
TDDE18/726G77 – Examination

2024-09-19

Rules
• All code sent for assessment must compile and be well tested.

• Electronic devices are not allowed. Phones must be switched off and placed in a coat or
bag.

• Outdoor clothes and bags must be placed in the designated area.

• Students may leave no earlier than one hour after the exam start.

• Fill in invigilators designated list if you need to leave the room.

• All contact between students are strictly prohibited during the exam.

• Books and notes may be reviewed by invigilators during the exam.

• Questions regarding specific assignments or regarding the exam in general are submitted
via the communication client.

• System questions can be answered by an assistant if you raise your hand.

• Assignments sent in after the end of the exam will be disregarded.

• You can correct flaws and ask for new assessment until an assignment has grade “Pass”
or “Fail”. An assignment can be graded as “Fail” if no significant improvement took place
since last attempt.

• Assignments that are graded by points can be handed in again for re-assessment until the
maximum points have been reached or it marked as “Final”. When graded as “Final” you
keep the point from your previous attempt, but will not be permitted to hand in again.

Aiding material One C++-book
One A4-page with any notes on both sides

i

Examination
The exam consists of two parts, Part I and Part II. Both are assessed live which means that
handed in assignments will be assessed during the exam. Any flaws that the assessment revealed
can be fixed and then the assignment can be handed in again for re-assessment.

All assignments in Part I are graded Passed, Try again or Failed. The grade Passed will be
set if the assignment is fully completed according to specification and without any incorrect
practices. The grade Try again will be set if there are some issues tha need to be fixed. Failed
is set if no sufficient improvement was made on fixing the given feedback.

Assignments in Part II are graded based on points. Each assignment is worth 10. You may
resubmit solutions as long as significant improvement is made. If no significant improvement is
made you will get one last attempt before the assignment gets marked “Final” and the maximum
points earned for that assignment is locked in.

Grading guidelines
For a passing grade you need to pass all assignments in Part I and earn at least 13 points in
Part II.

For a higher grade you need to pass all assignments in Part I and earn points in Part II based
on the table(s) below.

Points earned Grade
13p 3
19p 4
25p 5

Table 1: Grading TDDE18

Points earned Grade
13p G
22p VG

Table 2: Grading 726G77

Bonus points
Each of the five labs that were handed in within the deadline and fully solved with only one
round of feedback grants you one bonus point. If all labs were granted a bonus point an
additional bonus point will be added as well. Meaning a maximum of six bonus points can be
earned during the course.

Bonus points are all counted towards the point total of Part II and is added on top of the points
earned during the exam.

The bonus is only applicable during the first exam given after the bonus was earned.

Computer environment
Log on
When instructed, log in as normal using you LiU-ID.

Desktop environment
Upon successful log in you will enter the desktop environment. The communication client should
start automatically. Note that the network is inaccessible. Networked application features may
thus malfunction.
It is important that you leave the communication client running during the entire exam. We
may send out public corrections and hints. Notify assistant if it does not start automatically
within 5 minutes after log in or after selecting the fish on the desktop.

Terminal commands
e++17 is used to compile with “all” warnings as errors.
w++17 is used to compile with “all” warnings. Recommended.
g++17 is used to compile without warnings.
valgrind --tool=memcheck is used to check for memory leaks.

C++ reference
During the exam you will have partial access to http://www.cppreference.com/, but only
through the desktop icon “Web access”. Do note that not everything on cppreference will be
available (in particular the pages under the “Language” section will be blocked). If you are
unable to access a page that should be available (it might have been blocked by mistake) then
you can send a message through the exam client. Note: The search functionality should work,
but only if you do it through cppreference. You cannot search on DuckDuckGo.

Given files
Any given files reside in the folder given_files on your desktop. This folder is write protected,
thus you don’t have to worry about accidentally changing the given files. To modify a given file,
you must first copy it to your work folder, use your desktop as a work folder. You are expected
to know how to do this, it is part of the course.

Log off
When your assignment and exam grade is satisfactory (and correct) in your communication
client it is safe to leave. If you run out of time you have to leave without knowing the result of
your last attempt, contact the examiner by email after the exam to know the result. Terminate
all open programs and log out.

TDDE18/726G77 – Exam 2024-09-19 14:00–19:00

Part I
In this part you are presented with three assignments. Your solutions to these assignments must
fulfill all specified requirements, follow good programming practice and consist of valid C++
code.

Assignment #1 – STL
struct Date
{

int month;
int day;

};

std::vector<Date> dates {
Date{1, 3}, Date{5, 18}, Date{4, 13}, Date{1, 7}, Date{4, 27}

};

Write code that sorts the vector dates so that the months are increasing while all the days
within a month are decreasing.

Expected result:
Date{1, 7}, Date{1, 3}, Date{4, 27}, Date{4, 13}, Date{5, 18}

Requirement: You must use one of the STL sorting algorithms together with an appropriate
lambda to make this work for any vectors of dates, not just the given dates vector.

Assignment #2 – Memory

curr:

5 3 7

Write code that move element 5 so that it instead lies between the existing elements with value
3 and 7 respectively. The operation described above may only use the pointer variable curr.
You can assume node are declared as:
struct Node
{

Node* prev;
int val;
Node* next;

};

Requirement: You are not allowed to move the values, you may only move the pointers. All of
the elements must be dynamically allocated and the code may not generate any memory leaks.

TDDE18/726G77 – Exam 2024-09-19 14:00–19:00

Assignment #3 – Polymorphism
Implement the following class hierarchy:

Book

title : string
author : string

+ description() : string

Fantasy

+ description() : string

Non_Fiction

- for_children : bool

+ description() : string

Where the description() has the following behaviour for each class:

Book returns a string consisting of the title followed by the author, separated by a comma.

Fantasy returns a string containing the title followed by the word “by” followed by the author.

Non_Fiction does the same as Book but adds the string ", for children" at the end if the
for_children variable is true.

Requirement: The given file assignment3.cc has a given main program that should work
without modification, and should produce the following output:

Requirement: All your classes should be declared and defined in one source file.
1984, George Orwell
Lord of the Rings by J.R.R. Tolkien
C++ Primer, Stanley Lippman
Grumpy Monkey, Suzanne Lang, for children

TDDE18/726G77 – Exam 2024-09-19 14:00–19:00

Part II
Each of the following three assignments are worth 10 points each, meaning you can earn up to
30 points in Part II. Remember that the bonus points earned from the course is added on top
of the points earned here.

Assignment #4 – Polymorphism

+

3 *

5 2

Addition

Number

Number Number

Multiplication

Arithmetic expressions can be represented as trees consisting of nodes. Each node can have none,
or two children (represented by arrows in the diagram above). Note that there are different types
of nodes, we have numbers, addition and multiplication. Number nodes have no children, while
addition and multiplication have two. This means that the classes representing addition and
multiplication stores two references (not pointers) to other nodes. The diagram shows the tree
representation of the expression:

3 + 5 · 2

We can evaluate the expression by asking the addition node (calling a member function) to
evaluate itself. The addition node will then ask its children (in this case the number 3 and the
multiplication) to evaulate themselves. Then the addition node takes the result from its two
children and return their sum. The value node will return 3, while the multiplication asks both
of its children to evalute themselves and returns their product. In this case the multiplication
will result in 10, which means the addition becomes 10 + 3 = 13.

In the given file assignment4.cc there is a given program. Your assignment is to implement
the class hierarchy required to make this program work.

Hint: Think hard about what classes you should implement, what data members and member
functions they should have and whether you need to introduce virtual member functions and
so on.

Requirement: The testprogram must work without any modifications to main.

Note: You will earn points by demonstrating various different concepts relating to classes,
inheritance and polymorphism so it is better to use too many features than too few.

TDDE18/726G77 – Exam 2024-09-19 14:00–19:00

Assignment #5 – STL

This assignment is based around the given file WAYPOINTS.txt. In the file there are four way-
points which are represented by an x- and a y-coordinate which are separated with -. Your
assignment is to create a program with appropriate STL algorithms that reads this file and
prints the total distance travelled if we visited each waypoint in order. We assume that we
travel between waypoints using straight lines. The diagram above shows the path defined by
WAYPOINTS.txt.

A

B
C

To measure the distance between two points we use Pythagoras theorem. This means that the
distance between the first pair of waypoints in the diagram are given by:

√
(4− 1)2 + (5− 1)2

where 4−1 is the difference between the x-coordinates of the points, while 5−1 is the difference
between the y-coordinates. In general the hypotenuse is given by:

C =
√
A2 +B2

So your job is to calculate the distances between each consecutive pair of points in WAYPOINTS.txt
and then sum them all together to get the total distance (should be ≈ 20.133). The output of
the program should just be the total distance.

You may not use any loops or recursion. The aim is to use appropriate STL algorithms to solve
the problem. The problem should work for any set of valid waypoints, not just the ones given.

Hint: The function std::sqrt in <cmath> calculates the square root of a number.

TDDE18/726G77 – Exam 2024-09-19 14:00–19:00

Assignment #6 – Memory
In given_files/assignment6.cc there is a given partial implementation for a slightly opti-
mized linked list that we call Jump_List. The difference between a normal linked list and our
Jump_List is that each node have two pointers instead of one. A next pointer that points to
the next element. But there is also a jump pointer which points to the element two steps ahead.
This allows us to search through the list much quicker since we in general can skip over half the
elements (see picture).

1 2 3 4 5 6 7

Your assignment is to implement the following member functions for Jump_List:

• Copy constructor

• Copy assignment operator

• Move constructor

• Move assignment operator

• Destructor

• The member function push_front() that takes a value and puts it at the beginning of the
list. Note that the jump pointer should be updated if that element exists.

Remember that the list must always maintain the given structure for the at() function to work
correctly.

Requirement: There may be no memory leaks.

Requirement: You must extend the test program so that it tests all the special member
functions.

Hint: The copy assignment operator can reuse the copy constructor by creating a copy as a
local variable.

Hint: You may implement the copy logic iteratively or recursively, that is up to you, however
a recursive solution is generally much simpler.

