF

class precision | recall | fl-score | support
0 0.93 0.93 0.93 2012022
1 0.79 0.79 0.79 2879855
2 0.13 0.14 0.13 136961
3 0.92 0.93 0.93 2994758
4 0.75 0.78 0.77 1083948
5 0.77 0.64 0.70 1322424
6 0.28 0.23 0.26 118279
7 0.26 0.07 0.11 138654
8 0.75 0.82 0.78 463292
9 0.30 0.40 0.34 74214
10 0.42 0.31 0.36 22106
11 0.30 0.42 0.35 444495
macro avg 0.55 0.54 0.54 11691008
weighted avg 0.80 0.79 0.79 11691008

Table 3.4: Class-wise Precision, recall and f1-score for FCN + CRF

12



3.2. FCN with CRF post-processing

Normalized Confusion Matrix
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Figure 3.5: Confusion matrix for FCN with CRF post processing

Figure 3.6: Image, prediction and ground truth for 5 images with FCN + CRF
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3.3. Unet

Training Loss Training mIOU

Figure 3.7: Loss over epochs, training accuracy and validation accuracy for FCN + CRF on
the Camvid dataset

3.3 Unet

This section contains the results from Unet on the Camvid dataset. The experiments were
performed using the Adam optimizer, where stochastic gradient descent method based on
adaptive estimation of first-order and second-order moments is used, with the static learning
rate of 0.01. The model utilizes batch normalization to normalize all the data that is processed
from the dataset. Weighting of different classes was not considered in this case. To avoid
overfitting the model an early stopping criteria on validation loss with patience of 5 was
selected. This means that the model will stop training if it does not improve, i.e. get higher
loss for validation data, for five epochs. The best results for Unet was reached after 32 epochs
because of the early stopping criteria. In table|3.5|all parameters used in the test run can be
found.

Parameter Value
Dataset CamVid
Net Unet
Batch size 20
CREF iterations 0
Learning rate le-03
Learning rate decay type Step
Learning rate decay interval | 0
Learning rate decay factor 0

Max epochs 100
Normalize data Yes
Optimizer Adam
Early stopping patience 5

Use class weighting No

Table 3.5: Training parameters for unet

The loss and mIOU on training and validation data from the Camvid dataset can be seen

in figure

14



3.3. Unet

Training Loss 1 Training mIOU

08-

0.6-

Loss
miouU

0.75 -

—— train_loss. —— train_mean_iou
— val_loss —— val_mean_iou

) 5 10 15 20 25 30 ) 5 10 15 20 25 30
Epochs Epochs

Figure 3.8: Loss over epochs, training mIOU and validation mIOU for Unet on the Camvid
dataset.

The best model results in the confusion matrix seen in figure
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Figure 3.9: Confusion matrix for Unet on the Camvid dataset.

The confusion matrix shows that Unet classified class 0 and 3 correctly 95% and 97% of
the time, it is also noteworthy that class 1 seems to be confused with other classes the most;
especially class 9 (57%) and 6-7 (52%). The model also fails to classify the classes 2, 7, 9 and
10. Lastly, in table the precision, recall and fl-score, from the confusion report, for each
class can be seen together with the overall accuracy. In figure[3.10| the resulting segmentation
from Unet is presented (middle row) together with the original image (top row) and the true
segmented image (bottom row).
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3.3. Unet

class precision | recall | fl-score | support
0 0.92 0.95 0.94 2012022
1 0.71 0.81 0.76 2879855

2 0.24 0.00 0.00 136961
3 0.84 0.97 0.90 2994758
4 0.68 0.55 0.61 1083948
5 0.67 0.59 0.63 1322424

6 0.05 0.01 0.01 118279

7 0.03 0.00 0.00 138654

8 0.77 0.61 0.68 463292

9 0.00 0.00 0.00 74214

10 0.00 0.00 0.00 22106

11 0.37 0.33 0.35 444495
accuracy 0.77 11691008
macro avg 0.44 0.40 0.41 11691008
weighted avg 0.73 0.77 0.75 11691008

Table 3.6: Precision, recall and f1-score for each class for Unet.

From the classification report we got that the Unet architecture reaches an accuracy of
76.6% and 32.8 mean intersection over union on the test data.

Figure 3.10: Image, prediction and ground truth for 5 images with Unet.
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3.4. Evaluation

3.4 Evaluation

In table 3.7| the results from the best models generated from the CNN architectures on the
Camvid dataset can be found.

Table 3.7: Performance metrics for CNN architectures on Camvid dataset.

Accuracy | mIOU | 1 epoch train time (s)
FCN + CRF | 79.5% 42.5% | 25

Segnet 77% 34.5% | 18

Unet 77% 32.8% | 5

As seen in table 3.7 FCN+CRF gets the highest Accuracy and mIOU score, while Unet is
the fastest network architecture with five seconds for 1 epoch train time.



Discussion

This section contains the discussion of the results from Unet, Segnet and FCN+CRF in the
study. Each architecture has its own evaluation for choice of model parameters, result on the
Camvid dataset and comparison to findings in the previous relevant scientific literature.

4.1 Segnet

Here the results for Segnet is discussed along with the parameters chosen. The results are
also compared to the ones presented in Badrinarayanan et al. which is the first published
paper on Segnet [1].

4.1.1 Parameters

Badrinarayanan et al. claimed that Segnet is not sensitive to the parameters chosen during
training and is thus a robust network. When training Segnet for this article, we concluded
that the parameters chosen made a huge difference for overall accuracy and which classes
were mostly classified. To get the best possible accuracy for Segnet, and extensive grid search
for the best hyper parameters was conducted. This resulted in the parameters chosen in
To stare blindly on accuracy might have been a mistake though, as discussed in
Badrinarayanan et al. used Stochastic gradient descent optimizer [1]], in this paper the Adam
optimizer was used. Badrinarayanan et al., also used weighted classes [1], which was not
used for Segnet in this paper. These changes in the parameter selection were chosen because
of the improvement in accuracy in this case.

4.1.2 Results

The results presented in this article does not replicate the results presented in Badrinarayanan
et al. [1]. There are many possible reasons to why that is. One is the data set chosen for this
article, Camvid is a small data set and Badrinarayanan et al. only used this data set when
training a smaller version of Segnet, called Segnet basic [1]. This smaller Segnet was then
used as a baseline. The fact that Camvid is small increases the risk of overfitting, especially
when training big networks, such as the networks in these papers. This is probably why
Segnet, along with the other networks in this report, often overfitted during training and

18



4.2. FCN with CRF

had a hard time generalizing (the test accuracy was much smaller than training or validation
accuracy).

The confusion matrix shows that classes 0 and 3 often are classified correctly, while
classes 6,7,9 and 10 never got correctly classified. This is probably because class 0 and 3
corresponds to sky and road, which are the biggest classes in the data set. Biggest in the
sense that they cover most of the image. This means that Segnet will gain a high accuracy
by only classifying these two classes, since they are the biggest part of the image. Class 6,7,9
and 10 are small objects in the image, such as road signs, fence, pedestrians and bikes. Signs
for instance usually are located next to roads and buildings (which are also a big class). Thus
the classifier misses the signs (and the other small classes) in favour of the big ones, since
the small classes does not increase accuracy much anyways. To weigh the classes so that the
small classes are worth more, the classifier guesses the small classes more often and more
correctly (this can be seen in the result for FCN+CRF where class weighting was used [3.3).
This does not however, in the case of Segnet, increase overall accuracy. But, for a program
that should be used for autonomous driving, to classify pedestrians is far more important
than to classify the sky. Hence, one should not stare blindly on overall accuracy since the
accuracy for predicting pedestrians should be somewhat prioritized.

4.2 FCN with CRF

In this section, the results of the FCN-CRF model will be discussed.

4.2.1 Parameters

The parameter that affected the performance of the model most was the learning rate. The
other important parameters for the model were: CRF iterations, Use class weighting and Early
stopping patience. The selected learning rate gave the best mean intersection over union. The
number of CRF iterations gave a better results up to ten iterations and made no noticeable
difference after that. The use of class weighting gave the model the ability to classify the small
classes better. The early stopping patience gave also the model a patience of ten epochs. This
means that the model is trained until ten iterations and see if the validation loss improves or
not.

4.2.2 Results

As seen in the confusion matrix in figure [3.5|and the class-wise performance in table the
model detected the different classes with a more even accuracy, where nine of the classes
where detected with a precision and recall of at least 30%. This is mostly due to the class
weighting, which helped the model with detecting smaller objects like persons and poles. As
seen in figure[3.6) most of the humans were detected, but there were also some false positives.

The CRF post processing made the edge detection of the segmentation much more accu-
rate, which can especially be seen on the horizon. The usage of CRF as post processing gave
the model a better accuracy compared to when the model only used FCN.

Hao Zhou et al. [11] used Pascal VOC 2012 as their dataset compared to CamVid dataset
which was used in this paper. Another main difference was that Hao Zhou et al. used
back-propagation in their FCN+CRF model while in this paper we chose not to use back-
propagation. For that said, the results that Hoa Zhou et al. got cannot be compared to the
results from our model.

A better and bigger dataset should be used to improve the results of the FCN+CRF model
in this paper. Another improvement that can be done is to implement Higher-Order CRF as
post-processing. This is much better than the normal CRF.
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4.3. Unet

4.3 Unet

Here the results for Unet are discussed along with the parameters chosen for the experiments
in the study. The results are also compared and evaluated against results from published
papers that have used a similar approach with Unet on Camvid.

4.3.1 Parameters

From the result section of Unet it is possible to see that the model has a tendency to overfit
and that it is thus necessary to have a small patience window for the early stopping criteria.
Since the model was initiated with default values with a static learning rate and did not use
any decay on the learning rate, there were not very many parameters that needed to be taken
into consideration. Each of the parameter values that were used in the experiment can be
found in table The decision to not use any class weighting have most likely affected the
overall mIOU score. Choosing a static value of 0.001 for the Adam optimizer proved to be
sufficient to acquire results that were not far from those obtained with parameter grid-search
for Segnet and thus this might be a good choice as starting value for a stochastic gradient
descent optimizer.

4.3.2 Results

The results for the Unet architecture on the Camvid dataset can be compared to several other
previous studies. Mennatullah et al. found that Unet turned to work second-best on CamVid
and got an mIOU of 53.9, but the authors note that it is slow and therefore might not be suit-
able for some applications [9]. As we can see here, class weighting is clearly critical to achiev-
ing a high mIOU on the dataset. These findings differ from the results from this study, where
we have found that unet is the fastest architecture of the ones tested, with only 5 seconds
per training epoch, and a lower parameter complexity than the other networks. A possible
reason for this may be due to the authors having a different approach in the implementation
of the architecture than the one used in this study. Furthermore, the fact that Unet reaches
results very close to Segnet seems very much in line with the findings by Farhangfar et al.,
where Unet is only a few percentage points off from the results that Segnet gets for semantic
segmentation on UAV images [4].

The confusion matrix 3.9|shows that classes 0 (sky) and 3 (road) were classified correctly
most of the time, while the classes 2 (Pole), 7 (Fence), 9 (People) and 10 (Bicycle) never got
correctly classified by the model. The reason for this is most likely in part since sky and roads
take up the most pixel area in the images, but also the fact that the support for classes in
CamVid are very imbalanced. As we can see in table [3.6] the most commonly misclassified
classes also have the lowest support in the dataset. Furthermore, we observe that classes
seem to be confused with 1 (House) the most. This means that smaller objects in the image
like poles, fences and bikes often get subsumed by a larger class like house in the model
predictions. A possible solution to alleviate this problem could be to weight the classes to get
a more accurate training.

There are many potential changes that could be made to potentially improve the results
from Unet in this study. For example, as a possible extension to the architecture, you could
try varying the block depth (number of layers), as well as the network depth (number of
Unet blocks) to see if it results in a better model. This should be easy to do since the structure
of the implemented Unet is very modular. Additionally, a more extensive study of how the
choice of parameter values affect the results could be done and finally, weighing the classes
in the dataset should result in a model where smaller classes get classified somewhat more
correctly.

20



(1]

(9]

Bibliography

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. “SegNet: A Deep Convolu-
tional Encoder-Decoder Architecture for Image Segmentation”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence (2017).

Gabriel J. Brostow, Jamie Shotton, Julien Fauqueur, and Roberto Cipolla. “Segmenta-
tion and Recognition Using Structure from Motion Point Clouds”. In: ECCV (1). 2008,
pp- 44-57.

Gabriel | Brostow, Julien Fauqueur, and Roberto Cipolla. “Semantic object classes in
video: A high-definition ground truth database”. In: Pattern Recognition Letters 30.2
(2009), pp. 88-97.

Saghar Farhangfar and Mehdi Rezaeian. “Semantic Segmentation of Aerial Images
using FCN-based Network”. In: 2019 27th Iranian Conference on Electrical Engineering
(ICEE). IEEE. 2019, pp. 1864-1868.

John Lafferty, Andrew McCallum, and Fernando C.N. Pereira. “Conditional Random
Fields: Probabilistic Models for Segmenting and Labeling Sequence Data”. In: (June
2001).

Xiaolong Liu, Zhidong Deng, and Yuhan Yang. “Recent progress in semantic image
segmentation”. In: Artificial Intelligence Review 52.2 (2019), pp. 1089-1106.

Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. “Learning deconvolution net-
work for semantic segmentation”. In: Proceedings of the IEEE international conference on
computer vision. 2015, pp. 1520-1528.

O. Ronneberger, P.Fischer, and T. Brox. “U-Net: Convolutional Networks for Biomed-
ical Image Segmentation”. In: Medical Image Computing and Computer-Assisted Inter-
vention (MICCAI). Vol. 9351. LNCS. (available on arXiv:1505.04597 [cs.CV]). Springer,
2015, pp. 234-241. URL: http : / / 1lmb . informatik . uni - freiburg . de /
Publications/2015/RFB15a.

Mennatullah Siam, Sara Elkerdawy, Martin Jagersand, and Senthil Yogamani. “Deep
semantic segmentation for automated driving: Taxonomy, roadmap and challenges”.
In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC).
IEEE. 2017, pp. 1-8.

21


http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a

Bibliography

[10]

[11]

Lei Tai, Qiong Ye, and Ming Liu. “PCA-aided Fully Convolutional Networks for Se-
mantic Segmentation of Multi-channel fMRI”. In: CoRR abs/1610.01732 (2016). arXiv:
1610.01732, URL: http://arxiv.org/abs/1610.01732.

H. Zhou, Jun Zhang, Jun Lei, Shuohao Li, and Dan Tu. “Image semantic segmentation
based on FCN-CRF model”. In: 2016 International Conference on Image, Vision and Com-
puting (ICIVC). Aug. 2016, pp. 9-14. DOI:[10.1109/ICIVC.2016.7571265!

22


https://arxiv.org/abs/1610.01732
http://arxiv.org/abs/1610.01732
https://doi.org/10.1109/ICIVC.2016.7571265

	Contents
	Introduction
	Problem
	Approach
	Delimitations

	Method
	CNN
	Dataset
	Segnet
	FCN with CRF postprocessing
	Unet

	Results
	Segnet
	FCN with CRF post-processing
	Unet
	Evaluation

	Discussion
	Segnet
	FCN with CRF
	Unet

	Bibliography

