TDDE18/726G77 — Labl exercises

1 10

Exercise 1.1. Write a program that prints the message "Hello World!" followed by a
newline to the standard output of your terminal.

Exercise 1.2. Write a program that reads two integers from the standard input of your
terminal and prints the sum of those integers to the terminal.

Exercise 1.3. Write a program where the user enters two words on the same line and then
press <enter>. The program should print the two words in the opposite order from which
they where read, separated by a ’,’ character.

Exercise 1.4. Think about why the user could enter two words at once in the previous
assignment but the program could read them separately one at a time. What is the
mechanics behind this?

Exercise 1.5. Describe what buffered 10 means. What are the benefits of this compared to
unbuffered 107?

Exercise 1.6. How do you remove the content of the buffer in std: :cin?

Exercise 1.7. Write a program that reads an integer and then prints it with at least three
digits. If the integer has fewer than three digits there should be an appropriate amount
of zeroes added to the start of the initeger.

Hint: Look at <iomanip>: https://en.cppreference.com/w/cpp/header/iomanip.
Note: You should only use 10 operations, no if-statements or loops required.

Exercise 1.8. Write a program that generates two prompts for the user: one for a number
and one for a word and then prints the result of each prompt.

A prompt in this assignment means that the program freezes while waiting for input from
the user, and then once the user has pressed <enter> the program proceeds. The second
prompt should behave the same, no matter what the user entered in the first prompt.

Hint: If the user enters 1 word <enter> then the program should read the 1 and then
ignore the rest of that input (see: https://en.cppreference.com/w/cpp/io/basic |
istream/ignore).

Exercise 1.9. Write a program where the user enters a line of text and print that line.

Exercise 1.10. Write a program that generates three prompts: one when the user enters
an integer a (and potentially some other characters that should be ignored), one prompt
where the user enters a line of text and finally a second integer b. It then prints a + b on
one line and the line on the next line.

Exercise 1.11. Write a program where the user enter a real number (i.e. a number with a
potential decimal point). Then print said real number with exactly 4 digits of precision.

Example: If the user enters 1.5 then the program should print 1.5000. If the user enters
2.123456789 then the program should print 2.1234.

Hint: Look at <iomanip>: https://en.cppreference.com/w/cpp/header/iomanip.


https://en.cppreference.com/w/cpp/header/iomanip
https://en.cppreference.com/w/cpp/io/basic_istream/ignore
https://en.cppreference.com/w/cpp/io/basic_istream/ignore
https://en.cppreference.com/w/cpp/header/iomanip

TDDE18/726G77 — Labl exercises

2 Repetition
Note: In these exercises you have to think about what type of loop to use. Each exercise
should use a different type of loop compared to the other exercises.

Exercise 2.12. Make a program that reads a positive integer n and sums all integers from
1 to n.

Exercise 2.13. Write a program that prompts the user for an integer n. If the integer was
negative then generate the same prompt again. Do this until the integer is positive or
Zero.

Hint: You do not need if-statements or break statements for this exercise.

Exercise 2.14. Make a program that read integers from std: :cin and calculate their sum
until the user enters something that isn’t an integer. Print the sum once all integers have
been read.

Hint: The expression std::cin >> n can be used as a condition, and fails if it didn’t
manage to read an integer (assuming n is an integer type).

3 Floating point numbers

Exercise 3.15. Think about what you expect the following program to print, and what it
actually prints.

#include <iostream>
int main ()
{
float f { 0.01f };
float sum { 0.0 };
for (int i { 0 }; i < 10000; ++i)
{
sum += f;
}
std::cout << sum << std::endl;
std::cout << 10000 *x f << std::endl;
}

Why do they differ? What conclusions about how to use floating-point numbers can you
draw from this? Remember that floating-point numbers struggle with rounding errors.



TDDE18/726G77 — Labl exercises

Exercise 3.16. Fix the following program so that it prints the expected result without
hardcoding the value.

#include <iostream>
int main ()
{
float sum { 0.0f };
while (sum < 25)
{
sum += 0.1f;
std::cout << sum << std::endl;
}
std::cout << "Total sum: " << sum << std::endl;
}

Exercise 3.17. Why doesn’t this program print the final value (0.01)?

#include <iostream>
int main ()
{
float f { 100.0f };
while (f >= 0.01)
{
std::cout << f << std::endl;
f =f / 10;
}
}

Hint: The value 0.01 is of type double while f is of type float.

Exercise 3.18. You can solve the problem above by making 0.01 into a float instead. Do
this as simply as you can (can be done by adding one character to the code).




	IO
	Repetition
	Floating point numbers

