
TDDE18 & 726G77
Classes & Pointers



Premise – lab 3

• Start working with Object Oriented Programming (OOP)
• Create the class Sorted_List
• Learn the difference between stack and heap
• Use dynamic memory with new and delete



Imperative programming

• Programming paradigm that uses statement that change a program’s 
state. 
• Focus on how a program operates.
• Revolves around function that operates on data

int length_of_string(string s);
string to_string(Time const& t);



Object Oriented Programming

• Programming paradigm based on the concept of “objects”
• Objects may contain data and code
• Data members
• Member functions

• Revolves around the data

str.length();
cin.ignore(5, ’\n’);



OOP – Real life definition

• If I’m your coffee getter object
• “Can you get me the best coffee, please.” is a question that you asked
• ”Here is your coffee” as a result from me.

• You have no idea how I did that. 
• we were able to interact at a very high level of abstraction. 



Variable

• Fundamental (also called built-in types)
• Stores a value of a fundamental type, nothing more

• Object
• Stores values tied to an derived type (struct, class)
• Operations associated to the type are provided

• Pointer
• Stores the address of some other variable



Class

• Data members – store values
string str{“Hello World!”};

• Member functions – operations available to use
str.size();

str

Hello World!
String

instructions:

size() – amount char



Class – the blueprint of an object

• Data members – store values
Person p{“Sam”, “Le”, 32};

• Member functions – operations available to use
p.first_name();

str

Sam

Person

instructions:

first_name()

- return firstname

Le
32



Class syntax – header file

#ifndef _CLASS-NAME_H_
#define _CLASS-NAME_H_
class class-name {
public:

class-name(); // constructor (Initiator)
// member functions (methods in Java)
return-type operation(parameter-list);

private:
// member variables
data-type property;

};
#endif 



Class syntax – implementation file

#include “class-name.h”

// Constructor (Initiator)
class-name::class-name() {

// implementation
}

// Member function
return-type
class-name::operation(parameter-list) {

// implementation
} 



Class

• Provide language support for object orientation
• Having a single purpose, responsibility
• Consist of private member variables and public interface methods
• Can only be manipulated through a well defined interface
• Constructors and interface enables the programmer to depend on 

always known and correct internal state
• Operators, constructors and destructors allow for easy management



Class vs Instance

• A class only describe the layout. It does not create any 
data in memory. It’s a description of a data-type with 
operations ”embedded”.

class Rocket {
public:

void fly();
bool finished;

private:
int height;

};



Class vs Instance

• An instance is a variable created of a specific class, 
an object. You can create many.

Rocket r{};
Rocket s{}



Class declaration

// h-file
class Robot {
public:

void fly();
bool finished;

private:
int height;

};

// cc-file
void Robot::fly() {

cout << “I’m flying” << endl;
}



Accessing members

• An object variable allow you to access member functions (operations) 
and member variables of that instance. You use the dot operator

// Access member functions
Rocket r{};
r.finished = true;
r.fly();

// Class definition
class Rocket {
public:

void fly();
bool finished;

private:
int height;

};



Accessing members

• Accessing a member inside a class does not require you to tell the 
compiler which instance you are referring to.

// Outside of class
int main() {

Rocket r{};
r.finished = true;

}

// Inside the class
class Rocket {
public:

void fly() {
finished = true;

};



The keyword “this”

• Member functions are called “on” an instance and automatically receive that 
instance to work on, available as the special pointer this.

void Robot::fly() {
finished = true;
cout << ”I’m finished and I can fly” << endl;

}

void Robot::fly() {
this -> finished = true;
cout << ”I’m finished and I can fly” << endl;

}



Private members

• Private members are only accessible 
in functions belonging to the same 
class

int main() {
Rocket r{};
r.model = “M-3”; //Error

}

class Rocket {
public:

void fly() {
model = “M-3”; //OK

}
};



Friends

• A class can decide to have friends. Friends can access private members!
• Friends should be avoided at all cost, since it makes the two classes highly 

interdependent.
class Rocket {

...
friend bool equals(Rocket r1, Rocket r2);
...

};
bool equals(Rocket r1, Rocket r2) {

return r1.model == r2.model;
}



Object lifecycle

• class definition:
• no object created yet, before birth

• variable definition:
• object born, memory allocated
• memory initiated with default values

• variable used...
• variable declaration block ends:
• memory reclaimed for other variables



Object lifecycle

• class definition:
• no object created yet, before birth

• variable definition:
• object born, memory allocated
• memory initiated with default values

• variable used...
• variable declaration block ends:
• memory reclaimed for other variables

Constructor

Destructor

Member functions
Operator functions



Lifecycle “hooks”

• Constructor is automatically called when a class variable is defined or 
allocated
• have no return value
• any defined parameters must be specified

• Operators functions are automatically called when variable is used by 
an operator
• covered later on

• Destructor is automatically called when a variable goes out of scope 
or is deleted
• have neither return value nor parameters



The rocket constructor

// h-file
class Rocket {
public:

Rocket(); // 
Constructor
private:

string model;
};

// cc-file
Rocket::Rocket() {

model = “Unknown”;
}



Using the constructor

• If you define a constructor you must specify all arguments when you 
create an instance!
• If you do not define a constructor a default constructor that does 

nothing will be created.
• If you only have private constructors other code can not create 

instances.



Default constructor
// h-file
class Rocket {
public:

Rocket(); // Default Constructor
...

};
// cc-file
Rocket::Rocket() {
}

• If you do not define a 
constructor the compiler will 
generate a similar default 
constructor for you.



Constructor Example

// h-file
class Rocket {
public:

Rocket(string m);
...

};
// cc-file
Rocket::Rocket(string m) {

model = m;
}



Constructor Example 

// h-file
class Rocket {
public:

Rocket(string m);
...

};
// cc-file
Rocket::Rocket(string m) {

model = m;
}

// Ok
Rocket r{“M-3”};

// Error no fitting constructor
Rocket s{};



Constructor Performance Issue

Rocket::Rocket(string m) {
model = m;

}

1. Create model variable inside rocket
2. Update model variable with correct value

model

<no value>
string

model

<m’s value>
string



Constructor Member Initializer List

Robot::Robot(string m) : model{m} {}

Member initializer list specifies the initializers for 
data members.

model

<m’s value>
string



Const member variables

• Data members could also be const
• Constant member variable must be initialized in constructor 

initialization list

class Robot {
public:

...
string const model;

};

Robot::Robot(string m) model{m} {}



Reference member variables

• Data members could also be a reference to another variable
• Reference member variables must be initialized in constructor 

initialization list

class Robot {
...
private:

Person & creator;
};



Constructor – Multiple

• Constructor can be overloaded in a similar way as function overloading
• Overloaded constructor have the same name (name of the class) but different 

number of arguments
• The compiler choose the constructor that fits best with the given input 

arguments
...

Robot();
Robot(string m);
Robot(Person p);
Robot(Person p, string m);
etc.

...



Constructor delegation

• Many classes have multiple constructors that do similar things
• You could reduce the repetitive code by delegating the work to 

another constructor

Robot::Robot() : Robot{“unknown”} {}
Robot::Robot(string m) : model{m} {}



Destructor

• The object calls the destructor when it is about to 
go out of scope

int main() {
Robot r{};

} // r will call its destructor on this line



Destructor

// h-file
class Robot {
public:

~Robot(); // no return or parameters
...

};

// cc-file
Robot::~Robot() { // not useful yet...

cout << “destructor called” << endl;
}



Example class - Money

• Class that represent money
• Have the capacity to hold units (Swedish krona)
• Have the capacity to hold hundreds (Swedish öre)
• Can validate that it have valid (non-negative values) in units and 

hundreds. 



Example class

class Money {
public:

Money();
Money(int unit);
Money(int unit, int hundred);
~Money();
void validate();

private:
int unit;
int hundred;

};

Money::Money() 
: Money{0} {}

Money::Money(int unit) 
: Money {unit, 0} {}

Money::Money(int unit, int hundred) 
: unit{unit}, hundred{hundred} {
validate();

}
void Money::validate() {
if (unit < 0 || hundred < 0) 

...



Pointer

Name

Value

Type

Name

Value

Type



Pointer

• A variable that stores an address
• Compiler (programmer) keep track of what type each pointer address 

store in order to index and treat dereference values correct.
• Read declaration backwards
int * p; // A variable p

// That is a pointer
// To an int



Pointer operators

• Operators relevant to pointers
• Dereference (content of, “go to”): *p
• Dereference with offset (indexing): *(p + i) or p[i]
• Address of: &
• Dereference and select member: (*p).m or p->m
• Allocate (borrow) memory: p = new t, a = new t[s]
• Deallocate (return) memory: delete p, delete[] a



Pointer – Address of

Name

Value

Type

Name

Value

Type

int * int_pointer{&integer_value}; int integer_value{};



Pointer – Dereference

Name

Value

Type

Name

Value

Type

cout << *int_pointer << endl;



Pointer – Allocate

Name

Value

Type

new int{3};

1. Create unknown variable of type int with value 3
2. Return the pointer

Save the pointer by declaring a new variable
int * integer_pointer{new int{3}};



Pointer – Deallocate

Name

Value

1. Delete the variable that the pointer points to
2. Does not remove the pointer!

delete integer_pointer;



Pointer – Dereference and select member

string_pointer

address of other box
string * hello world

string

string * string_pointer{new string{“hello world”}};
string_pointer->length();



Dynamic memory

• Memory for variables can be dynamically allocated and deallocated
• Dynamic: During program execution
• Normal/Static: During compile time
• Allocate: Borrow from operating system
• Deallocate: return to operating system

• Each allocation must be deallocated exactly once, as soon as possible



What if ...

• We assign (copy) pointer variables? 
int * a_ptr { new int { 4 } };
int * b_ptr { a_ptr };

• We pass pointer variables as parameter?
void foo(int * p);



Shallow copy vs deep copy
Shallow copy

Data

Deep copy

Data

Data

Pointer a

Pointer b

Pointer a

Pointer b



Shallow copy vs deep copy
Shallow copy

Data

Deep copy

Data

Data

Pointer a

Pointer b

Pointer a

Pointer b

Example code:
int * a{new Integer{3}};
int * b{a};

Example code:
int * a{new Integer{3}};
int * b{new Integer{*a}};



Class with pointer

class Array {
public: 

Array(int size);
...

private:
int size_;
int * data;

};



What if ...

• We pass Array variables as parameter?
• We assign (copy) Array variables?
• We want to initialize an array from another?
• Destroy an Array variable?
• Move an Array variable about to be destroyed to another array?



Lifecycle “hooks”

• Constructor is automatically called when a class variable is defined or 
allocated
• have no return value
• any defined parameters must be specified

• Operators functions are automatically called when variable is used by 
an operator
• Set an object equals to another object

• Destructor is automatically called when a variable goes out of scope 
or is deleted
• have neither return value nor parameters



Lifecycle “hooks”

• Constructor is automatically called when a class variable is defined or 
allocated
• have no return value
• any defined parameters must be specified

• Operators functions are automatically called when variable is used by 
an operator
• Set an object equals to another object

• Destructor is automatically called when a variable goes out of scope 
or is deleted
• have neither return value nor parameters

Eg. Assignment operator

Eg. Default constructor

Destructor



Three essential “hooks”

• Copy constructor
• Called automatically when a fresh object is created as a copy of an existing 

object
Array(Array const&);

• Assignment operator
• Called automatically when an existing object is overwritten by another object 

(or itself)
Array & operator=(Array const&);

• Destructor
• Called automatically when an object is destroyed
~Array();



When?

• If you have a class with pointers you need the three essential hooks to 
prevent memory leaks
• The compiler generate default versions if they do not exist, but the 

compiler version WILL NOT be adequate or enough
• If your class have no pointers, you do not have to care, the compiler 

version will be enough



Array class

class Array {
public: 

Array(int size);
...

private:
int size_;
int * data;

};



Object A

Shallow copy vs deep copy
Shallow copy

Data

Deep copy

Data

Data

Object a

Object b

Object a

Object b

The heap The heap



Object A

Shallow copy vs deep copy
Shallow copy

Data

Deep copy

Data

Data

Object a

Object b

Object a

Object b

The heap The heap

Example code:
Array a{};
Array b{a};



Object A

Shallow copy vs deep copy
Shallow copy

Data

Deep copy

Data

Data

Object a

Object b

Object a

Object b

The heap The heap

Example code:
Array a{};
Array b{a};

Compiler generated Correct implemented copy constructor



Copy constructor – syntax

class Array {
...
Array(Array const& a);
...

};

// cc-file
Array::Array(Array const& other) {

// allocate new memory
// etc

}



Temporary variable

Array foo() {
return Array{};

}

int main() {
Array a{foo()};

}



Temporary variable

Array foo() {
return Array{};

}

int main() {
Array a{foo()};

}

Data

The heap

foo()’s array



Temporary variable

Array foo() {
return Array{};

}

int main() {
Array a{foo()};

}

Data

Data

The heap

foo()’s array

a’s array



Temporary variable

Array foo() {
return Array{};

}

int main() {
Array a{foo()};

}

Data

The heap

a’s array



Temporary variable

Array foo() {
return Array{};

}

int main() {
Array a{foo()};

}

Data

The heap

foo()’s array

a’s array



Move constructor – syntax

class Array {
...
Array(Array && a);
...

};

// cc-file
Array::Array(Array && other) {

// swap the pointers
// etc

}



Problems that might occur with copy assignment

int main() {
Array a{};
Array b{};
b = a;

}

Data - a

The heap

Array a



Problems that might occur with copy assignment

int main() {
Array a{};
Array b{};
b = a;

}

Data - a

The heap

Data - b

Array a

Array b



Problems that might occur with copy assignment

int main() {
Array a{};
Array b{};
b = a;

}

Data - a

The heap

Data - b

Data – copy of a

Array a

Array b

Still in memory – Memory leak
You must remove this manually in your 
- copy assignment
- move assignment



Copy assignment - syntax

// h-file
class Array {

...
Array & operator=(Array  const& other);
...

};

// cc-file
Array & Array::operator=(Array const& other) {

// implementation
};



Move assignment - syntax

// h-file
class Array {

...
Array & operator=(Array  && other);
...

};

// cc-file
Array & Array::operator=(Array && other) {

// implementation
};



Object that is going to be removed

int main() {
Array a{};

}  // a will be removed here
Data

The heap

Array a



Object that is going to be removed

int main() {
Array a{};

}  // a will be removed here
Data

The heap

Compiler generated destructor
Data still on the heap



Destructor – syntax

// h-file
class Array {

...
~Array();
...

}
// cc-file
Array::~Array() {

// deallocate memory
}

The heap

Array a

Deallocated memory before removing object



Constructors

• Constructor – Called when creating a new object
• Copy constructor – Called when creating a new object from an old 

object
• Move constructor – Called when creating a new object from an object 

that is about to be removed
• Copy assignment – Assign an existing object the same values as 

another object
• Move assignment – Assign an existing object the same values as an 

object that is about to be removed
• Destructor – Called when an existing object is about to be removed



Random number generator

#include <random>
random_device rand{};
uniform_int_distribution<int> die(1, 6);
int n = die(rand); // random in [1 .. 6]

Further reference:
en.cppreference.com


