1 Pointers

Exercise 1.1. Make declarations of the following entities:
(a) A pointer to an integer
(b) A pointer to a string
(c) A pointer to a constant integer
(d) A constant pointer to a integer
(e) A constant pointer to a constant integer
(f) A pointer to an integer pointer
(g) A pointer to a constant integer pointer
Exercise 1.2. Use words to describe the following declarations:
(a) int* constx
(b) int constx
(c) intx
(d) std::string*
(e) intx*x*
(f) int const* const

(g) int* const

Hint: All of these declarations correspond to a description in exercise 1.1.

Exercise 1.3. Write code that implements the following diagram:

value:
next: E|»

A

Exercise 1.4. Draw a diagram that represents the following pointer structure:

struct A

{
int* ptr;
int value;

};

struct B
{
int* ptr;
A* other;
I3

int main ()

Exercise 1.5. Write code that implements the following diagram:
X:
V2

ptri: [] ptr: m ptr: [
ptr2: m next: E}"’/ next: El
B |

A A

Note: ptrl in B does not point at an A, it points to an intx.

Exercise 1.6. Suppose the B object in exercise 1.5 is called b. Write a single line of code
that uses b and returns the value of x. Note, you are not allowed to directly refer to x.

Exercise 1.7. Suppose that the left-most A in exercise 1.5 is called a. Write a single line of

code that uses a and returns the value of y. Note, you are not allowed to directly refer to
y.

2 Dynamic memory

Exercise 2.8. Create a program that:
1. dynamically allocates a std: :string on the heap with the value "hello".
2. Prints the value of the allocated string.
3. Deallocates the string.

Exercise 2.9. Write a program that places the value 3 on the stack and the value 5 on the
heap. Make sure that no memory leaks occur.

Exercise 2.10. Improve the following code by removing unnecessary allocations and ensuring
that no memory leaks occur:

struct Node

{
int value { };
Node* next { };

g
Node* insert_after (Node* node, int value)
{
node->next = new Node { value, node->next };
}

int main ()
{
int* x { new int { 1 } };
Node*x head { new Node { *x } };

Node* second { insert_after (head, 2) };
Node* third { insert_after (second, 3) I};

insert_after (third, 4);

delete x;

Exercise 2.11. Fix the potential segmentation faults in this code (and potential bugs too):

#include <string>
#include <iostream>

struct Node
{
int value { };
Node* next { };
»g

std::string& get_string()

{
// create a string containing 1024 ’a’ characters
std::string my_string (1024, ’a’);
return my_string;

}

int main ()

{
std::cout << get_string() << std::endl;

Node* head { new Node { 1, new Node { 2 } } };

Node* current { head };
while (current->value != 3)
{

current = current->next;

}

if (current->value == 3)
{
std::cout << "Found 3!" << std::endl;
}
else
{
std::cout << "Didn’t find 3..." << std::endl;
}

delete head->next;
delete head;

	Pointers
	Dynamic memory

