
TDDE18 & 726G77
Struct and Functions

Lessons

• First lesson on Friday 14th September

• One lesson hall will be held in English (R34), all other will be held in
Swedish

• The content in the lesson will be directly applicable for lab2

Labs update

• Soft deadline for lab 1 pushed until
• Monday for group A

• Tuesday for group B

• On lab1, there will be complementary work on:
• Code style

• Code duplication

• Etc.

• Assessment protocol on the course web site

Code style

int main(){cout<<”hello world”<<1+1<<endl;int
a{2};a++;cin>>a;cout<<a;}

This is a very bad code style. Its hard to read and understand what the program do.
Code formatting and code style is very important in this course.

It is your job to write code that is easy to understand.

It is easier to teach you good code style after you have submitted a little code.

That is why we will give you extensive feedback on your own submission for lab1.

Compiling multiple files

Single file:

g++ filename1.cpp

Multiple files:

g++ filename1.cpp filename2.cpp ...

Variable

• Fundamental (also called built-in types)
• Stores a value of a fundamental type, nothing more

• Object
• Stores values tied to an derived type (struct, class)

• Operations associated to the type are provided

• More about classes later in the course

• Pointer – later in the course
• Stores the address of some other variable

• More about pointers in the course

Variable
Value

Type

Struct – Compound data type

• With struct it is possible to combine variables into one derived type

Other boxes – zero or more

Type

Struct – Person

struct Person {
string first_name;
string last_name;
int age;

};

Person p{“Sam”, “Le”, 32}; // Create a variable p of type
Person

cout << p.last_name << endl; // Will print out ‘Le’

p.age++; // change age to 33

Constants

• A variable can be declared const
• Modification of a const variable will give compilation error.

Unchangeable Value

Type

Constants - Example

int const x{3};

Person const sam{“Sam”, “Le”, 32};

x = 4; // Compilation error

sam.age++; // Compilation error

A good practice is to always use const when you can.

Copy

• When copy, the value and type will be an exact match to the copied value.

• A new variable is created, along with a new name.

Value

Type
Value

Type

Copy – Example

int a{5};

int b{a};

Person sam{”Sam”, “Le”, 33};

Person copied_sam{sam};

Reference

• Alias to another already existing variable

• A reference cannot refer to another variable after definition

Value

Type

Reference - Example

string professor{“C. Kessler”};

string & clever_fellow{professor};

clever_fellow = “F. Heintz”;

cout << professor << endl;

What will be printed?

Const&

• The value could be change using the original name but not the alias

Value

Type

Can’t use this to change the value

Const& - example

Person sam{“Sam”, “Le”, 32};

Person const& also_sam{sam};

sam.age++; // Works perfectly fine

also_sam.age = 33; // Compilation error

Scope and block

• Each name that appears in a C++ program is only valid in some
portion of the code called its Scope.

• Many different types of Scope.
• global

• block stope

• function

• class

• etc.

Block scope

{ // Beginning of the block
statement 1;
statement 2;
statement 3;

} // End of the block

A variable declared inside a block is only visible inside that block

Block scope – example

int x{0};
{

int x{1};
{

cout << x << ” “;
int x {2};
cout << x << “ “;

}
cout << x << ” “;

}
cout << x << endl;

Function types

• Global functions – Visible everywhere in you program after you
declaration

• Member functions – A function that is a part of a class

• Lambda functions – A function created inline, or “on the fly”

• Function objects – An object possible to call as a function

Function

• A block that has been given a name

• Also called a subroutine or procedure if there are no return value.

• Visible after declaration

• Can be executed (called) by writing it’s name in other parts of the
program

Function – basic syntax

return-type function-name(parameter-list) {
statement1;
statement2;
return expression;

}

• return-type could be of any type that is in your program

• return expression must be of the return-type declared

• return statement exits the function

Function – examples

• A procedure

void foo() {

cout << “the function foo” << endl;

}

• A function that add two integer and returns the value

int sum(int a, int b) {

return a + b;

}

Function declaration and definition

• Declaration
• Tells the compiler the function exists somewhere

void foo();

• Definition
• Places function code in program

void foo() {

}

• Give the programmer a way to separate the program

Function declaration and definition

void hello(); // declaration

int main() {

hello();

}

void hello() { // definition

cout << “hello” << endl;

}

Function – arguments

void hello(string name) {

cout << “hello “ << name << endl;

}

int main() {

string user{“Sam”};

hello(user);

}

const and reference are applicable to arguments.

Function - Best practice for arguments

• Always use const in case fundamental types
• int, double, char etc.

• Always use const& in case object types.
• Person, string etc.

• Remove const only if you must modify the value

Function overload

• Different functions can have the same name

• Functions with same name must have different parameters

• Arguments given determine which function is actually called (closest
match

• Compiler will select the “best match” among functions with the same
name

• Return value is not considered even if different

Overloading example

int triangle_area(int base, int height); // version a

int triangle_area(int side1, int side2, int side3); // version b

int triangle_area(int side1, int side2, double angle); // version c

int triangle_area(int side, double angle1, double angle2); // version d

triangle_area(1, 1); // calling version a

triangle_area(1, 1, 1); // calling version b

triangle_area(1, 1.0, 1.0); // calling version d

triangle_area(1, 1, 1.0); // calling version c

Default values

• Parameters can be given default values

• Specified in declaration only, since definition may be unknown to
compiler if program is in several files

• Default values can only be specified for last non-default parameter

• Can be omitted when calling the function

• Combined with function overload then the declaration must be
unambiguous!

Default values – example

void ignore(int n = 1, char stop = EOF);

int main() {

ignore(); // call ignore(1, EOF)

ignore(1024) // call ignore(1024, EOF);

ignore(1024, ’\n’);

}

void ignore(int n, char stop) {

cin.ignore(n, stop);

}

Operator overloading

• Define your own operators

• Customizes the C++ operators for operands of user-defined types

return_type operator symbol(left operand, right
operand);

Function – operators example

bool operator<(Person a, Person b) {

return a.last_name < b.last_name;

}

int main() {

Person sam{“Sam”, “Le”};

Person cindy{“Cindy”, “Tran”};

if (sam < cindy) {

cout << “Sam’s last name comes before Cindy’s”;

}

}

Function – operator example

ostream & operator<<(ostream & os, Person const& p) {

os << p.last_name;

}

int main() {

Person sam{“Sam”, “Le”};

cout << sam;

}

File seperation

• Related functions can be gathered in one file to form a package.
• A package can be compiled separately, and do not need recompilation

unless you change a package source file.
• Public declarations are place in a header file .h
• Definitions are placed in a implementation file .cc/.cpp
• Header and implementation files should have the same name, except

for the extension

File separation – header file

// header file guard protect from multiple inclusion

#ifndef PERSON_H

#define PERSON_H

// DO NOT use namespaces here

// insert declarations here

#endif

File separation – implementation file

#include “person.h”

// definitions here

File separation – main

• In main you only include the header file. The rest will be handled by
the compiler.

#include <iostream>

#include ”person.h”

int main() {

Person sam{...};

cout << sam;

}

Testing your program

• So far you need to run you program and manually enter inputs to test if
everything works as it should be

• This is tedious work and you could write a program to do this instead

int main() {

doTestWithInput(1, 2, 3);

}

• This could be done but you need its not very intuitive to write

• The testing is done after the program is done

Test Driven Development

• Is a software development process
• Reverse the order of coding

• Write test first
• Implementation
• Refactor code
• Repeat

• The testing is done very regularly
• When you write the test
• When you implement
• When you refactor

• You will immediately know when
something break

Catch testing framework

• Catch is a simple testing framework that we will use in this course

• Its only one file that you include and everything will work
• catch.hpp

• File separation when using catch (in this case lab2)
• catch.hpp
• test_main.cc
• time_test.cc all the test cases
• Time.h all the declarations
• Time.cc all the implementations

• Compile everything with

g++ test_main.cc time_test.cc Time.cc

time_test.cc

#include “catch.hpp”

#include “Time.h”

TEST_CASE(“Test case name”)

{

CHECK(condition);

REQUIRE(condition);

}

