
Multi-Agent Learning

Overview of Algorithms.



Fictitious Play



Fictitious Play

• Model-based learning with beliefs about the opponent’s strategy

– Mixed strategy according to empirical distribution of previous actions

𝑃 𝑎 =
𝑤(𝑎)

σ𝑎′∈𝐴𝑤(𝑎
′)

• Properties

– Sensitive to initial beliefs

– Steady state action profiles (action profile played in all future rounds)

• If a pure-strategy profile is a strict Nash equilibrium of a stage game, then it is a steady 
state of fictitious play in the repeated game

• If a pure-strategy profile is a steady state of fictitious play in the repeated game, then it 
is a (possibly weak) Nash equilibrium in the stage game
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Fictitious Play

• Properties

– If the empirical distribution of each player’s strategies converges in fictitious play, 
then it converges to a Nash equilibrium

– Sufficient (independent) conditions for empirical frequencies of play to converge in 
fictitious play

• The game is zero sum

• The game is solvable by iterated elimination of strictly dominated strategies

• The game is a potential game

• The game is 2 x n and has generic payoffs
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Fictitious Play - Example

• Anti-Coordination Game

– Empirical action probabilities according to Nash equilibrium

– No payoff, since the learning algorithm makes the agents coordinated
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A B

A 0,0 1,1

B 1,1 0,0

Round 1’s action 2’s action 1’s beliefs 2’s beliefs

0 (1,0.5) (1,0.5)

1 B B (1,1.5) (1,1.5)

2 A A (2,1.5) (2,1.5)

3 B B (2,2.5) (2,2.5)

4 A A (3,2.5) (3,2.5)

… … … … …
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Rational Learning

• Beliefs of each player about his opponent’s strategies may be expressed by any 
probability distribution over the set of all possible strategies

• Start with prior beliefs about the opponent’s strategy, as well as possible strategies

– 𝑆−𝑖
𝑖 : The set of strategies that player i considers possible for the opponent -i

– 𝐻: The set of possible histories of the game

• Use Bayesian updating to update beliefs about opponent strategies

𝑃𝑖 𝑠−𝑖|ℎ =
𝑃𝑖(ℎ|𝑠−𝑖)𝑃𝑖(𝑠−𝑖)

σ
𝑠−𝑖
′ ∈𝑆−𝑖

𝑖 𝑃𝑖(ℎ|𝑠−𝑖
′ )𝑃𝑖(𝑠−𝑖

′ )
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Rational Learning

• Properties

– In self-play, under ”some conditions”

• Agents get close to correct beliefs about their opponent’s strategy

• Agents converge towards a Nash equilibrium with high probability

– Rough summary of conditions

• Plays best response strategy

• Positive probability histories are assigned positive probability beliefs
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Rational Learning - Example

• Prisoners’ Dilemma

• Assumption regarding strategies

– Belief (𝑆−𝑖
𝑖 ): Opponent plays one of g0, g1, …, g∞

– g∞ is the trigger strategy g∞

– gT coincides with g∞ for t < T, then defects

– Player selects best response from g0, g1, …, g∞

• Update of player i after seeing opponent cooperate in every step (depending on value of 𝑃𝑖(ℎ𝑡|𝑔𝑇))

𝑃𝑖 𝑔𝑇 ℎ𝑡 = ൞

0, 𝑇 ≤ 𝑡
𝑃𝑖(𝑔𝑇)

σ𝑘=𝑡+1
∞ 𝑃𝑖(𝑔𝑘)

, 𝑇 > 𝑡
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C D

C 3,3 0,4

D 4,0 1,1
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Reinforcement Learning

EnvironmentAgent

at

st , rt st+1 , rt+1

• Trial-and-error learning

• Typically modelled as a Markov 
Decision Process (MDP), (S, A, T, R)

– S: Set of states

– A: Set of actions

– T: Transition dynamics

– R: Reward function

• Goal: Maximize expected future
return
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Reinforcement Learning

• Value functions

– 𝑉𝜋(𝑠): The value of being in state s and then following policy π

𝑉𝜋(𝑠) = 𝐸 ෍

𝑡=0

∞

𝛾𝑡𝑟𝑡|𝑠0 = 𝑠

– 𝑄𝜋(𝑠): The value of being in state s, taking action a, and then following policy π

𝑄𝜋 𝑠, 𝑎 = 𝐸 ෍

𝑡=0

∞

𝛾𝑡𝑟𝑡|𝑠0 = 𝑠, 𝑎0 = 𝑎
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Reinforcement Learning

• The trade-off between exploration and exploitation

– To learn the agent must explore

– To accumulate reward the agent must exploit

• Challenges

– Difficult to balance the two (e.g., when to stop 
exploring)

– Difficult to explore & learn in environments with
sparse rewards
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Q-learning

• Q-learning: Learning the state-action value function

Initialize the Q-function arbitrarily

repeat until convergence

1. Observe the current state 𝑠𝑡

2. Select action 𝑎𝑡 (e.g., through ε-greedy selection) and take it

3. Observe the next state and reward 𝑠𝑡+1, 𝑟𝑡+1

4. Perform the following update step (with the learning rate 𝛼 ∈ (0,1))

𝑄 𝑠𝑡 , 𝑎𝑡 = 𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼 𝑟𝑡+1 + 𝛾𝑚𝑎𝑥𝑎𝑄 𝑠𝑡+1, 𝑎 − 𝑄 𝑠𝑡 , 𝑎𝑡
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Q-learning Convergence Properties

• Theorem 7.4.2: Q-learning guarantees that the Q values converge to those of
the optimal policy, provided that each state-action pair is sampled an infinite
number of times, and that the time-dependent learning rate 𝛼𝑡 obeys

0 ≤ 𝛼𝑡 < 1

෍
0

∞

𝛼𝑡 = ∞

෍
0

∞

𝛼𝑡
∞ < ∞
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Extensions to Zero-Sum Stochastic Games

• Approaches

– Ignore the existence of the other agent

• Works well against opponents with stationary strategies

• Otherwise no guarantees

– Find Q-function for combined actions of agents 𝐴 = 𝐴1 × 𝐴2

• Requires assumptions about opponent

–Assume best response

–Keep track of action frequency

–Estimate probability of strategy

16Multi-Agent Learning/Johan Källström



Minimax-Q

• Agent uses policy π to select actions, update step according to maxmin strategy

𝑄𝑖 𝑠𝑡, 𝑎𝑡, 𝑜𝑡 = 𝑄𝑖 𝑠𝑡, 𝑎𝑡, 𝑜𝑡 + 𝛼 𝑟𝑡+1 + 𝛾𝑚𝑎𝑥𝜋𝑚𝑖𝑛𝑜𝑄𝑖 𝑠𝑡+1, 𝜋 𝑠𝑡+1, 𝑎𝑡+1 , 𝑜 − 𝑄𝑖 𝑠𝑡, 𝑎𝑡, 𝑜𝑡

• Policy π is updated in each step based on the current Q function

𝜋 𝑠,∙ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋′(𝑠,∙)(𝑚𝑖𝑛𝑜′ ෍
𝑎′
(𝜋 𝑠, 𝑎′ ∗ 𝑄 𝑠, 𝑎′, 𝑜′ ))

• Converges to the value of zero-sum games in self play (under conditions of Q-
learning)
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Belief-Based Reinforcement Learning

• Extension of Q-learning

– Model other agent (e.g., as in Fictitious Play or Rational Learning)

• Update step based on other agent’s action probabilities

𝑄 𝑠𝑡 , 𝑎𝑡 = 𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼 𝑟𝑡+1 + 𝛾𝑚𝑎𝑥𝑎𝑖 ෍

𝑎−𝑖⊂𝐴−𝑖

𝑄 𝑠𝑡+1, 𝑎𝑖 , 𝑎−𝑖 𝑃𝑟𝑖(𝑎−𝑖) − 𝑄 𝑠𝑡 , 𝑎𝑡
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No-Regret Learning

• Select actions to minimize regret for achieved reward α compared to reward given by 
strategy s

𝑅𝑡(𝑠) = 𝛼𝑡 𝑠 − 𝛼𝑡

• Learning rule exhibits no regret if for pure strategy s

Pr( lim 𝑖𝑛𝑓𝑅𝑡(𝑠) ≤ 0) = 1

• Does not require an opponent model

• Does not take into account that opponents may change strategy over time
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Example

• Regret Matching

– Let action probability be proportional to its regret (for positive regrets)

𝜎𝑖
𝑡+1 𝑠 =

𝑅𝑡(𝑠)

σ𝑠′∈𝑆𝑖
𝑅𝑡(𝑠′)
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Evolutionary Learning

• Simulates populations of agents

• Individual agents are evaluated by a fitness function

• Uses a reproduction mechanisms to produce a new population

– Individuals with high fitness values affect the next population the most

– Random mutations to, e.g., add qualities missing in the population
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The Replicator Dynamic

• Models a population of frequently interacting agents

– For example symmetric 2-player normal form stage game, e.g., Prisoner’s
Dilemma

– Each agent plays a pure strategy at each point in time

– Proportion of population that plays a certain strategy changes over time, 
based on its payoff
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A B

A x,x u,v

B v,u y,y



The Replicator Dynamic

• NFG 𝐺 = ( 1,2 , 𝐴, 𝑢), 𝜑𝑡(𝑎) is the number of players playing action a at time t

𝜃𝑡 𝑎 =
𝜑𝑡(𝑎)

σ
𝑎′∈𝐴

𝜑𝑡(𝑎
′)

,  𝑢𝑡 𝑎 = σ𝑎′ 𝜃𝑡 𝑎
′ 𝑢(𝑎, 𝑎′) ,  ሶ𝜑𝑡 𝑎 = 𝜑𝑡(𝑎)𝑢𝑡(𝑎)

• Average expected payoff of the whole population

𝑢𝑡
∗ =෍

𝑎

𝜃𝑡(𝑎)𝑢𝑡(𝑎)

• Change in fraction of agents playing action a at time t

ሶ𝜃𝑡 𝑎 =
ሶ𝜑𝑡 𝑎 σ𝑎′∈𝐴𝜑𝑡 𝑎

′ − [𝜑𝑡(𝑎)σ𝑎′∈𝐴 ሶ𝜑𝑡(𝑎
′)]

[σ𝑎′∈𝐴𝜑𝑡 𝑎
′ ]2

= 𝜃𝑡 𝑎 [𝑢𝑡 𝑎 − 𝑢𝑡
∗]
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Properties of the Replicator Dynamic

• Definitions

– Steady-state: Action fractions do not change

– Stable steady-state: A system that starts close to the steady-state remains nearby

– Asymptotically stable state: A system that starts close to the steady-state approaches the steady-state
over time

• A symmetric mixed strategy Nash equilibrium of G is a steady state

• A stable steady-state for the mixed strategy s is a Nash equilibrium of G

• An asymptotically stable steady-state for the mixed strategy s is a Nash 
equilibrium of G that is trembling-hand perfect and isolated
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