
TDDE18/726G77 – Examination

2025-01-17

Rules
• All code sent for assessment must compile and be well tested.

• Electronic devices are not allowed. Phones must be switched off and placed in a coat or
bag.

• Outdoor clothes and bags must be placed in the designated area.

• Students may leave no earlier than one hour after the exam start.

• Fill in invigilators designated list if you need to leave the room.

• All contact between students are strictly prohibited during the exam.

• Books and notes may be reviewed by invigilators during the exam.

• Questions regarding specific assignments or regarding the exam in general are submitted
via the communication client.

• System questions can be answered by an assistant if you raise your hand.

• Assignments sent in after the end of the exam will be disregarded.

• You can correct flaws and ask for new assessment until an assignment has grade “Pass”
or “Fail”. An assignment can be graded as “Fail” if no significant improvement took place
since last attempt.

• Assignments that are graded by points can be handed in again for re-assessment until the
maximum points have been reached or it marked as “Final”. When graded as “Final” you
keep the point from your previous attempt, but will not be permitted to hand in again.

Aiding material One C++-book
One A4-page with any notes on both sides

i



Examination
The exam consists of two parts, Part I and Part II. Both are assessed live which means that
handed in assignments will be assessed during the exam. Any flaws that the assessment revealed
can be fixed and then the assignment can be handed in again for re-assessment.

All assignments in Part I are graded Passed, Try again or Failed. The grade Passed will be
set if the assignment is fully completed according to specification and without any incorrect
practices. The grade Try again will be set if there are some issues that need to be fixed. Failed
is set if no sufficient improvement was made on fixing the given feedback.

Assignments in Part II are graded based on points. Each assignment is worth 10. You may
resubmit solutions as long as significant improvement is made. If no significant improvement is
made you will get one last attempt before the assignment gets marked “Final” and the maximum
points earned for that assignment is locked in.

Grading guidelines
For a passing grade you need to pass all assignments in Part I and earn at least 10 points in
Part II.

For a higher grade you need to pass all assignments in Part I and earn points in Part II based
on the table(s) below.

Points earned Grade
10p 3
16p 4
22p 5

Table 1: Grading TDDE18

Points earned Grade
10p G
19p VG

Table 2: Grading 726G77

Bonus points
Bonus points earned from the labs are all counted towards the point total of Part II and is
added on top of the points earned during the exam.

The bonus is only applicable during the first exam given after the bonus was earned.



Computer environment
Log on
When instructed, log in as normal using you LiU-ID.

Desktop environment
Upon successful log in you will enter the desktop environment. The communication client should
start automatically. Note that the network is inaccessible. Networked application features may
thus malfunction.
It is important that you leave the communication client running during the entire exam. We
may send out public corrections and hints. Notify assistant if it does not start automatically
within 5 minutes after log in or after selecting the fish on the desktop.

Terminal commands
e++17 is used to compile with “all” warnings as errors.
w++17 is used to compile with “all” warnings. Recommended.
g++17 is used to compile without warnings.
valgrind --tool=memcheck is used to check for memory leaks.

C++ reference
During the exam you will have partial access to http://www.cppreference.com/, but only
through the desktop icon “Web access”. Do note that not everything on cppreference will be
available (in particular the pages under the “Language” section will be blocked). If you are
unable to access a page that should be available (it might have been blocked by mistake) then
you can send a message through the exam client. Note: The search functionality should work,
but only if you do it through cppreference. You cannot search on DuckDuckGo.

Given files
Any given files reside in the folder given_files on your desktop. This folder is write protected,
thus you don’t have to worry about accidentally changing the given files. To modify a given file,
you must first copy it to your work folder, use your desktop as a work folder. You are expected
to know how to do this, it is part of the course.

Log off
When your assignment and exam grade is satisfactory (and correct) in your communication
client it is safe to leave. If you run out of time you have to leave without knowing the result of
your last attempt, contact the examiner by email after the exam to know the result. Terminate
all open programs and log out.



TDDE18/726G77 – Exam 2025-01-17 08:00–13:00

Part I
In this part you are presented with three assignments. Your solutions to these assignments must
fulfill all specified requirements, follow good programming practice and consist of valid C++
code.

Assignment #1 – STL
In the given file assignment1.cc there is a struct that represent a board game and a container
with board games that represents a collection.
struct Game
{

string name;
int fun;
int storage;

};

Write code which check whether the board game collection is optimal. If it is not optimal then
the name of all non-optimal board games must be printed. If the collection is optimal then to
output should be done. A board game is optimal if fun divided by storage of a game is greater
than or equal to 3.

Functional requirements: Execution of the program must give the following output in the
terminal:
Descent Journeys in the Dark: first edition
Arcs

Non-functional requirements:

• You must use one or more appropriate STL-algorithms together with an appropriate
lambda function so that your solution can be applied to an arbitrary vector of games.

• You may not modify the given code, you may only make additions.



TDDE18/726G77 – Exam 2025-01-17 08:00–13:00

Assignment #2 – Memory

curr:

1 2 3

Write code that creates the linked-structure above. Then write code that modifies the structure
so that it looks like this:

curr:

1 4 3

Non-functional requirements:

• Each element must be dynamically allocated and the code may not generate any memory
leaks.

• A maximum of two variables of pointer type may be used in the main program.

• At the end of your program there must exist a variable curr that points at the first element
in the structure.



TDDE18/726G77 – Exam 2025-01-17 08:00–13:00

Assignment #3 – Polymorphism
Implement the following class hierarchy:

Printer

+ print() : void

Text_Printer

- value : std::string

+ print() : void

Number_Printer

- value : int

+ print() : void

Number_Printer::print() prints the integer Number_Printer::value to std::cout.

Text_Printer::print() prints the string Text_Printer::value, enclosed with " characters, to
std::cout.

You must also create a constructor for Text_Printer and Number_Printer that initializes their
data members.

Non-functional requirements:

• All your classes must be declared and defined in one source file.

• The given file assignment3.cc has a main-program that should work withot modifica-
tions.

Functional requirements: Execution of the program should give the following output to the
terminal:
5
"My text"



TDDE18/726G77 – Exam 2025-01-17 08:00–13:00

Part II
Each of the following three assignments are worth 10 points each, meaning you can earn up to
30 points in Part II. Remember that the bonus points earned from the course is added on top
of the points earned here.

Assignment #4 – Polymorphism
Trees is a common way to represent logical and arithmetic expressions in programming. In
this assignment you must extend the given code in assignment4.cc with those classes that are
required for the program to compile and work as intended, the beginning of a UML diagram is:

Node

Literal Negation BinaryNode

ConjunctionDisjunction

A short description of each class:

Node Base class in the hierarchy. All nodes that have a specific behaviour during evaluation
must implement the member function eval().

Literal Store a bool, during evaluation this class returns the stored truth-value.

Negation Stores a reference (or pointer) to a different node. At evaluation this class will return
the inverse (negation) of the truth-value calculated from evaluating its referenced node.

BinaryNode Is a node that refers to two other nodes.

Disjunction At evaluation this class will combine the values retrieved from evaluating both
referenced nodes by applying logical or. Then it returns the result.

Conjunction Similar to Disjunction but with logical and instead.

Functional requirement: Execution of the program must give the following output:
true



TDDE18/726G77 – Exam 2025-01-17 08:00–13:00

Assignment #5 – STL
In this assignment you will create a program that keeps track of the stock of a warehouse or
store. In assignment5.cc there is a given struct named Product that contains three data
members: the name of the product (name), the price of one unit of said product (price) and
how many units are currently in stock (stock).

Your assignment is to:

1. modify the given function read_products() so that it no longer uses any loops. This
function is called in the main-program where the rest of the steps will operate on the
vector that is returned from this function (called products).

2. Order the vector so that it is partitioned into two parts: the first part contains all products
that are in stock (i.e. all products where stock is greater than zero), the second part
contains all products that are not in stock.

Each part must be internally sorted in such a way that the most expensive product within
a part appears first and the cheapest appear last (within the part).

Note: both parts must still be stored in the products vector, you must keep track of the
boundary between the two parts yourself.

3. Print both parts according to the example below.

Requirement: In this assignment the aim is to use STL algorithms. Don’t use any loops or
recursion. You should not create any new containers, instead all work should be done on the
given vector.

Example run
Products in-stock:
- Fryer (249 SEK)
- Mat (199.5 SEK)
- Mop (129.9 SEK)
- Broom (49.9 SEK)
- Soap (39.9 SEK)
- Wrap (29.5 SEK)
- Bags (25.5 SEK)
- Towel (19.8 SEK)
- Brush (15 SEK)
- Sponge (12.5 SEK)

Product out-of-stock:
- Iron (399 SEK)
- Pot (299.5 SEK)
- Trashcan (149 SEK)
- Toilet (99.9 SEK)
- Laundry (89.9 SEK)
- Vacuum (79 SEK)
- Cloth (79 SEK)
- Cleaner (45 SEK)
- Detergent (35.5 SEK)
- Spray (25 SEK)

Note: There will be severe point deductions for each usage of loops or recursion. Inappropriate
choice of algorithm will impose strong point deductions.



TDDE18/726G77 – Exam 2025-01-17 08:00–13:00

Assignment #6 – Memory
An iterator is a class that keeps track of specific location in a container. How this is implemented
depens on what specific container is used. In our case the container is implemented as a linked
list. Then the iterator keeps track of a specific location by having a pointer to the node that
contains the value. In the image below we see an iterator object that keeps track of the second
value in a list:

top:
List 1 4 3

curr:
Iterator

In this assignment you will extend a given implementation of a linked list with a simplified
version of an iterator1. You must modify the given class List and write your own class Iterator.

The Iterator class will internally store a pointer to a Node from the list. This class has an
appropriate constructor and the following member operators:

• The dereference operator (int& operator*()) – This operator returns a reference to the
value of the node that the iterator is currently pointing to.

• Prefix increment operator – Moves the iterator one step forward in the list and returns
a reference to the iterator (i.e. to the iterator we just moved). For this assignment you
don’t have to implement the postfix variant.

• Comparison operator for equality – Compares two iterators and checks whether they are
pointing to the exact same node. This is done by comparing the addresses of the nodes
they are currently storing.

You also have to implement the following member functions in List:

• begin() – Create an Iterator object that points to the first node in the list.

• end() – Create an Iterator object that points to nothing (nullptr).

In this assignment we do not care about any of the other special member functions. So you do
not have to implement copy or move operations for any of the classes.

Non-functional requirements:

• The program must execute without any memory leaks.

• You are not allowed to modify the main() function.

Functional requirements: The execution of the program should result in the following out-
put:
1 12 7 2 3

1This implementation will not fulfill all requirements for it to count as a complete iterator, since we will just
implement a curated selection of functions that a “real” iterator would have. Typically an iterator is implemented
as an inner class of a container. In this assignment we implement the iterator outside of the class to avoid circular
dependencies.


