Multi-Agent Learning

Overview of Algorithms.

Fictitious Play

Fictitious Play

- Model-based learning with beliefs about the opponent's strategy
 - Mixed strategy according to empirical distribution of previous actions

$$P(a) = \frac{w(a)}{\sum_{a' \in A} w(a')}$$

- Properties
 - Sensitive to initial beliefs
 - Steady state action profiles (action profile played in all future rounds)
 - If a pure-strategy profile is a strict Nash equilibrium of a stage game, then it is a steady state of fictitious play in the repeated game
 - If a pure-strategy profile is a steady state of fictitious play in the repeated game, then it is a (possibly weak) Nash equilibrium in the stage game

Fictitious Play

- Properties
 - If the empirical distribution of each player's strategies converges in fictitious play, then it converges to a Nash equilibrium
 - Sufficient (independent) conditions for empirical frequencies of play to converge in fictitious play
 - The game is zero sum
 - The game is solvable by iterated elimination of strictly dominated strategies
 - The game is a potential game
 - The game is 2 x n and has generic payoffs

Fictitious Play - Example

- Anti-Coordination Game
 - Empirical action probabilities according to Nash equilibrium
 - No payoff, since the learning algorithm makes the agents coordinated

			Round	1's action	2's action	1's beliefs	2's beliefs
			0			(1,0.5)	(1,0.5)
	Α	B	1	В	В	(1,1.5)	(1,1.5)
A	0,0	1,1	2	А	A	(2,1.5)	(2,1.5)
			3	В	В	(2,2.5)	(2,2.5)
В	1,1	0,0	4	А	А	(3,2.5)	(3,2.5)
	L	1				•••	

Rational Learning

Rational Learning

- Beliefs of each player about his opponent's strategies may be expressed by any probability distribution over the set of all possible strategies
- Start with prior beliefs about the opponent's strategy, as well as possible strategies
 - S_{-i}^{i} : The set of strategies that player *i* considers possible for the opponent -*i*
 - *H*: The set of possible histories of the game
- Use Bayesian updating to update beliefs about opponent strategies

$$P_i(s_{-i}|h) = \frac{P_i(h|s_{-i})P_i(s_{-i})}{\sum_{s'_{-i}\in S_{-i}^i} P_i(h|s'_{-i})P_i(s'_{-i})}$$

Rational Learning

- Properties
 - In self-play, under "some conditions"
 - Agents get close to correct beliefs about their opponent's strategy
 - Agents converge towards a Nash equilibrium with high probability
 - Rough summary of conditions
 - Plays best response strategy
 - Positive probability histories are assigned positive probability beliefs

Rational Learning - Example

- Prisoners' Dilemma
- Assumption regarding strategies
 - Belief (S_{-i}^{i}) : Opponent plays one of $g_0, g_1, ..., g_{\infty}$
 - g_{∞} is the trigger strategy g_{∞}
 - g_T coincides with g_{∞} for t < T, then defects
 - Player selects best response from $g_0, g_1, ..., g_{\infty}$
- Update of player *i* after seeing opponent cooperate in every step (depending on value of $P_i(h_t|g_T)$)

$$P_i(g_T|h_t) = \begin{cases} 0, & T \le t \\ \frac{P_i(g_T)}{\sum_{k=t+1}^{\infty} P_i(g_k)}, & T > t \end{cases}$$

	С	D		
\mathbf{C}	3,3	0,4		
C	4,0	1,1		

- Trial-and-error learning
- Typically modelled as a Markov Decision Process (MDP), (S, A, T, R)
 - S: Set of states
 - A: Set of actions
 - T: Transition dynamics
 - R: Reward function
- Goal: Maximize expected future return

- Value functions
 - $V_{\pi}(s)$: The value of being in state s and then following policy π

$$V_{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} | s_{0} = s\right]$$

– $Q_{\pi}(s)$: The value of being in state s, taking action a, and then following policy π

$$Q_{\pi}(s,a) = E\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} | s_{0} = s, a_{0} = a\right]$$

- The trade-off between exploration and exploitation
 - To learn the agent must explore
 - To accumulate reward the agent must exploit
- Challenges
 - Difficult to balance the two (e.g., when to stop exploring)
 - Difficult to explore & learn in environments with sparse rewards

Q-learning

- Q-learning: Learning the state-action value function Initialize the Q-function arbitrarily
 repeat until convergence
 - 1. Observe the current state s_t
 - 2. Select action a_t (e.g., through ε -greedy selection) and take it
 - 3. Observe the next state and reward s_{t+1} , r_{t+1}
 - 4. Perform the following update step (with the learning rate $\alpha \in (0,1)$)

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha (r_{t+1} + \gamma max_a Q(s_{t+1}, a) - Q(s_t, a_t))$$

Q-learning Convergence Properties

 Theorem 7.4.2: *Q*-learning guarantees that the *Q* values converge to those of the optimal policy, provided that each state-action pair is sampled an infinite number of times, and that the time-dependent learning rate α_t obeys

 $0 \le \alpha_t < 1$

$$\sum_{0}^{\infty} \alpha_{t} = \infty$$

$$\sum\nolimits_{0}^{\infty} \alpha_{t}^{\infty} < \infty$$

Extensions to Zero-Sum Stochastic Games

- Approaches
 - Ignore the existence of the other agent
 - Works well against opponents with stationary strategies
 - Otherwise no guarantees
 - Find Q-function for combined actions of agents $A = A_1 \times A_2$
 - Requires assumptions about opponent
 - Assume best response
 - Keep track of action frequency
 - Estimate probability of strategy

16

Minimax-Q

• Agent uses policy π to select actions, update step according to maxmin strategy

 $Q_i(s_t, a_t, o_t) = Q_i(s_t, a_t, o_t) + \alpha \big(r_{t+1} + \gamma max_{\pi} min_o Q_i(s_{t+1}, \pi(s_{t+1}, a_{t+1}), o) - Q_i(s_t, a_t, o_t) \big)$

• Policy π is updated in each step based on the current Q function

$$\pi(s,\cdot) = \operatorname{argmax}_{\pi'(s,\cdot)}(\min_{o'} \sum_{a'} (\pi(s,a') * Q(s,a',o')))$$

• Converges to the value of zero-sum games in self play (under conditions of Q-learning)

Belief-Based Reinforcement Learning

- Extension of Q-learning
 - Model other agent (e.g., as in Fictitious Play or Rational Learning)
- Update step based on other agent's action probabilities

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha \left(r_{t+1} + \gamma \max_{a_i} \sum_{a_{-i} \subset A_{-i}} Q(s_{t+1}, (a_i, a_{-i})) Pr_i(a_{-i}) - Q(s_t, a_t) \right)$$

No-Regret Learning

No-Regret Learning

- Select actions to minimize regret for achieved reward α compared to reward given by strategy *s*

 $R^t(s) = \alpha^t(s) - \alpha^t$

• Learning rule exhibits no regret if for pure strategy *s*

 $\Pr([\liminf rR^t(s)] \le 0) = 1$

- Does not require an opponent model
- Does not take into account that opponents may change strategy over time

Example

- Regret Matching
 - Let action probability be proportional to its regret (for positive regrets)

$$\sigma_i^{t+1}(s) = \frac{R^t(s)}{\sum_{s' \in S_i} R^t(s')}$$

Evolutionary Learning

Evolutionary Learning

- Simulates populations of agents
- Individual agents are evaluated by a fitness function
- Uses a reproduction mechanisms to produce a new population
 - Individuals with high fitness values affect the next population the most
 - Random mutations to, e.g., add qualities missing in the population

The Replicator Dynamic

- Models a population of frequently interacting agents
 - For example symmetric 2-player normal form stage game, e.g., Prisoner's Dilemma
 - Each agent plays a pure strategy at each point in time
 - Proportion of population that plays a certain strategy changes over time, based on its payoff
 A B

The Replicator Dynamic

- NFG $G = (\{1,2\}, A, u), \varphi_t(a)$ is the number of players playing action a at time t $\theta_t(a) = \frac{\varphi_t(a)}{\sum_{a' \in A} \varphi_t(a')}, \ u_t(a) = \sum_{a'} \theta_t(a')u(a, a'), \ \dot{\varphi}_t(a) = \varphi_t(a)u_t(a)$
- Average expected payoff of the whole population

$$u_t^* = \sum_a \theta_t(a) u_t(a)$$

• Change in fraction of agents playing action *a* at time *t*

$$\dot{\theta}_{t}(a) = \frac{\left[\dot{\varphi}_{t}(a)\sum_{a'\in A}\varphi_{t}(a')\right] - \left[\varphi_{t}(a)\sum_{a'\in A}\dot{\varphi}_{t}(a')\right]}{[\sum_{a'\in A}\varphi_{t}(a')]^{2}} = \theta_{t}(a)[u_{t}(a) - u_{t}^{*}]$$

28

Properties of the Replicator Dynamic

- Definitions
 - Steady-state: Action fractions do not change
 - Stable steady-state: A system that starts close to the steady-state remains nearby
 - Asymptotically stable state: A system that starts close to the steady-state approaches the steady-state over time
- A symmetric mixed strategy Nash equilibrium of G is a steady state
- A stable steady-state for the mixed strategy s is a Nash equilibrium of G
- An asymptotically stable steady-state for the mixed strategy s is a Nash equilibrium of G that is trembling-hand perfect and isolated

www.liu.se

