
TDDE13 Multiagent Systems
Fredrik Heintz, Dept. of Computer Science,
Linköping University, Sweden

fredrik.heintz@liu.se

@FredrikHeintz

Multiagent systems

Learning Outcomes

• The overall aim of the course is to give an overview of multiagent
systems and in-depth knowledge of some areas of multiagent systems.
After the course students should be able to:

• List and explain important problems and techniques in the area of multiagent
systems.

• Explain how central algorithms in the area of multiagent systems work.

• Be able to implement some central algorithm in the area of multiagent systems.

• Evaluate and apply different game theoretic approaches.

• Design and use auctions for allocating resources in a multiagent system.

• Model relevant aspects of multiagent system decision making using markov
decision processes and logics.

Lectures and Seminars Part I
• The course material for week 1-3 are the following lectures from Game Theory Online:

– Game Theory I - Week 1 (Introduction)

– Game Theory I - Week 2 (Mixed-strategy Nash equilibria)

– Game Theory I - Week 3 (Alternate solution concepts)

– Game Theory I - Week 4 (Extensive-Form Games)

– Game Theory I - Week 5 (Repeated Games)

– Game Theory I - Week 6 (Bayesian Games)

– Game Theory I - Week 7 (Coalitional Games)

• and the following pre-recorded lectures

– Cooperative game theory

– Coalition formation and centralized algorithms

• Nov 19, Lab session: Centralized coordination algorithms

• Nov 20, Seminar: Game theory (exercise set 1)

• Dec 6, Deadline: Lab 1 accepted Kattis submissions and report submitted

Lectures and Seminars Part II
• The course material for week 4 and 5 are the following lectures from Game Theory Online:

– Game Theory II - Week 1 (Social Choice)

– Game Theory II - Week 2 (Mechanism Design)

– Game Theory II - Week 3 (VCG)

– Game Theory II - Week 4 (Auctions)

• and the following pre-recorded lectures

– Multi-agent learning

• Dec 3, Lab session: Multi-agent reinforcement learning

• Dec 4, Seminar: Social choice, mechanism design and auctions (exercise set 2)

• Dec 4, Deadline: Approved choice of subject for the individual report

• Dec 7-8, Discuss individual reports individually with Fredrik Präntare

• Dec 17, Seminar: Student presentations on individual report

• Dec 13, Deadline: Lab 2 report submitted

• Dec 22, Deadline: Individual report submitted

Examination

• LAB 2hp

– Centralized Coordination Algorithms

– Multiagent Reinforcement Learning

• UPG 4hp

– 0-17 points grade U; 18-23 points grade 3;
24-26 points grade 4; 27-28 points grade 5

– [7 points] Assignment Set 1: Agents and Game Theory

– [7 points] Assignment Set 2: Mechanism Design, Social Choice, and
Coalitional Game Theory

– [14 points] Individual written report + presentation at seminar

Intelligent Agents

An agent is
anything that can
be viewed as
perceiving its
environment
through sensors
and acting upon
that environment
through actuators.

Intelligent Agents

AI Technology areas

• Perception

• Learning

• Knowledge representation
and reasoning

• Planning and
decision making

• Control

M
o

d
e

rn
 A

I

C
la

ss
ic

al
A

I

Agent types

• Four basic types in order of increasing generality:

– Simple reflex agents

– Model-based reflex agents

– Goal-based agents

– Utility-based agents

Simple reflex agents

Model-based reflex agents

Goal-based agents

Utility-based agents

Learning agents

Agent Architectures Summary

• Originally (1956-1985), pretty much all agents designed within AI were
symbolic reasoning agents

• Its purest expression proposes that agents use explicit logical reasoning
in order to decide what to do

• Problems with symbolic reasoning led to a reaction against this — the
so-called reactive agents movement, 1985–present

• From 1990-present, a number of alternatives proposed: hybrid
architectures, which attempt to combine the best of reasoning and
reactive architectures

Fredrik Heintz

Deliberative Architectures
Properties

– Internal state
(using symbolic representation)

– Search-based decision making

– Goal directed

Benefits
– Nice and clear (logics) semantics

– Easy to analyze by proving properties

Problems
– Can’t react in a timely manner to events that

requires immediate actions. Intractable algorithms.

– Hard to create a symbolic representation from
continuous sensor data. The anchoring problem.

Environment

Agent

Sense ActPlan

Reactive Agent Architectures

Properties

– No explicit world model

– Rule-based decision making

Benefits

– Efficient

– Robust

Problems

– The local environment must contain enough information to make a decision.

– Easy to build small agents, hard to build agents with many behaviors or rules.
Emergent behavior.

Environment

Agent

Sense Act

Hybrid Agent Architectures

Properties

– Tries to combine the good parts of both
reactive and deliberative architectures.

– Usually layered architectures.

Benefits

– Attacks the problem on different abstraction levels.

– Has the benefits of both architecture types.

Problems

– Hard do combine the different parts.

HDRC3: A Distributed Hybrid Deliberative/Reactive Architecture for Autonomous Systems

D
yK

n
o

w

St
re

am
-b

as
e

d
 P

ro
ce

ss
in

g

Control Kernel

Visual Landing Takeoff … Traj Following

Tr
an

si
ti

o
n

Tr
an

si
ti

o
n

C
o

n
tr

o
l

R
e

ac
ti

ve
D

e
lib

e
ra

ti
ve

Task Specification Trees

Planning

High-level

Low-level

Signals

Symbols

Mission-Specific
User Interfaces

Delegation Resource Reasoning

Platform Server

Hierarchical Concurrent State Machines

FCL PPCL

fly-to scan-area surveil …

High-level

Low-level

Ti
m

e
 r

e
q

u
ir

e
m

en
ts

 /
 K

n
o

w
le

d
ge

…

P. Doherty, J. Kvarnström, M. Wzorek, P. Rudol, F. Heintz and G. Conte. 2014.
HDRC3 - A Distributed Hybrid Deliberative/Reactive Architecture for Unmanned Aircraft Systems.
In K. Valavanis, G. Vachtsevanos, editors, Handbook of Unmanned Aerial Vehicles, pages 849–952.

Human and Computational Thinking

https://web.cs.ucla.edu/~guyvdb/slides/ComputersAndThought.pdf

https://web.cs.ucla.edu/~guyvdb/slides/ComputersAndThought.pdf

https://web.cs.ucla.edu/~guyvdb/slides/ComputersAndThought.pdf

https://web.cs.ucla.edu/~guyvdb/slides/ComputersAndThought.pdf

Multi-Agent Systems

“A multi-agent system (MAS) can be defined as a loosely coupled network
of problem solvers that interact to solve problems that are beyond the
individual capabilities or knowledge of each problem solver.”

Durfee and Lesser, 1989

Characteristics of MAS

• The participants are self-interested.

• The participants and their capabilities changes over time, i.e. open
systems.

• Each participant has incomplete information or capabilities for solving
the problem and, thus, has a limited viewpoint.

• There is no system global control.

• Data is decentralized.

• Computation is asynchronous.

View of a Canonical MAS

A1

A2

A3

A4

A5

Organizational
relationship

Interaction

Sphere of
influence

Environment

Agent

Motivations for MAS

• Model human interactions.

• Solve very large and open problems.

• Interconnect and interoperate legacy system, information sources, or
experts.

• Solve problems that naturally can be regarded as a society of agents.

• Enhance computational efficiency, reliability, extensibility,
maintainability, flexibility, and reuse.

Multiagent Systems is Interdisciplinary

• The field of Multiagent Systems is influenced and inspired by many
other fields:

– Economics

– Philosophy

– Game Theory

– Logic

– Ecology

– Social Sciences

• What makes the multiagent systems field unique is that it emphasizes
that the agents in question are computational, information processing
entities.

Agent Design, Society Design

• Agent design: How do we build agents capable of independent,
autonomous action, so that they can successfully carry out tasks we
delegate to them?

• Society design: How do we build agents that are capable of interacting
(cooperating, coordinating, negotiating) with other agents in order to
successfully carry out those delegated tasks, especially when the other
agents cannot be assumed to share the same interests/goals?

Social Ability

• Cooperation is working together as a team to achieve a shared goal.

– Often prompted either by the fact that no one agent can achieve the goal alone, or
that cooperation will obtain a better result (e.g., get result faster).

• Coordination is managing the interdependencies between activities.

• Negotiation is the ability to reach agreements on matters of common
interest.

– Typically involves offer and counter-offer, with compromises made by participants.

Working Together
• Why and how should agents work together?

– Since agents are autonomous, they have to make decisions at run-time and be
capable of dynamic coordination.

• Cooperation is working together as a team to achieve a shared goal.

– Often prompted either by the fact that no one agent can achieve the goal alone, or that
cooperation will obtain a better result (e.g., get result faster).

• Coordination is managing the interdependencies between activities.

• Negotiation is the ability to reach agreements on matters of common interest.

– Typically involves offer and counter-offer, with compromises made by participants.

• Overall they will need to be able to share:

– Tasks

– Information

• If agents are designed by different individuals, they may not have common goals.

Criteria for Assessing Agent-based Systems

• Coherence - how well the [multiagent] system behaves as a unit along
some dimension of evaluation (Bond and Gasser).

– We can measure coherence in terms of solution quality, how efficiently resources
are used, conceptual clarity and so on.

• Coordination - the degree… to which [the agents]… can avoid
“extraneous” activity [such as]… synchronizing and aligning their
activities (Bond and Gasser).

– If the system is perfectly coordinated, agents will not get in each others’ way, in a
physical or a metaphorical sense.

Solution Approaches

• Sophisticated individual agents

• Organizations

• Task allocation and multiagent planning

• Recognizing and resolving conflicts

• Modeling other agents

• Communication

• Managing resources

• Adaptation and learning

Research Challenges in MAS
• How to formulate, describe, decompose, and allocate problems and synthesize results

among a group of agents.

• How to enable agents to communicate and interact.

• How to make sure that agents act coherently in making decision or taking action.

• How to enable individual agents to represent and reason about the actions, plans, and
knowledge of other agents to coordinate with them.

• How to recognize and reconcile disparate viewpoints and conflicting intentions among
a collection of agents trying to coordinate their actions.

• How to engineer and constrain practical multi-agent systems.

• How to design technology platforms and development methodologies for MASs.

Distributed Constraint Solving

Cooperative Problem Solving

• How does a group of agents work together to solve problems?

• If we “own” the whole system, we can design agents to help each other
whenever asked. In this case, we can assume agents are benevolent: our
best interest is their best interest.

• Problem-solving in benevolent systems is cooperative distributed
problem solving (CDPS).

• There are three stages:

– Problem decomposition

– Sub-problem solution

– Answer synthesis

decomposition solution synthesis

Distributed Constraint Reasoning

• CSP: (X, D, C)
– X = {x1, x2,…, xn} variables

– D = {d1, d2,…,dn} domains (finite)

– C = {c1,c2,…,cr} constraints

For each c ϵ C
– var(c) = {xi, xj, …, xk} scope

– rel(c) ϵ di x dj x … x dk permitted tuples

• Solution: total assignment satisfying all constraints

• DisCSP: (X, D, C, A, )
– A = {a1, a2, …, ak} agents

– : X -> A maps variables to agents

– c is known by agents owning var(c)

Distributed Constraint Reasoning

Common assumptions:

• Agents communicate by sending messages

• An agent can send messages to others, iff it knows their identifiers

• The delay transmitting a message is finite but random

• For any pair of agents, messages are delivered in the order they were
sent

• Agents know the constraints in which they are involved, but not the
other constraints

• Each agent owns a single variable (agents = variables)

• Constraints are binary (2 variables involved)

Asynchronous Backtracking

• Each agent starts with instantiated variables, and knows all constraints
that concern it

• Agent graph is connected, but not necessarily fully connected. Each
agent has a set of values for the agents connected to it by incoming links
(agent view)

• Agents can change their values or message agents that are linked to
them

• Messages are either Ok? or noGood

Asynchronous Backtracking

• Agent view: the values of all agents linked to a particular agent

• Message Handling
– Ok? -> Agent wants to know if it can assign a certain value to itself, so it asks

another agent

• Receiving agent updates agent view and checks for consistency, makes sure updated
agent view is not a “noGood”

• Oks only sent to lower priority agents

– NoGood -> in evaluating an Ok? Message, an agent cannot find a value for itself
that is consistent, then its updated agent view is noGood and a NoGood
(backtracking) message is sent to another agent.

• Nogoods only sent to higher priority agents

• NoGoods can be seen as derived constraints

• Preventing infinite loops by having a total order among agents for
communication
– Only need to know order of agents that one agent is linked to

Example: Asynchronous Backtracking

Source: M. Yokoo, E.H. Durfee, T. Ishida, K. Kuwabara, Distributed constraint satisfaction for formalizing distributed
problem solving, in: 12th International Conference on Distributed Computing Systems (ICDCS-92), 1992,
pp. 614–621.

Comparison

Source: M. Yokoo, E.H. Durfee, T. Ishida, K. Kuwabara, Distributed constraint satisfaction for formalizing distributed
problem solving, in: 12th International Conference on Distributed Computing Systems (ICDCS-92), 1992,
pp. 614–621.

Asynchronous Weak-Commitment Search (AWC)

• Improvement over asynchronous backtracking

• Uses local dynamic priority values rather than static global ordering

• When an agent generates a nogood value, it promotes itself within its
local network

• In ABT, an agent backtracks at dead-ends by sending a nogood to a
higher priority agent

• in AWC, an agent gives up the attempt to satisfy its constraints and
delegates the problem to other agents by raising its own priority

Comparison

Source: M. Yokoo, E.H. Durfee, T. Ishida, K. Kuwabara, Distributed constraint satisfaction for formalizing distributed
problem solving, in: 12th International Conference on Distributed Computing Systems (ICDCS-92), 1992,
pp. 614–621.

Distributed Constraint Reasoning
• Exact algorithms (DisCSP and DCOP)

– Asynchronous Backtracking (ABT),

– Asynchronous Weak-Commitment Search (AWCS),

– Asynchronous Distributed Optimization (ADOPT, BnB-ADOPT),

– Distributed Pseudotree Optimization Procedure (DPOP)

• Approximate Algorithms with quality guarantees

– k-optimality,

– Bounded max-sum

• Approximate Algorithms without quality guarantees

– Distributed Stochastic Algorithm (DSA),

– Max-Sum

A principled approach to building collaborative
intelligent autonomous systems for complex missions.

Collaborative Unmanned Aircraft Systems

Collaborative Unmanned Aircraft Systems

A principled approach to building collaborative
intelligent autonomous systems for complex missions.

Challenges:

• Support humans and robots including legacy systems

• Support adjustable autonomy and mixed-initiative

interaction

• Manage tasks and information on many abstraction levels

• Coordinating control, reaction and deliberation

• Coordination of systems, resources and platforms

• Incomplete information at design time and run time

• Inspection, monitoring, diagnosis and recovery on many

abstraction levels

Autonomous Systems at AIICS, Linköping University

Micro UAVs
weight < 500 g,
diameter < 50 cm

Yamaha RMAX
weight 95 kg,
length 3.6 m

PingWing

LinkMAV

LinkQuad weight ~1 kg, diameter ~70cm

HDRC3: A Distributed Hybrid Deliberative/Reactive Architecture for Autonomous Systems

D
yK

n
o

w

St
re

am
-b

as
e

d
 P

ro
ce

ss
in

g

Control Kernel

Visual Landing Takeoff … Traj Following

Tr
an

si
ti

o
n

Tr
an

si
ti

o
n

C
o

n
tr

o
l

R
e

ac
ti

ve
D

e
lib

e
ra

ti
ve

Task Specification Trees

Planning

High-level

Low-level

Signals

Symbols

Mission-Specific
User Interfaces

Delegation Resource Reasoning

Platform Server

Hierarchical Concurrent State Machines

FCL PPCL

fly-to scan-area surveil …

High-level

Low-level

Ti
m

e
 r

e
q

u
ir

e
m

en
ts

 /
 K

n
o

w
le

d
ge

…

P. Doherty, J. Kvarnström, M. Wzorek, P. Rudol, F. Heintz and G. Conte. 2014.
HDRC3 - A Distributed Hybrid Deliberative/Reactive Architecture for Unmanned Aircraft Systems.
In K. Valavanis, G. Vachtsevanos, editors, Handbook of Unmanned Aerial Vehicles, pages 849–952.

Lessons learned:

• Logical specifications are essential to building and

verifying complex systems.

• Clearly defined languages as interfaces provide rigor

and flexibility.

• Many small programs loosely coupled in a distributed

system provides flexibility, adaptability and organic

growth.

• A distributed communication infrastructure greatly

simplifies development.

• Separate specification of tasks from their execution

for greater realization flexibility.

Example Scenario: Search and Relief

Searching for injured people and delivering food, medicine and
other supplies are highly prioritized activities in disaster relief.

Example Scenario: Search and Relief

Mission: First scan Area for survivors, then deliver
emergency supplies to the survivors.

Area

Example Scenario: Search and Relief
Mission: First scan Area for survivors, then deliver
emergency supplies to the survivors.

Human-Robot Collaboration

Delegation

Adjustable
Autonomy

Mixed-Initiative
Interaction

Delegate(A, B, task, constraints)

Delegate(GOP, UAV, task, constraints)
Delegate(UAV, GOP, task, constraints)
Important: Safety, security, trust, etc.

By varying the task and constraints
parameters the degree of autonomy
allowed can be controlled.

Patrick Doherty, Fredrik Heintz and Jonas Kvarnström. 2013.
High-level Mission Specification and Planning for Collaborative Unmanned Aircraft
Systems using Delegation. Unmanned Systems, 1(1):75–119. World Scientific.

Collaborative Tasks for UAS

• Tasks need to be

– general to cover the spectrum from high level goals to detailed plans (task
constraints),

– assigned to resource constrained physical platforms (interrelated utilities), and

– expanded and modified as parts of tasks are recursively delegated (complex tasks).

• The task representation should

– be highly flexible, distributed and dynamically extendible and

– support dynamic adjustment of autonomy.

Task Specification Trees

• A Task Specification Tree (TST) is a distributed data
structure with a declarative representation that
describes a complex multi-agent task.

• A node in a TST corresponds to a task. It has a node
interface with parameters and a set of node
constraints that restrict the parameters.

• There are currently six types of nodes: Sequence,
concurrent, loop, select, goal, and elementary action.

• A TST is associated with a set of tree constraints
expressing constraints between tasks in the tree.

flyto

Interface:
ts, te, Dest
Speed

Example Scenario: Search and Relief

Mission: First scan AreaA and AreaB, then fly to Dest.

AreaA

AreaB

Dest

Example TST
N0

S

N1

C
N4

flyto

N3

scan
N2

scan

Interface: ts0, te0

Task: sequence(α1, α4)

Interface: ts4, te4,
Dest, Speed4

Task: flyto(Dest, Speed4)

Interface: ts3, te3, AreaB, Speed3

Task: scan(AreaB, Speed3)

Interface: ts2, te2 ,
AreaA, Speed2

Task: scan(AreaA, Speed2)

α1

Interface: ts1, te1

Task: concurrent(α2, α3)

α2 α3

α4

Mission: First scan AreaA and AreaB, then fly to Dest.

Delegating TSTs

• What it means to be able to carry out a TST is defined in terms of the Can
and Delegate predicates.

• Can(B, τ, [ts, te, …], cons) asserts that an agent B has the capabilities and
resources for achieving a task τ in the interval [ts, te] with the constraints
cons.

• The semantics of control nodes is platform independent while the
semantics of elementary action nodes are platform dependent.

– Can(B, S(τ1, …, τn), [ts, te, …], cons) holds iff B either can do or delegate each task τ1, …, τn

in the sequence so that the constraints are satisfied.

TST Delegation Example

N0 S0 E0

S

N1 S1 E1

C
N4S4 E4

flyto

N3S3 E3

scan
N2 S2 E2

scanP1 P2

AreaA

AreaB

Dest

Complex Task Allocation for CUAS

• The goal of the delegation process is to recursively
find a set of platforms that can achieve a task specified as a TST.

• For a task to be achievable every node in the TST must be allocated to a
platform such that the distributed constraint satisfaction problem
corresponding to the semantics of the allocated TST is consistent.

• Hence we need to solve a complex task allocation problem.

• Our approach combines auction-based heuristic search for allocation
and distributed constraint satisfaction for consistency checking partial
allocations.

TST Allocation Example

N0 S0 E0

S

N1 S1 E1

C
N4S4 E4

flyto

N3S3 E3

scan
N2 S2 E2

scanP1 P2

P3

Size of CSP Formulation

Results Centralized CSP Formulation

Results Centralized CSP Formulation

Results Distributed CSP Formulation

TST size 1 (13 nodes)

TST size 2 (25 nodes)

(12N+1 nodes)

Results Distributed CSP Formulation

Discussion
• Integrate planning and allocation

• Improve the efficiency of allocating TSTs

– Study approximating algorithms for allocating TSTs

– Study heuristics for allocating TSTs

– Explicitly trade-off quality and efficiency (e.g. anytime algorithms)

– Study restrictions on TSTs that facilitate more efficient allocation algorithms

– Develop more efficient distributed constraint solving algorithms for our specific type of problems

– Further study the interaction between auctions and constraint reasoning to balance guarantees
and efficiency

• Consider optimization criteria such as

– Maximize robustness to deviations due to uncertainty

– Minimize total execution time and resources usage

– Minimize resource usage and maximize communication quality

AreaA

AreaB

Dest

Summary
• Discussed complex task allocation for collaborative unmanned

aircraft systems.

• Outlined a delegation-based collaboration framework which uses
Task Specification Trees (TSTs) for specifying complex tasks.

– The consistency of allocations of platforms to TST nodes can be
checked using distributed constraint satisfaction techniques.

– To delegate a TST a complex task allocation problem has to be
solved for example using a market-based approach.

• The result is a very rich collaborative robotics framework which
opens up for many interesting research questions.

S

C flyto

scanscan

