Coalition Formation and Centralized Coordination *TDDE13 - Multi Agent Systems* Fredrik Präntare

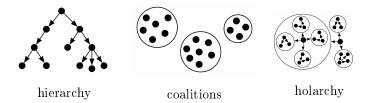
1 Coordinating and Organizing Agents

- 2 Coordination Paradigms
- 3 Coalition Formation
- 4 Coalition Structure Generation
- 5 Partition Function Games
- 6 Forming and Coordinating Coalitions
- 7 Additional Information

Recall

- In *cooperative games*, the focus is on the coalition.
- A common assumption in these games is that of *transferable utility*.
- Payoff distribution can be done in many ways, but the Shapley value is the only value that satisfies the axioms Symmetry, Dummy player and Additivity.
- The Shapley value is based on marginal contributions.
- *The core* is a notion of stability which describes whether coalitions have an incentive to deviate.

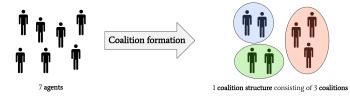
Coordinating and Organizing Agents


- One of the main objectives in the domain of multi-agent systems is to build agents that can take joint, coordinated actions.
- Coordinating agents can be useful in both cooperative domains, and in scenarios where they are selfish (i.e., act in their own best interests).
- The way agents are organized/coordinated can greatly influence a system (e.g., its performance).

Paradigm	Key Characteristic	Benefits	Drawbacks
Hierarchy	Decomposition	Maps to many common	Potentially brittle; can lead to
		domains; handles scale well	bottlenecks or delays
Holarchy	Decomposition with	Exploit autonomy of	Must organize holons; lack of
	autonomy	functional units	predictable performance
Coalition	Dynamic, goal-directed	Exploit strength in numbers	Short term benefits may not
			outweigh organization
			construction costs
Team	Group level cohesion	Address larger grained	Increased communication
		problems; task-centric	
Congregation	Long-lived, utility-directed	Facilitates agent discovery	Sets may be overly restrictive
Society	Open system	Public services; well defined	Potentially complex, agents
		conventions	may require additional
			society-related capabilities
Federation	Middle-agents	Matchmaking, brokering,	Intermediaries become
		translation services; facilitates	bottlenecks
		dynamic agent pool	
Market	Competition through pricing	Good at allocation; increased	Potential for collusion,
		utility through centralization;	malicious behavior; allocation
		increased fairness through	decision complexity can be
		bidding	high
Matrix	Multiple managers	Resource sharing;	Potential for conflicts; need
		multiply-influenced agents	for increased agent
			sophistication
Compound	Concurrent organizations	Exploit benefits of several	Increased sophistication;
		organizational styles	drawbacks of several
			organizational styles

From: Horling, Bryan, and Victor Lesser. "A survey of multi-agent organizational paradigms." The Knowledge engineering review 19.4 (2004): 281-316.

Examples of multi-agent organizational paradigms.


Coordination Paradigms

- assignment algorithms (task allocation)—both distributed and centralized;
- multi-agent reinforcement learning (e.g., policy-based);
- mechanism design ("reverse game theory"—instead of predicting outcomes, we start by defining the outcomes, and ask ourselves what mechanisms would generate those outcomes).

Coalition Formation

One of the major paradigms for organizing agents is *coalition formation*.

Coalition Formation

Applications:

- buyers can obtain lower prices through bulk purchasing;
- autonomous, heterogeneous robots can be organized in teams;
- form coalitions of delivery companies to reduce transportation costs and climate impact by sharing deliveries;
- deployment of staff/workers to locations/jobs can be automatized/analyzed;
- units in strategy games can be coordinated.

Coalition Formation

Consists of three main processes:

• **forming** a set of coalitions, typically via coalition structure generation;

(this lecture + lab 1)

- coordinating within the coalitions; and (coming lectures ...)
- dividing payoff among each coalition's members. (previous lecture ...)

Coalition Structures

Definition 1. A coalition structure $CS = \{C_1, ..., C_m\}$ over the players (agents) N is a set of coalitions with:

• $C_i \cap C_j = \emptyset$ for all $i \neq j$ (disjoint); and

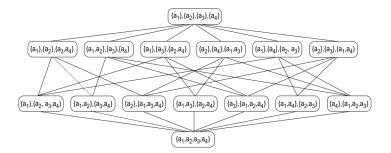
•
$$\bigcup_{i=1}^{m} C_i = N$$
 (exhaustive).

For example, $\{\{a_1, a_3\}, \{a_2\}\}$ and $\{\{a_1\}, \{a_2\}, \{a_3\}\}$ are two different coalition structures over $N = \{a_1, a_2, a_3\}$.

Note that we often omit the notion "over N" for brevity/clarity.

Coalition Structures

Notation:


- Π^N is the set of coalition structures over N.
- The value of a coalition structure $CS \in \Pi^N$ is denoted by V(CS) and is defined as:

$$V(CS) = \sum_{C \in CS} v(C).$$

• L_k is the set of all k-sized coalitions—more formally:

$$L_k = \{C \subseteq N : |C| = k\}$$

From: Rahwan, Talal, et al. "Coalition structure generation: A survey." Artificial Intelligence 229 (2015): 139-174.

Coalition Structure Generation

Definition 2. The coalition structure generation problem for characteristic function games (CFGs) is the problem with the following input/output:

Input: A characteristic function game $\langle N, v \rangle$.

Output: $CS \in \arg \max_{CS \in \Pi^N} V(CS)$.

Suppose we have the following set of **agents** (players):

 $\{1, 2, 3\}$

Their possible **coalitions** are:

 $\{1\} \ \{2\} \ \{3\} \ \{1,2\} \ \{1,3\} \ \{2,3\} \ \{1,2,3\}$

The possible coalition structures are:

 $\begin{array}{l} \{\{1\},\{2\},\{3\}\} \quad \{\{1,2\},\{3\}\} \quad \{\{2,3\},\{1\}\} \\ \{\{1,3\},\{2\}\} \quad \{\{1,2,3\}\} \end{array}$

C	v(C)
{1}	65
$\{2\}$	45
{3}	50
$\{1, 2\}$	120
$\{1,3\}$	105
$\{2,3\}$	110
$\{1, 2, 3\}$	165

CS	V(CS)
$\{\{1\},\{2\},\{3\}\}$?
$\{\{1,2\},\{3\}\}$?
$\{\{2,3\},\{1\}\}$?
$\{\{1,3\},\{2\}\}$?
$\{\{1,2,3\}\}$?

Coalition structures' values.

Example coalitional values.

Which coalition structure is optimal?

C	v(C)
{1}	65
$\{2\}$	55
{3}	50
$\{1, 2\}$	120
$\{1,3\}$	105
$\{2,3\}$	110
$\{1, 2, 3\}$	165

CS	V(CS)
$\{\{1\},\{2\},\{3\}\}$	170
$\{\{1,2\},\{3\}\}$	170
$\{\{2,3\},\{1\}\}$	175
$\{\{1,3\},\{2\}\}$	160
$\{\{1,2,3\}\}$	165

Coalition structures' values.

Example coalitional values.

 $\{\{2,3\},\{1\}\}$ is optimal!

... with more agents it gets more difficult.

L_1	\boldsymbol{v}	L_2	\boldsymbol{v}	L_3	\boldsymbol{v}	L_4	v
{1}	30	$\{1, 2\}$	50	$\{1, 2, 3\}$	90	$\{1, 2, 3, 4\}$	140
$\{2\}$	40	$\{1,3\}$	60	$\{1, 2, 4\}$	120		
{3}	25	$\{1,4\}$	80	$\{1, 3, 4\}$	100		
{4}	45	$\{2,3\}$	55	$\{2, 3, 4\}$	115		
		$\{2,4\}$	70				
		$\{3,4\}$	80				

Which coalition structure is optimal now ... ?

... with more agents it gets more difficult.

L_1	v	L_2	v	L_3	\boldsymbol{v}	L_4	v
{1}	30	$\{1, 2\}$	50	$\{1, 2, 3\}$	90	$\{1, 2, 3, 4\}$	140
$\{2\}$	40	$\{1,3\}$	60	$\{1, 2, 4\}$	120		
{3}	25	$\{1,4\}$	80	$\{1, 3, 4\}$	100		
$\{4\}$	45	$\{2,3\}$	55	$\{2, 3, 4\}$	115		
		$\{2,4\}$	70				
		$\{3,4\}$	80				

 $\{\{1\}, \{2\}, \{3, 4\}\}$ is optimal!

Coalition Structure Generation

- Combinatorial optimization problem.
- Can theoretically be solved by brute-force search.
- Brute-force typically not practicable since the number of coalition structures of n agents equals the n^{th} Bell number B_n , which satisfies:

$$\alpha n^{n/2} \le B_n \le n^n$$

for some positive constant α .

• NP-complete—but we can do better than exhaustive search with e.g., dynamic programming and branch-and-bound for CFGs.

Embedded Coalition

Definition 3. An embedded coalition is a pair, $\langle C, CS \rangle$, where C is a coalition, and CS is a coalition structure over N that contains C. That is, $CS \in \Pi^N : C \in CS$.

The set of all embedded coalitions is denoted by EC.

Partition Function Games

Definition 4. A partition function game (PFG) is a pair $\langle N, v \rangle$ where:

- $N = \{1, ..., |N|\}$ is a finite set of players; and
- $w: EC \mapsto \mathbb{R}$ is a function called the *partition* function, that maps a value to each embedded coalition $C \in EC$.

The value of a coalition structure CS in this game type is defined as:

$$W(CS) = \sum_{C \in CS} w(C, CS).$$

Partition Function Games

- In this game type, we are interested in *externalities*: the coalitions' exerted influence over each other.
- CFGs are a special case of PFGs—in other words, CFGs form a proper subclass of PFGs.

Partition Function Games

- CSG in this setting is highly computationally challenging due to that a coalition's value may depend on the partitioning of all other agents.
- Each coalition $C \subseteq A$ can have as many different values as there are ways to partition the remaining agents $A \setminus C$.
- Thus, in general, you cannot optimally solve a CSG problem for PFGs without enumerating all possible coalition structures.
- It is possible to do better for constrained classes of externalities.

Forming and Coordinating Coalitions

(separate slides; sent on request)

