
TDDE18 & 726G77
Interface, command line and vector

interface

• An interface is an abstract type that is used to specify behavior that
concrete classes must implement.

• Interfaces are used to encode similarities which the classes of various
types share, but do not necessarily constitute a class relationship.

• Give the ability to use an object without knowing its type of class, but
rather only that it implements a certain interface.

• Used a lot in programming language like Java and C#

interface

Below are the nature of interface and its C++ equivalents:

• interface can contain only body-less abstract methods; C++ equivalent
is pure virtual functions.

• interface can contain only static final data members; C++ equivalent is
static const data members which are compile time constants.

• Multiple interface can be implemented by a Java class, this facility is
needed because a Java class can inherit only 1 class; C++ supports
multiple inheritance straight away with help of virtual keyword when
needed.

interface

class IList {

void insert(int number) = 0;

void remove(int index) = 0;

static const string name{“List interface”};

};

Dynamic type control using typeid

• One way to find out the type of an object is to use typeid

if (typeid(*p) == typeid(Bat)) ...

• A typeid expression returns a type_info object (a class type)

• type checking is done by comparing two type_info objects

typeid expressions

typeid(*p) // p is a pointer to an object of some type

typeid(r) // r is a reference to an object of some type

typeid(T) // T is a type

typeid(p) // is usually a mistake if p is a pointer

typeinfo operations

== check if two type_info objects are equal

typeid(*p) == typeinfo(T)

!= check if two type_info objects are not equal

typeid(*p) != typeinfo(T)

name() returns the type name as a string – may be an internal name
used by the compiler, a “mangled name”

TDDE18 & 726G77
Vector

Vector

• Vector are sequence containers.

• Vectors use contiguous storage locations for their elements, which
means that their elements can also be accessed using offsets.

• Vector can change size and capacity, in contrast to array which size is
fixed.

• Very efficient in accessing its elements and relatively efficient adding
or removing elements from its end.

Visualizing Vectors

vector<T> v{7};

Datatype vector

Visualizing Vectors

vector<T> v{7};

Name

Visualizing Vectors

vector<T> v{7};

Size

Visualizing Vectors

vector<T> v{7};

Templated argument

Visualizing Vectors

vector<T> v{7};

Element

Visualizing Vectors

vector<T> v{7};

• Vectors are 0 indexed

[0] [1] [2] [3] [4] [5] [6]

Visualizing Vectors

vector<double> v{7};

• Every element in this vector is of type double
• The size of this vector are 7
• Constructing vectors with a given size will default initialize the elements

Vector member functions

vector<double> v{7};

v[0] = 1;

v.at(1) = 2;

v.front(); // 1

v.back(); // 0

v.push_back(5);

v.back(); // 5

v.size(); // 8

v.pop_back(); // remove the 5

auto

• When declaring variables in block scope, in initialization statements of
for loops, etc., the keyword auto may be used as the type specifier.

• The compiler determines the type that will replace the keyword auto.

• auto may be accompanied by modifiers, such as const or &, which will
participate in the type deduction.

auto i{5}; // i will be of type int

auto i{5.0}; // i will be of type double

auto b_ptr{new Bat{}}; // b_ptr will be of type pointer to bat

Using the vector

vector<int> v;

...

for (int i{0}; i < v.size(); i++) {

// do something with v.at(i)

}

Using the vector

vector<int> v;

...

for (auto i{0}; i < v.size(); i++) {

// do something with v.at(i)

}

Using the vector

vector<int> v;

...

for (auto it{begin(v)}; it != end(v); it++) {

// do something with *it

// (it is almost the same thing as pointer)

}

Vector – recap

begin(v); end(v);

v.front(); v.back();

Vector – recap

begin(v) + 1; v.push_back(5);

v.insert(begin(v) + 1, 3);

begin(v) returns a pointer to the element at index 0

begin(v) + 1 returns a pointer to the element at index 1

Vector – erase

Vector’s erase takes an iterator as a argument. This argument tells the
function where to erase in the vector.

begin(v) + 1;

v.erase(begin(v) + 1);

Vector – erase

When using insert, everything will be moved one index down

v.erase(begin(v) + 1);

Erased element

For-loops

vector<int> v{1, 2, 3, 4};

for (auto i : v) {

cout << i << “ “;

}

For-loops

• The simplify for-loop is just a syntactic sugar for the programmer to
use. The compiler will rewrite it during compile time to

int i;

for (auto it{begin(v)}; it != end(v); it++) {

i = *it;

cout << i << “ “;

}

auto

auto i{5}; // i will be of type int

auto i{5.0}; // i will be of type double

auto i_ptr{new int{}}; // b_ptr will be of type pointer to int

auto it{begin(v)}; // it will be of type pointer to elements in v

auto

• auto can also be used in a function declaration to indicate that the return type
will be deduced from the operand of its return statement.

auto foo() { // auto will be deduced to int

return 1;

}

auto foo() { // auto will be deduced to double

return 1.5;

}

auto foo() { // auto will be deduced to vector<int>

return vector<int>{5};

}

Command line arguments

• Send arguments to our program when starting from the command
line

./a.out 10 20 30

Here we send the arguments 10 20 30 to the main function

Command line arguments

./a.out 10 20 30

argc: 4 arguments

argv[0]: ./a.out

argv[1]: 10

argv[2]: 20

argv[3]: 30

Command line arguments

int main(int argc, char* argv[]) {

...

}

argc: The amount of arguments sending in

argv: The arguments as an array of strings

Command line arguments

int main(int argc, char* argv[]) {

cout << argv[1] << argv[2] << endl;

}

./a.out 10 20

prints: 10 20

Type conversion of argv

• Command line arguments are of data type string. To change datatype
we use

• stoi – to convert to int

• stod – to convert to double

• stof – to convert to float

