
Linköping University
Department of Computer and Information Science (IDA)
The UPP group 2019-08-29

Short Valgrind Guide
Valgrind is a collection of tools that we can use for analysis of our programs. In this document we
will see how we use Valgrind to find memory leaks (If you want to know more about Valgrind you can
visit their website, www.valgrind.org).

Step 1: Compilation
In the file test.cc we have written a program that we want to examine for memory leaks. When
vi compile this program we have to add the -g flag. This is done so that Valgrind will have all the
necessary information for it to find any memory leaks. In every other aspect compilation works the
same way:

g++ -std=c++17 -g test.cc

(NOTE: test.cc is just an example file, it should be replaced with your file(s).)

Step 2: Running Valgrind
We have now compiled all files thus producing an executable file (a.out if nothing else have been
specified).

To examine the program for memory leaks you now have to run this executable file through Valgrind.
This is done like this:

valgrind --tool=memcheck --leak-check=yes ./a.out

Where a.out is the name of the executable file and ./ tells Valgrind that the exectuable file is located
in the current directory.

Valgrind will now run your program and print a lot of information about it. Now we just have to
understand the output.

Step 3.a: Memory leaks are present
The following program is an example where there are memory leaks. On line 7 in the program, under
main, we have allocated memory for an object of type A. This memory is never deallocated.

http://www.valgrind.org


2019-08-29

test.cc
1 class A{
2 int x;
3 };
4
5 int main()
6 {
7 A * a = new A();
8 return 0;
9 }

After we have compiled the program and run it through Valgrind the following (or something very
similar) is printed:
==18420== Memcheck, a memory error detector
==18420== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==18420== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
==18420== Command: ./a.out
==18420==
==18420==
==18420== HEAP SUMMARY:
==18420== in use at exit: 4 bytes in 1 blocks
==18420== total heap usage: 2 allocs, 1 frees, 72,708 bytes allocated
==18420==
==18420== 4 bytes in 1 blocks are definitely lost in loss record 1 of 1
==18420== at 0x4C3017F: operator new(unsigned long)
==18420== by 0x10868B: main (test.cc:8)
==18420==
==18420== LEAK SUMMARY:
==18420== definitely lost: 4 bytes in 1 blocks
==18420== indirectly lost: 0 bytes in 0 blocks
==18420== possibly lost: 0 bytes in 0 blocks
==18420== still reachable: 0 bytes in 0 blocks
==18420== suppressed: 0 bytes in 0 blocks
==18420==
==18420== For counts of detected and suppressed errors, rerun with: -v
==18420== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

In this wall-of-text Valgrind tells us two important things:
1. On line 8, in the file test.cc, in the function main, there is memory allocated that never gets

deallocated. This is specified by
==18420== by 0x10868B: main (test.cc:8)

2. That we have lost 4 bytes of data, as stated i LEAK SUMMARY:
==18420== LEAK SUMMARY:
==18420== definitely lost: 4 bytes in 1 blocks
==18420== indirectly lost: 0 bytes in 0 blocks
==18420== possibly lost: 0 bytes in 0 blocks
==18420== still reachable: 0 bytes in 0 blocks
==18420== suppressed: 0 bytes in 0 blocks



2019-08-29

Step 3.b: No memory leaks are present
The following is an example of a program where there are no memory leaks.

test.cc
1 class A{
2 int x;
3 };
4
5 int main()
6 {
7 A * a = new A();
8 delete a;
9 return 0;

10 }

After we have compiled the program and run it through Valgrind we get the following output:

==13369== Memcheck, a memory error detector
==13369== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==13369== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
==13369== Command: ./a.out
==13369==
==13369==
==13369== HEAP SUMMARY:
==13369== in use at exit: 0 bytes in 0 blocks
==13369== total heap usage: 2 allocs, 2 frees, 72,708 bytes allocated
==13369==
==13369== All heap blocks were freed -- no leaks are possible
==13369==
==13369== For counts of detected and suppressed errors, rerun with: -v
==13369== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

If there are no memory leaks Valgrind will print the line:

==13369== All heap blocks were freed -- no leaks are possible


	Short Valgrind Guide
	Step 1: Compilation
	Step 2: Running Valgrind
	Step 3.a: Memory leaks are present
	Step 3.b: No memory leaks are present


