
1 Pointers
Exercise 1.1. Make declarations of the following entities:

(a) A pointer to an integer

(b) A pointer to a string

(c) A pointer to a constant integer

(d) A constant pointer to a integer

(e) A constant pointer to a constant integer

(f) A pointer to an integer pointer

(g) A pointer to a constant integer pointer

Exercise 1.2. Use words to describe the following declarations:

(a) int* const*

(b) int const*

(c) int*

(d) std::string*

(e) int**

(f) int const* const

(g) int* const

Hint: All of these declarations correspond to a description in exercise 1.1.

1



Exercise 1.3. Write code that implements the following diagram:

value: 3

next:

A

Exercise 1.4. Draw a diagram that represents the following pointer structure:
1 struct A
2 {
3 int* ptr;
4 int value;
5 };
6
7 struct B
8 {
9 int* ptr;

10 A* other;
11 };
12
13 int main ()
14 {
15 int x { 3 };
16 A a { &x, 4 };
17 B b { &x, &a };
18 }

Exercise 1.5. Write code that implements the following diagram:

ptr:

next:

A

ptr:

next:

A

ptr1:

ptr2:

B

x: 1

y: 2

Note: ptr1 in B does not point at an A, it points to an int*.

Exercise 1.6. Suppose the B object in exercise 1.5 is called b. Write a single line of code
that uses b and returns the value of x. Note, you are not allowed to directly refer to x.

Exercise 1.7. Suppose that the left-most A in exercise 1.5 is called a. Write a single line of
code that uses a and returns the value of y. Note, you are not allowed to directly refer to
y.

2



2 Dynamic memory
Exercise 2.8. Create a program that:

1. dynamically allocates a std::string on the heap with the value "hello".

2. Prints the value of the allocated string.

3. Deallocates the string.

Exercise 2.9. Write a program that places the value 3 on the stack and the value 5 on the
heap. Make sure that no memory leaks occur.

Exercise 2.10. Improve the following code by removing unnecessary allocations and ensuring
that no memory leaks occur:

1 struct Node
2 {
3 int value { };
4 Node* next { };
5 };
6
7 Node* insert_after (Node* node , int value)
8 {
9 node ->next = new Node { value , node ->next };

10 }
11
12 int main ()
13 {
14 int* x { new int { 1 } };
15
16 Node* head { new Node { *x } };
17
18 Node* second { insert_after (head , 2) };
19 Node* third { insert_after (second , 3) };
20
21 insert_after (third , 4);
22
23 delete x;
24 }

3



Exercise 2.11. Fix the potential segmentation faults in this code (and potential bugs too):
1 # include <string >
2 # include <iostream >
3
4 struct Node
5 {
6 int value { };
7 Node* next { };
8 };
9

10 std :: string & get_string ()
11 {
12 // create a string containing 1024 ’a’ characters
13 std :: string my_string (1024 , ’a’);
14 return my_string ;
15 }
16
17 int main ()
18 {
19 std :: cout << get_string () << std :: endl;
20
21 Node* head { new Node { 1, new Node { 2 } } };
22
23 Node* current { head };
24 while (current ->value != 3)
25 {
26 current = current ->next;
27 }
28
29 if (current -> value == 3)
30 {
31 std :: cout << "Found 3!" << std :: endl;
32 }
33 else
34 {
35 std :: cout << "Didn ’t find 3..." << std :: endl;
36 }
37
38 delete head ->next;
39 delete head;
40 }

4


	Pointers
	Dynamic memory

