TDDE18 & 726G7/7

Inheritance and polymorphism

Introduction to inheritance

* Inheritance allows us to write functionality once instead of multiple
times for multiple classes.

* We can reference a group of classes

class Rectangle {
public:
Rectangle(double h, double w)
: height{h}, width{w} {}
double area() {
return height * width;
}
double get height() {
return height;
}
double get width() {
return width;
}
private:
double height;
double width;

}s

class Triangle {
public:
Triangle(double h, double w)
: height{h}, width{w} {}
double area() {

return height * width / 2.0;

}
double get height() {

return height;

}

double get width() {
return width;

}

private:
double height;
double width;

}s

class Shape {
public:
Shape(double h, double w)
: height{h}, width{w} {}
double get height() {
return height;
}
double get width() {
return width;
}
private:
double width;
double height;

}s

Inheritance syntax

The following syntax is used to create a subclass:

class <sub-class> : public <base-class> {

s

class Rectangle : public Shape {
public:
Rectangle(double h, double w)
: Shape{h, w} {}
double area() {
return height * width;

s

class Triangle : public Shape {
public:
Triangle(double h, double w)
: Shape{h, w} {}
double area() {
return height * width / 2.0;

s

Inheritance

* Inheritance allows us to use a previous class as a model for a new
class. All functionality in the original class will be kept (without
additional code), and we are allowed to add new functionality.

* The class we use as a model is called the “base class” and the new
class we create from this is called “derived class” or “subclass”.

* Inheritance can be done in many levels. One class may be derived
from some class, and at the same time base class to another class.

class Shape {
public:
Shape(double h, double w)
: height{h}, width{w} {}
double get height() {
return height;
}
double get width() {
return width;
}
private:
double height;
double width;

}s

class Triangle : public Shape {
public:
Triangle(double h, double w)
: Shape{h, w} {}
double area() {

return height * width / 2.0;

s

Compile error — wrong access modifier

Triangle.h: In member function ‘double Triangle::area() ’:
Triangle.h:20:16: ‘double Shape::height’ is private within this context

return * width / 2.0;

Triangle.h:12:12: note: declared private here
double height;

class Shape {
public:
Shape(double h, double w)
: height{h}, width{w} {}
double get height() {
return height;
}
double get width() {
return width;
}
private:
double width;
double height;

}s

class Triangle : public Shape {
public:
Triangle(double h, double w)
: Shape{h, w} {}
double area() {

return get height() * get width() / 2.0;

s

Class access modifiers

* Public — A public member is accessible from anywhere outside of the
class.

* Private — A private member variable or function cannot be accessed,
or even viewed from outside the class.

* Protected — A protected member variable or function is very similar to
a private member but it provided one additional benefit that they can
be accessed in derived classes.

class Shape {
public:
Shape(double h, double w)
: height{h}, width{w} {}
double get height() {
return height;
}
double get width() {
return width;
}
protected:
double height;
double width;

}s

class Triangle : public Shape {
public:
Triangle(double h, double w)
: Shape{h, w} {}
double area() {

return height * width / 2.0;

s

Public inheritance

This rules apply for the normal public inheritance:

 private members of the base class will neither be accessible in the
sub class nor to anyone else

* protected members in the base class become protected also in the
subclass, and behave as private to anyone else

* public members in the base class will be public in the sub class

class Shape {
public:
Shape(double h, double w)
: height{h}, width{w} {}
double get height() {
return height;
}
double get width() {
return width;
}
protected:
double height;
double width;

}s

class Triangle : public Shape {
public:

Triangle(double h, double w)

: Shape{h, w} {}
double area() {
return height * width / 2.0;

}

// Everything public in Shape
protected:

// Everything protected in Shape
}s

Private inheritance

This rules apply for the private inheritance:

 private members of the base class will neither be accessible in the
sub class nor to anyone else

* protected members in the base class become private in the subclass,
and behave as private to anyone else

* public members in the base class will be private in the sub class and
behave as private to anyone else

class Shape {
public:
Shape(double h, double w)
: height{h}, width{w} {}
double get height() {
return height;
}
double get width() {
return width;
}
protected:
double height;
double width;

}s

class Triangle : private Shape {
public:
Triangle(double h, double w)
: Shape{h, w} {}
double area() {

return height * width / 2.0;

}

private:

// Everything public and protected in Shape

s

Protected inheritance

This rules apply for the protected inheritance:

 private members of the base class will neither be accessible in the
sub class nor to anyone else

* protected members in the base class become protected in the
subclass, and behave as private to anyone else

* public members in the base class will become protected in the sub
class and behave as private to anyone else

class Shape { class Triangle : protected Shape {
public: public:
Shape(double h, double w) Triangle(double h, double w)
: height{h}, width{w} {} : Shape{h, w} {}
double get height() { double area() {
return height; return height * width / 2.0;
} }
double get width() { protected:
return width; // Everything public and protected in Shape
} }s5
protected:
double height;
double width;
}s

Inheritance table

baseclass inheritance subclass
public + public => public
protected + public => protected
private + public => not accessible
public + protected => protected
protected + protected => protected
private + protected => not accessible
public + private => private
protected + private => private
private + private => not accessible

We will only use public inheritance in the course, outlined in italic

Initialization of derived classes

 When creating an object of an derived, the inner part
(base class) must be initialized first.

* |tis common for the constructor of the derived class
to call the constructor of the base class.

Calling base constructor

This must be done with an initialization list
<sub-class>::<sub-class>(<param-list>)
: <base-class>(<argument-list>),

<member-name>(<argument>)

<constructor-code>

Initialization of derived classes

class Triangle : public Shape {
public:
Triangle(double h, double w)

: Shape{h, w} {}

s

How to use a derived class

* Given the public member functions from both classes:

int main() {
Triangle t{12, 4};
cout << t.get _height() << “ “ << t.area() << endl;

Function arguments

void foo(Triangle const& t) {
cout << t.get height() << endl;

void foo(Rectangle const& r) {
cout << r.get _height() << endl;

int main() {
Triangle t{12, 4};
foo(t);
Rectangle r{24, 8};
foo(r);

Function arguments

If we create a function that takes a reference to Shape then we can send both
Triangle and Rectangle. This gives us less duplicate code!

void foo(Shape const& s) {
cout << s.get height() << endl;

¥

int main() {
Triangle t{12, 4};
foo(t);
Rectangle r{24, 8};
foo(r);

What about the function area?

void foo(Shape const& s) {
cout << s.area() << endl;

Triangle.cc: In function "wvoid foo{const Shape&)’:
Triangle.cc:6:12: ‘const class Shape’ has no member named ‘area’

cout << s, () << endl;

class Shape {
public:

double area() {

return 0;

s

class Triangle : public Shape {
public:
Triangle(double h, double w)
: Shape{h, w} {}
double area() {
return height * width / 2.0;

s

What about the function area?

void foo(Shape const& s) {

cout << s.area() << endl;

int main() {
Triangle t{12, 4};
foo(t); // print out ©

Polymorphism

 When we in addition to inheritance use polymorphism (poly = many,
morph = shifting) we can modify or customize the behavior of the
base class. Thus we can have one class with behavior that differ
depending on which subclass it actually is.

* The exact behavior is not determined when compiling the program,
but when the program runs (at runtime).

* To enable polymorphism the base class must declare the morphing
member functions as virtual.

Polymorphism

* With the keyword virtual we can declare in the base class a member
that the subclasses can override

class Shape {
public:

virtual double area() {
return 0;

}

s

What about the function area?

void foo(Shape const& s) {

cout << s.area() << endl;

int main() {
Triangle t{12, 4};
foo(t); // print out 24

Enabling polymorphism

e C++ doesn’t use polymorphism as a default. The programmer must
opt-in for this feature.

e Use the keyword virtual for the member function that you want to
allow polymorphism.

* You must use either a pointer to the base class or a reference to the
base class.

Enabling polymorphism

int main() {
Triangle t{12, 4};

t.area(); // 24
Shape s1{t};

sl.area(); // ©
Shape & s2{t};

s2.area() // 24
Shape * s3{&t};
s3->area(); // 24

Polymorphism — how does it work

* You usually talk about two different types — static types and dynamic
types.

Triangle t{12, 4}
Shape & s{t};

* The static type of s is always Shape &

* The dynamic type depends on what s is referring to, in this case
Triangle

Polymorphism — how does it work

* When calling a member function, the compiler does the following:

* |If the static type isn’t of pointer type or reference type => Call the function in
the static type.
* If the function is not virtual => Call the function in the static type.

e Otherwise => Call the function in the dynamic type.

Destruction of derived classes

* When destroying an object of an derived, the outer
part (subclass) must be destroyed first.

* |tis a must for the destructor of the base class to be
virtual.

Destruction of derived classes

class Shape {
~Shape() {}
}s5

int main() {
Shape * s{new Triangle{4, 2}};

delete s;

Only this part will be removed

Destruction of derived classes

class Shape {
virtual ~Shape() {}

s

int main() {
Shape * s{new Triangle{4, 2}};

delete s;

This part will be removed first

This part will be removed second

Pure virtual & Abstract class

virtual double area() {

return 9;

// change it to

virtual double area() = 0;

* This implementation makes no
sense.

e But if this function is missing we
get a compile error.

* Fix is to make this a pure virtual
function and the class an abstract
class

Pure virtual & Abstract class

* Abstract classes are used to represent general concepts (for example,
Shape), which can be used as base classes for concrete classes (for
example, Triangle).

* No objects of an abstract class can be created. Abstract types cannot
be used as parameter types, as function return types, or as the type
of an explicit conversion.

e Pointers and references to an abstract class can be declared.

Pure virtual & Abstract class

class Shape {
public:

double area() = 0;

s

int main() {

Shape s; // Error: abstract class
Triangle t{12, 4}; // OK

Shape s2{t}; // Error abstract class.

Shape & s2{t}; // OK to reference abstract class
Shape * s3{&t}; // Ok to point to abstract class

Pure virtual & Abstract class

class Shape { * Subclasses must implement the pure
public: virtual functions or they will become

abstract classes too.
int corners() = 0;

}; int main() {
Triangle t{12, 4};

// Error: Abstract class. Missing corner function

Keyword Override

class Shape { class Triangle: public Shape {
public: public:

e Triangle(double radius, double w)

virtual double area() { : Shape{h, w} {}

return 0; double ara() {
} return height * width / 2.0;
}

}s }s

int main() {
Triangle t{12, 4};
Shape & s{t};
s.area(); // ©

Keyword Override

class Shape {
public:

virtual double area() {

return 9;

}s

class Triangle: public Shape {
public:
Triangle(double radius, double w)
: Shape{h, w} {}
double ara() {
return\ height * width / 2.0;

s

int main() {
Triangle t{12, 4};
Shape & s{t};
s.area(); // ©

Typo

Keyword Override

class Shape { class Triangle: public Shape {
public: public:
Triangle(double radius, double w)
virtual double area() { : Shape{h, w} {}
return 0; double ara() override {
} return height * width / 2.0;
}
}s }s

In file included from Triangle.cc:2:0:
Triangle.h:22:12: ‘double Triangle::ara()’ marked ‘override’, but does not override

double () override {

Keyword Override

* |In a member function declaration or definition, override ensures that
the function is virtual and is overriding a virtual function from a base
class. The program is ill-formed (a compile-time error is generated if
this is not true.

Keyword Override

class Shape {
public:

virtual double area() {

return 9;

}s

In file included from Triangle.cc:2:0:

class Triangle: public Shape {
public:
Triangle(double radius, double w)
: Shape{h, w} {}
double ara() override {
return height * width / 2.0;

s

‘double Triangle::ara()’ marked ‘override’, but does not override

() override {

Keyword Override

class Shape { class Triangle: public Shape {
public: public:
Triangle(double radius, double w)
double area() { : Shape{h, w} {}
return 0; double area() override {
} return height * width / 2.0;
}
}s }s

riangle.h:22:12: ‘double Triangle::area() const’ marked ‘override’, but does not override

double {) const override {

Using declaration

* Using-declarations can be used to introduce members into other
block scopes, or to introduce base class members into derived class
definitions.

using namespace std;
using std::cin;

Using declaration in class definition

e Using-declaration introduces a member of a base class into the
derived class definition, such as to expose a protected member of
base as public member of derived.

class Shape {
public:
Shape(double h, double w)
: height{h}, width{w} {}
double get height() {
return height;
}
double get width() {
return width;
}
protected:
double height;
double width;

}s

class Rectangle : public Shape {
public:
Rectangle(double h, double w)
: Shape{h, w} {}
double area() {
return height * width;

}
using Shape::height;

}s X

height is now public

class Shape {
public:
Shape(double h, double w)
: height{h}, width{w} {}
double get height() {
return height;
}
double get width() {
return width;
}
protected:
double height;
double width;

}s

class Rectangle : public Shape {
public:
Rectangle(double h, double w)
: Shape{h, w} {}
double area() {
return height * width;
}
using Shape::height;
}s5

class Square : public Rectangle {

private:
using Shape::height;

Using declaration for constructors

* The derived class can copy in all the constructors from the base class
with a using-declaration and use it as its own.

class Rectangle : public Shape {
public:
using Shape: :Shape;
double area() {
return height * width;

} N

using Shape::height; It is possible to create a Rectangle object
}; with height and width as input arguments.

Rectangle r{12, 3};

dynamic cast

* dynamic_cast can only be used with pointers and references to
classes. Its purpose is to ensure that the result of the type conversion
points to a valid complete object of the destination pointer type.

* This naturally includes pointer upcast (converting from pointer-to-
derived to pointer-to-base), in the same way as allowed as an implicit
conversion.

* dynamic_cast can also downcast (convert from pointer_to_base to
pointer_to derived) polymorphic classes (those with virtual
members).

downcasting

* Often you would like to downcast whenever you want to get a specific
specialized functionality in a derived class.

class Triangle: public Shape {

Triangle t{12, 3}; public:
Shape * s{t}; Triangle(double radius, double w)
s->area_formula(); // Error : Shape{h, w} {}

string area_formula() {
return “height * width / 2.0%;

Triangle * t_ptr{dynamic_cast<Triangle*>(s)};

t_ptr->area_formula(); // Ok

s

downcasting — wrong type

* dynamic_cast will return nullptr if it cannot downcast to that type

Triangle t{12, 3};

Shape * s{t};

s->area_formula(); // Error

Rectangle * r_ptr{dynamic_cast<Rectangle*>(s)};
if (r_ptr != nullptr) {

r_ptr->area_formula(); // Will never go here

Type alias

* A type alias declaration introduces a hame which can be used as a

synonym for the type denoted. It does not introduce a new type and
it cannot change the meaning of an existing type name.

* The type alias will behave exactly as the type denoted.

using FirstName = string;
FirstName f1{“Sam”};
fl.size(); // returns 3

