
Linköpings Universitet
Institutionen för datavetenskap (IDA)
UPP-gruppen 2018-09-08

Time
Aim
In this lab you will practice general problem solving, how to work with complex data types (struct),
functions and operator overloading. You will use the practice of TDD (Test Driven Development).

Litterateur
• struct

• Operator overloading https://en.cppreference.com/w/cpp/language/operators

• Documentation for Catch: https://github.com/philsquared/Catch

https://en.cppreference.com/w/cpp/language/operators
https://github.com/philsquared/Catch

Time 2018-09-08

Way of working
When you work with this lab you shall use a methodology called TDD, Test Driven Development. In
TDD, when you want to add a certain functionality, you start by thinking how to test this. Compare to
the first lab where you start by implementing the functionality and test afterwards if the functionality
is correct. In TDD you start by writing the test first as if the feature is already in place (you have
in other words not implemented that function yet). Only after that you see the test fail, then you
implement the least amount of code to make it pass. Afterwards you clean up and write better code,
this phase is called re-factoring, you rewrite the code so it has better design. This process is repeated
until everything is implemented. For each feature, you run all the test to see if you have break anything
previously implemented.

Figur 1: TDD Way of working

In this lab you will use the C++ testing framework Catch. Catch is a simple testing framework to get
started, the documentation are great (you can find it in the Literature). TDD will also be discussed
in the lesson.

Time 2018-09-08

Assignment: Time
You will create a data structure and all the functions that is needed to handle time. We defined time
as three integers to represent time in the format HH:MM:SS. The minimal requirements that must be
implemented for time are:

• Must be able to check if the time is valid or not. In other word if the values of hours are between
the interval [0, 23], minutes and seconds are between the interval [0, 59].

• Possibility to get a time as a string. There must be a way to format the time as a 24-hour clock
"14:21:23", but also with am or pm "02:21:23 am". The result must be a string in the
format HH:MM:SS[p], where p is either am or pm. There must be a function to_string()
that return a string in the format given above.

• Must be able to check if the time is before or after noon (am or pm).
• Addition with a positive integer N to generate a new time N seconds into the future with

operator+. Eg.
Time t{};
t + 5; // The result will have the time [00:00:05]. t is still unchanged

• Subtraction with a positive integer to give an earlier time with operator-.
• operator++, operator--

Time t{12, 40, 50};
t++; // t will have the time [12:40:51]
--t; // t will have the time [12:40:50]

Both operator must have the prefix- and postfix versions.
• Comparison between two Time objects with the usual comparison operators (there are six of

them). Eg.
Time t1{00, 00, 01};
Time t2{12, 30, 40};
t1 > t2; // This is false;
t1 != t2; // This is true;

It is important to reuse code. Is it possible to implement some comparison operators by calling
the others?

• Formatted output with operator<<. Time must be printed in the format HH:MM:SS.
• Formatted input with operator>>. You can always assume that a correct input will be in the

format HH:SS:MM. The values must check for correct values. Your implementation must check
that the read values are correct. Eg. Second and minute must be between 0-59, hour must be
between 0-23. The fail-flag must be set if an incorrect value are read. operator>> normally
only read until an error occur and the stop. If you choose to implement this in a different way,
it is OK as long as you document it.

	Aim
	Litterateur
	Way of working
	Assignment: Time

