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Deep Reinforcement Learning

« The tabular approach to reinforcement learning does not scale well to real-
world problems

« An alternative is to approximate the policy or value function
— Hopetully the agent can generalize and handle unseen states
— Guarantees of optimality will no longer hold

« The most common function approximator is a neural network
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Neural Networks

 Fully Connected Net
— “Basic” neural network
« Convolutional Neural Network (CNN) fnput - Hidden  Output
— Capture spatial relations
— E.g., image analysis
 Recurrent Neural Network (RNN)
— Capture temporal relations
— E.g., for handling partial observability
* See, e.g., https://www.deeplearningbook.org/
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Types of Reinforcement Learning Algorithms

« Value-based
— Learn value function and use for action selection
— E.g., Deep Q Networks (DQN)
 Policy-based
— Learn policy directly, without learning a value function
— E.g., REINFORCE
« Actor-Critic
— Learn value function (critic) and use it to guide updates of policy (actor)
— E.g., Asynchronous Advantage Actor-Critic (A3C)
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Deep Q Networks (DQN)

« Deep RL version of Q-learning, evaluated on Atari
— Uses neural network to approximate Q function

 Instead of updating the (approximate) Q function in
every step

— Store data from experiences with the environment in
replay buffer

— Sample (replay) batch of experiences periodically to
train neural network

« Avoids overtfitting to the most recently seen interactions
with the environment
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Other Examples of Deep RL Algorithms

« DDPG: Actor-critic method for learning deterministic policies with continous
actions

« A3C: Asynchronous actor-critic method for parallell learning in multiple
environments, for improved performance

« UNREAL: Extension of A3C with auxiliary tasks to stabilize learning
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Multi-Agent Deep Reinforcement Learning

* Modification of single-agent
algorithms

« Approaches

— Centralized learning and
execution with factored
action space

— Fully decentralized learning

— Centralized learning,
decentralized execution
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Decentralized Multi-Agent Deep Reinforcement Learning

» Though no theoretical guarantees exist, single-agent algorithms may produce
interesting results in multi-agent systems

« Ways to stabilize the learning process
— Clever design of reward systems
— Training populations of agents

 Can allow agents to generalize
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Example: RL in Sequential Social Dilemas

Agents based on DQN

Reward proportional to number
of hunters in proximity of prey
when captured

Learn to hunt in pack or wait
for other hunter to arrive before
capturing prey

Authors: Leibo et al. (2017)

Source: DeepMind
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Example: Capture the Flag

« Agent based on UNREAL
architecture

« Population-based training with
random teams playing random
maps

— Agents learn to cooperate with
human-like strategies

 Move In teams
« "Base camping”
« Authors: Jaderberg et al. (2018)

Source: DeepMind
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Centralized Learning, Decentralized Execution

« Extra information is used for
guidance during learning, e.g.,
actor-critic setup or value
function decomposition I_I |
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« At execution time agents act
based on local observations
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Example - MADDPG
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Moving to Increasingly Challenging Environments

* Increase in duration and number of moves (source: OpenAl)
— Chess ~40 moves per game
— Go: ~150 moves per game
— Dota-RTS: ~20000 moves per game (45 min)

« Difficult to define frequent rewards, and therefore difficult to explore the state
and action spaces to find an efficient policy
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Challenges in Multi-Agent Learning

« Computational complexity
— AlphaGo Zero (per agent):
64 GPUs & 19 CPUs
— OpenAl Dota Five

* 256 GPUs & 128000
CPUs

« Lack of good benchmarks
« Reproducability

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

Source: OpenAl
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Overview

« Explicit models of other agents can support decision making in MAS
— Provide more abstract input to learning algorithms
— Guide planning algorithms, e.g. MCTS

* Models can be built based on recorded data or online

« Example: AlphaGo, AlphaStar
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Example: Machine Theory of Mind

Theory of mind (ToM) broadly refers to humans’ ability to represent the
mental states of others, including their desires, beliefs, and intentions.

Machine Theory of Mind

— Seeks to build a system which learns to model other agents, a Machine
Theory of Mind, focusing on the problem of how an observer could learn
autonomously how to model other agents using limited data

Authors: Neil C. Rabinowitz, Frank Perbet, H. Francis Song, Chiyuan Zhang,
S. M. Ali Eslami, and Matthew Botvinick (DeepMind & Google Brain)
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Example: Machine Theory of Mind
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Source: DeepMind
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Example: Machine Theory of Mind

» Evaluted on deep reinforcement

learning agents with diverse I
characteristics s
« Learns to predict Lo ! S

— Goals/Actions

— BeliefS %) tgd stateful

blind sighted, stateless sighted, stateful

— Successor states

€1 VS. €
€3 VS. €4

« Embedding space clusters

agents with different chars. Source: DeepMind
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