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Fictitious Play

« Model-based learning with beliefs about the opponent’s strategy
— Mixed strategy according to empirical distribution of previous actions

w(a)

) =S W@

« Properties
— Sensitive to initial beliefs
— Steady state action profiles (action profile played in all future rounds)

- If a pure-strategy profile is a strict Nash equilibrium of a stage game, then it is a steady
state of fictitious play in the repeated game

 If a pure-strategy profile is a steady state of fictitious play in the repeated game, then it
is a (possibly weak) Nash equilibrium in the stage game
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Fictitious Play

* Properties

— If the empirical distribution of each player’s strategies converges in fictitious play,
then it converges to a Nash equilibrium

— Sufficient (independent) conditions for empirical frequencies of play to converge in
fictitious play

« The game is zero sum
« The game is solvable by iterated elimination of strictly dominated strategies
« The game is a potential game

« The game is 2 x n and has generic payoffs
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Fictitious Play - Example

« Anti-Coordination Game
— Empirical action probabilities according to Nash equilibrium

— No payoff, since the learning algorithm makes the agents coordinated

Round 1’s action 2’s action 1’s beliefs 2’s beliefs
0 (1,0.5) (1,0.5)
A B 1 B B (1,1.5) (1,1.5)
A 00 | 11 2 A A (2,1.5) (2,1.5)
3 B B (2,2.5) (2,2.5)
B 1,1 | 0,0 4 A A (3,2.5) (3,2.5)
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Rational Learning

 Beliefs of each player about his opponent’s strategies may be expressed by any
probability distribution over the set of all possible strategies

 Start with prior beliefs about the opponent’s strategy, as well as possible strategies
— S'.: The set of strategies that player i considers possible for the opponent -i
— H: The set of possible histories of the game

« Use Bayesian updating to update beliefs about opponent strategies

P;(hls_;)P;(s_;)
2 _Esiipi(msl_i)Pi(S’—i)
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Rational Learning

* Properties
— In self-play, under "some conditions”
« Agents get close to correct beliefs about their opponent’s strategy
« Agents converge towards a Nash equilibrium with high probability
— Rough summary of conditions
» Plays best response strategy

» Positive probability histories are assigned positive probability beliefs
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Rational Learning - Example

* Prisoners’ Dilemma
« Assumption regarding strategies C D

— Belief (§¢,): Opponent plays one of g, g, ..., £, C 33 | 04
— g, 1s the trigger strategy g, ’ ’
— g coincides with g_ for t < T, then defects D 4,0 | 1,1

— Player selects best response from g, g, ..., g

« Update of player i after seeing opponent cooperate in every step (depending on value of P;(h|gr))

0, T<t
P;(grlhe) = Pi(gr)

- , T>t
Zk=t+1 P;(gx)
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Reinforcement Learning

Trial-and-error learning

Typically modelled as a Markov
Decision Process (MDP), (S, A, T, R)

— S: Set of states

— A: Set of actions

— T: Transition dynamics
— R: Reward function

Goal: Maximize expected future
return

Agent
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Reinforcement Learning

e Value functions

— V.(s): The value of being in state s and then following policy

(0 0)

t _
ZV TelSo = S]
t=0

— Q,(s): The value of being in state s, taking action a, and then following policy 7t

(0]

t _ _
Zy Te|So = S, ap = a]
t=0

Ve(s) = E

Qn(sr Cl) =E
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Reinforcement Learning

» The trade-off between exploration and exploitation
— To learn the agent must explore
— To accumulate reward the agent must exploit

« Challenges

— Difficult to balance the two (e.g., when to stop
exploring)

— Difficult to explore & learn in environments with
sparse rewards
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Q-learning

* (Q-learning: Learning the state-action value function

Initialize the Q-function arbitrarily

repeat until convergence

1. Observe the current state s;

2. Select action a; (e.g., through e-greedy selection) and take it
3. Observe the next state and reward s;, 1,741
4

. Perform the following update step (with the learning rate « € (0,1))

Q(se,ar) = Q(se,ae) + “(Tt+1 +ymaxgQ(se41,a) — Q(s, at))

14
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Q-learning Convergence Properties

 Theorem 7.4.2: Q-learning guarantees that the Q values converge to those of
the optimal policy, provided that each state-action pair is sampled an infinite
number of times, and that the time-dependent learning rate a; obeys

0<a;<1

00
0
00
0
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Extensions to Zero-Sum Stochastic Games

« Approaches
— Ignore the existence of the other agent
« Works well against opponents with stationary strategies
* Otherwise no guarantees
— Find Q-function for combined actions of agents A = A; X A,
» Requires assumptions about opponent
— Assume best response
— Keep track of action frequency

— Estimate probability of strategy

16
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Minimax-Q
» Agent uses policy m to select actions, update step according to maxmin strategy

Qi(st, ag, 0r) = Qi(Se, ar, 0¢) + “(Tt+1 + ymax,;min, Q;(S¢g4+1, (Se41, A1), 0) — Q;(Sg, ay, Ot))
« Policy 1 is updated in each step based on the current Q function

TI,'(S,') — argmaxn_l(s,.) (minol Z ,(TL'(S, a’) * Q(S, a’, 0/)))

« Converges to the value of zero-sum games in self play (under conditions of Q-
learning)

17
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Belief-Based Reinforcement Learning

« Extension of Q-learning
— Model other agent (e.g., as in Fictitious Play or Rational Learning)

« Update step based on other agent’s action probabilities

Q(se,ar) = Q(spay) +a (Tt+1 T ymaxg, z Q(5t+1» (a;, a—i)) Pri(a_;) — Q(sy, at)>

a_;cA_;
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No-Regret Learning

 Select actions to minimize regret for achieved reward a compared to reward given by
strategy s

Ri(s) = at(s) — at
« Learning rule exhibits no regret if for pure strategy s

Pr([liminfRf(s)] < 0) =1

« Does not require an opponent model
« Does not take into account that opponents may change strategy over time

20
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Example

e Regret Matching

— Let action probability be proportional to its regret (for positive regrets)

R*(s)
Rt(s")

O'it+1(S) —
s'es;
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Evolutionary Learning

« Simulates populations of agents
« Individual agents are evaluated by a fitness function
« Uses a reproduction mechanisms to produce a new population
— Individuals with high fitness values atfect the next population the most

— Random mutations to, e.g., add qualities missing in the population

26
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The Replicator Dynamic

* Models a population of frequently interacting agents

— For example symmetric 2-player normal form stage game, e.g., Prisoner’s
Dilemma

— Each agent plays a pure strategy at each point in time

— Proportion of population that plays a certain strategy changes over time,
based on its payoff A B

A XX | uv

B vu | yy

II LINKOPING
o UNIVERSITY



Multi-Agent Learning/Johan Kallstrom

The Replicator Dynamic

« NFG G = ({1,2}, A,u), ¢:(a) is the number of players playing action a at time t

@) = =20 5 (@) = g 0,(@Nu(a, @) 5 ¢u(@) = pe(@)e(a)

« Average expected payoff of the whole population

u; = ) Oi(@u(a)

« Change in fraction of agents playing action a at time ¢

[th(a) Za’EA (Pt(a,)] — [@¢(a) Za’eA @e(a’)]
[Darea Pe(@)]?

0.(a) = = Or()[ue(a) — u]
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Properties of the Replicator Dynamic

Definitions

— Steady-state: Action fractions do not change
— Stable steady-state: A system that starts close to the steady-state remains nearby

— Asymptotically stable state: A system that starts close to the steady-state approaches the steady-state
over time

A symmetric mixed strategy Nash equilibrium of G is a steady state

A stable steady-state for the mixed strategy s is a Nash equilibrium of G

An asymptotically stable steady-state for the mixed strategy s is a Nash
equilibrium of G that is trembling-hand perfect and isolated
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