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Teamwork



Working Together
• Why and how should agents work together?

• Since agents are autonomous, they have to make decisions at run-time and be capable of 
dynamic coordination.

• Cooperation is working together as a team to achieve a shared goal.

• Often prompted either by the fact that no one agent can achieve the goal alone, or that cooperation 
will obtain a better result (e.g., get result faster).

• Coordination is managing the interdependencies between activities.

• Negotiation is the ability to reach agreements on matters of common interest.

• Typically involves offer and counter-offer, with compromises made by participants.

• Overall they will need to be able to share:

• Tasks

• Information

• If agents are designed by different individuals, they may not have common goals.
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Criteria for Assessing Agent-based Systems

• Coherence - how well the [multiagent] system behaves as a unit along 
some dimension of evaluation (Bond and Gasser).

• We can measure coherence in terms of solution quality, how efficiently resources 
are used, conceptual clarity and so on.

• Coordination - the degree… to which [the agents]… can avoid 
“extraneous” activity [such as]… synchronizing and aligning their 
activities (Bond and Gasser).

• If the system is perfectly coordinated, agents will not get in each others’ way, in a 
physical or a metaphorical sense.
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Cooperative Problem Solving
• How does a group of agents work together to solve problems?

• If we “own” the whole system, we can design agents to help each other 
whenever asked. In this case, we can assume agents are benevolent: our 
best interest is their best interest.

• Problem-solving in benevolent systems is cooperative distributed 
problem solving (CDPS).

• There are three stages:

• Problem decomposition

• Sub-problem solution

• Answer synthesis
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Task Sharing and Result Sharing

decomposition solution synthesis
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Task Sharing and Result Sharing

Task sharing Result sharing
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Handling Inconsistency
• A group of agents may have inconsistencies in their:

• Beliefs, goals or intentions

• Inconsistent beliefs arise because agents have different views of the 
world.
• May be due to sensor faults or noise or just because they can’t see everything.

• Inconsistent goals may arise because agents are built by different people 
with different objectives.

• Three ways to handle inconsistency (Durfee at al.)
• Do not allow it to occur.

• Build systems that degrade gracefully in the presence of inconsistency.

• Resolve inconsistencies through negotiation.
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Coordination
• Von Martial suggested that positive coordination is:

• Requested (explicit)

• Non-requested (implicit)

• Non-requested coordination relationships can be as follows.

• Action equality: we both plan to do something, and by recognizing this one of us can 
be saved the effort.

• Consequence: What I plan to do will have the side-effect of achieving something you 
want to do.

• Favor: What I plan to do will make it easier for you to do what you want to do.
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Coordination Relationships

Multiagent plan
relationship

Negative relationship Positive relationship

Request
(explicit)Resource

Consumable
resource

Non-consumable
resource

Non-request
(implicit)Incompatibility
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Coordination
• Partial global planning

• Joint intentions

• Mutual modeling

• Norms and social laws
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Allocating Scarce Resources
• Allocation of scarce resources amongst a number of agents is central to 

multiagent systems.

• Resource might be:

• a physical object

• the right to use land

• computational resources (processor, memory, . . . )

• If the resource isn’t scarce, there is no trouble allocating it.

• If there is no competition for the resource, then there is no trouble 
allocating it.
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What is an Auction?
• Concerned with traders and their allocations of:

• Units of an indivisible good; and

• Money, which is divisible.

• Assume some initial allocation.

• Exchange is the free alteration of allocations of goods and money 
between traders
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Limit Price
• Each trader has a value or limit price that they place on the good.

• A buyer who exchanges more than their limit price for a good makes a 
loss.

• A seller who exchanges a good for less than their limit price makes a 
loss. 

• Limit prices clearly have an effect on the behavior of traders.

• There are several models, embodying different assumptions about the 
nature of the good.
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Limit Price
• Private value

• Good has an value to me that is independent of what it is worth to you.

• Textbook gives the example of John Lennon’s last dollar bill.

• Common value

• The good has the same value to all of us, but we have differing estimates of what it 
is.

• Winner’s curse

• Correlated value

• Our values are related.

• The more you are prepared to pay, the more I should be prepared to pay.
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Auctions
• A market institution defines how the exchange takes place.

• The change of allocation is market clearing.

• Difference between allocations is net trade.

• Component for each trader in the market.

• Each trader with a non-zero component has a trade or transaction price.

• Absolute value of the money component divided by the good component.

• Traders with positive good component are buyers

• Traders with negative good component are sellers

• One way traders are either buyers or sellers but not both.
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Yes, but what is an auction?
• An auction is a market institution in which messages from traders 

include some price information – this information may be an offer to buy 
at a given price, in the case of a bid, or an offer to sell at a given price, in 
the case of an ask – and which gives priority to higher bids and lower 
asks.

• This definition, as with all this terminology, comes from Dan Friedman.
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Single versus Multi-dimensional
• Single dimensional auctions

• The only content of an offer are the price and quantity of some specific 
type of good.

• “I’ll bid $200 for those 2 chairs”

• Multi dimensional auctions

• Offers can relate to many different aspects of many different goods.

• “I’m prepared to pay $200 for those two red chairs, but $300 if you 
can deliver them tomorrow.”
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Single versus Double-sided
• Single-sided markets

• Either one buyer and many sellers, or one seller and many buyers.

• The latter is the thing we normally think of as an auction.

• Two-sided markets

• Many buyers and many sellers.

• Single sided markets with one seller and many buyers are “sell-side” 
markets.

• Single-sided markets with one buyer and many sellers are “buy-side”.
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Open-cry versus Sealed-bid
• Open cry

• Traders announce their offers to all traders

• Sealed bid

• Only the auctioneer sees the offers.

• Clearly as a bidder in an open-cry auction you have more information.

• In some auction forms you pay for preferential access to information.
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Single-unit versus Multi-unit
• How many units of the same good are we allowed to bid for?

• Single unit

• One at a time.

• Might repeat if many units to be sold.

• Multi-unit

• Bid both price and quantity.

• “Unit” refers to the indivisible unit that we are selling.

• Single fish versus box of fish.
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First price versus kth price
• Does the winner pay the highest price bid, the second highest price, or 

the kth highest price?
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Single item versus Multi-item
• Not so much quantity as heterogeneity.

• Single item

• Just the one indivisible thing that is being auctioned.

• Multi-item

• Bid for a bundle of goods.

• “Two red chairs and an orange couch, or a purple beanbag.”

• Valuations for bundles are not linear combinations of the values of the 
constituents.
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Standard Auction Types
• English auction

• Dutch auction

• First-price sealed bid auction

• Vickrey auction
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Combinatorial Auctions
• Auctions for bundles of goods.

• A good example of bundles of good are spectrum licenses.

• For the 1.7 to 1.72 GHz band for Brooklyn to be useful, you need a 
license for Manhattan, Queens, and Staten Island.

• Most valuable are the licenses for the same bandwidth.

• But a different bandwidth license is more valuable than no license
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Summary
• A multi-agent system (MAS) can be defined as a loosely coupled network 

of problem solvers that interact to solve problems that are beyond the 
individual capabilities or knowledge of each problem solver.

• Communication

• Game Theory

• Social Choice

• Teamwork

• Task Allocation
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Distributed Constraint Solving



Cooperative Problem Solving
• How does a group of agents work together to solve problems?

• If we “own” the whole system, we can design agents to help each other 
whenever asked. In this case, we can assume agents are benevolent: our 
best interest is their best interest.

• Problem-solving in benevolent systems is cooperative distributed 
problem solving (CDPS).

• There are three stages:

• Problem decomposition

• Sub-problem solution

• Answer synthesis

decomposition solution synthesis
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Distributed Constraint Solving

• CSP: (X, D, C)
• X = {x1, x2,…, xn} variables

• D = {d1, d2,…,dn} domains (finite)

• C = {c1,c2,…,cr} constraints

For each c ϵ C
• var(c) = {xi, xj, …, xk}  scope

• rel(c) ϵ di x dj  x … x dk permitted tuples

• Solution: total assignment satisfying all constraints
• DisCSP: (X, D, C, A, )

• A = {a1, a2, …, ak} agents

• : X -> A  maps variables to agents

• c is known by agents owning var(c) 
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Distributed Constraint Solving

Common assumptions:

• Agents communicate by sending messages

• An agent can send messages to others, iff it knows their identifiers

• The delay transmitting a message is finite but random

• For any pair of agents, messages are delivered in the order they were 
sent

• Agents know the constraints in which they are involved, but not the 
other constraints

• Each agent owns a single variable (agents = variables)

• Constraints are binary (2 variables involved)
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Asynchronous Backtracking
• Each agent starts with instantiated variables, and knows all constraints 

that concern it

• Agent graph is connected, but not necessarily fully connected.  Each 
agent has a set of values for the agents connected to it by incoming links 
(agent view)

• Agents can change their values or message agents that are linked to them

• Messages are either Ok? or noGood
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Asynchronous Backtracking
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• Agent view: the values of all agents linked to a particular agent
• Message Handling

• Ok? -> Agent wants to know if it can assign a certain value to itself, so it asks 
another agent
• Receiving agent updates agent view and checks for consistency, makes sure updated 

agent view is not a “noGood” 
• Oks only sent to lower priority agents

• NoGood -> in evaluating an Ok? Message, an agent cannot find a value for itself that 
is consistent, then its updated agent view is noGood and a NoGood (backtracking) 
message is sent to another agent.
• Nogoods only sent to higher priority agents

• NoGoods can be seen as derived constraints
• Preventing infinite loops by having a total order among agents for 

communication
• Only need to know order of agents that one agent is linked to



Example: Asynchronous Backtracking

Source: M. Yokoo, E.H. Durfee, T. Ishida, K. Kuwabara, Distributed constraint satisfaction for formalizing distributed
problem solving, in: 12th International Conference on Distributed Computing Systems (ICDCS-92), 1992,
pp. 614–621.
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Comparison

Source: M. Yokoo, E.H. Durfee, T. Ishida, K. Kuwabara, Distributed constraint satisfaction for formalizing distributed
problem solving, in: 12th International Conference on Distributed Computing Systems (ICDCS-92), 1992,
pp. 614–621.
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Asynchronous Weak-Commitment Search (AWC)
• Improvement over asynchronous backtracking

• Uses local dynamic priority values rather than static global ordering

• When an agent generates a nogood value, it promotes itself within its 
local network

• In ABT, an agent backtracks at dead-ends by sending a nogood to a 
higher priority agent

• in AWC, an agent gives up the attempt to satisfy its constraints and 
delegates the problem to other agents by raising its own priority
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Comparison

Source: M. Yokoo, E.H. Durfee, T. Ishida, K. Kuwabara, Distributed constraint satisfaction for formalizing distributed
problem solving, in: 12th International Conference on Distributed Computing Systems (ICDCS-92), 1992, pp. 614–621.
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Distributed Constraint Solving
• Exact algorithms (DisCSP and DCOP)

• Asynchronous Backtracking (ABT), 

• Asynchronous Weak-Commitment Search (AWCS),

• Asynchronous Distributed Optimization (ADOPT, BnB-ADOPT), 

• Distributed Pseudotree Optimization Procedure (DPOP)

• Approximate Algorithms with quality guarantees
• k-optimality, 

• Bounded max-sum

• Approximate Algorithms without quality guarantees
• Distributed Stochastic Algorithm (DSA), 

• Max-Sum

2025-11-07TDDE13 - HT25 - Fredrik Heintz - LE2 Distributed AI 45



Task Allocation



Example Scenario: Search and Relief
Mission: First scan Area for survivors, then deliver 
emergency supplies to the survivors.
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Multi Robot Task Allocation
• Given 

• n tasks, 

• m robots, and 

• a global objective function

allocate the tasks so that the objective function is maximized (or 
minimized).

• Gerkey and Matarić (2004) classified multi robot task allocation along 
three dimensions:
• Single-task robots (ST) vs. multi-task robots (MT)

• Single-robot tasks (SR) vs. multi-robot tasks (MR)

• Instantaneous assignment (IA) vs. Time-extended assignment (TA)
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Multi Robot Task Allocation: ST-SR-IA
• Given 

• n independent tasks, 

• m≥n robots, and 

• a utility function u(i,j) representing the utility for robot j doing task i

assign every task to exactly one robot so that the total utility is maximized.

• Optimal Assignment Problem which can be solved in O(mn2) time by 
Kuhn’s Hungarian method (1955).

• Example: m UAVs delivering n≤m boxes.
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Multi Robot Task Allocation: ST-SR-TA
• Given 

• n independent tasks, 

• m<n robots, and 

• a cost function c(i,j) representing the cost (time) for robot j doing task i, 

create a schedule of tasks for each robot so that the total cost is 
minimized.

• Scheduling Problem R||∑wjCj which is NP-hard. 

• Using an optimal assignment for the first m tasks and a greedy 
assignment for the rest as robots finish their tasks produces a 3-
competitive solution.

• Example: m UAVs delivering n>m boxes.
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Multi Robot Task Allocation: ST-MR-IA
• Given 

• n independent tasks, 

• m robots, and

• a utility function u(i, {j1, …, jk}) representing the utility for the coalition consisting of 
robots j1, …, jk together doing task i,

find a set of mutually exclusive coalitions maximizing the utility.

• Set Partition Problem which is NP-hard. 

• Assumes that the utility for each coalition is known. Coalitional game 
theory is a very active research area.

• Example: m UAVs delivering n boxes where some boxes require several 
UAVs to be carried.
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Multi Robot Task Allocation Summary
Problem Optimization Problem (Gerkey & Matarić) Complexity

ST-SR-IA Optimal Assignment O(mn2)

ST-SR-TA Scheduling: R||∑wjCj NP-hard

ST-MR-IA Coalition + Set Partitioning NP-hard

ST-MR-TA Coalition + Scheduling MPTm||∑wjCj NP-hard

MT-SR-IA Coalition + Set Partitioning NP-hard

MT-SR-TA Coalition + Scheduling MPTm||∑wjCj NP-hard

MT-MR-IA Coalition + Set Covering NP-hard

MT-MR-TA Coalition + Scheduling MPTmMPMn||∑wjCj NP-hard

◼ IA problems correspond to assignment problems while 
TA problems correspond to scheduling problems.

◼ MR/MT problems also involve a coalition forming problem.
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Complex Task Allocation
• Interrelated utilities 

• The utility depends on all tasks allocated to a robot or even on the allocation to 
other robots.

• Example: When delivering boxes, the time it takes depends on the location of the 
UAV at the start of the task. And this depends on the previous task of the UAV.

• Combinatorial optimization problem.

• Task constraints

• There are dependencies between tasks such as precedence constraints, timing 
constraints and communication constraints.

• Example: First deliver box1 and then within 10 minutes deliver box2.

• Constraint satisfaction/optimization problem
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Complex Task Allocation
• Complex tasks 

• Tasks can be achieved in many possible ways.

• Example: To deliver boxes a UAV can either deliver them directly or use a carrier which can load 
several boxes.

• Task decomposition problem (planning problem)

• Uncertainty

• The actual utility or cost might not be known.

• Example: UAV1 needs between 8 and 12 minutes to deliver box2.

• Stochastic optimization

• Multi-dimensional cost and utility functions 

• Example: Maximize the utility of the mission while minimizing the resource usage.

• Multi-criteria optimization
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Market-Based MRTA Approaches
• The general idea is to create a market where tasks can be traded in such a way that a 

global objective function is optimized.

• Each robot has an individual utility function that specifies that robot’s preferences 
based on information available to the robot. For example, maximize the revenue minus 
the cost for each task. This is the basis for the bidding rule of a robot.

• The auctioneer determines who is awarded a task based on the robots’ bids (winner 
determination).

• Auctions are communication and computation efficient.

• The objective of the system designer is to engineer the costs, revenues, and auction 
mechanism in such a way that individual self-interest leads to globally efficient 
solutions.

• Many market mechanisms follow the Contract Net Protocol.
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A Manager Announces a Task

Manager

Task Announcement

Potential
Contractor

Potential
Contractor

Potential
Contractor

Potential
Contractor

Potential
Contractor
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Potential Contractors Submit Bids

Manager

Bids

Potential
Contractor

Potential
Contractor

Potential
Contractor

Potential
Contractor

Potential
Contractor
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The Manager Awards the Contract

Manager

Contractor

Award
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A Contract is Established

Manager

Contractor

Contract
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Market-Based MRTA: Single Item Auction
• Given 

• n tasks, 

• m robots, 

• and a bidding rule for individual tasks

Auction out the tasks sequentially and allocate each task according to the best bid. 

• Computational cost:

• Bid valuation v (the cost to compute a single bid)

• Winner determination O(m)

• Number of auctions n

• An important question is how to design bidding rules to optimize a global objective 

function.
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Market-Based MRTA: Single Item Auction
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Market-Based MRTA: Single Item Auction
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Market-Based MRTA: Single Item Auction
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Market-Based MRTA: Single Item Auction
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Market-Based MRTA: Single Item Auction
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Market-Based MRTA: Single Item Auction
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Market-Based MRTA: Single Item Auction
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Market-Based MRTA: Single Item Auction

2025-11-07TDDE13 - HT25 - Fredrik Heintz - LE2 Distributed AI 68



Market-Based MRTA: Single Item Auction
• MINISUM

• Minimize the sum of the path costs over all robots

• Minimization of total energy or distance

• Application: planetary surface exploration

• MINIMAX

• Minimize the maximum path cost over all robots

• Minimization of total completion time (makespan)

• Application: facility surveillance, mine clearing

• MINIAVE

• Minimize the average arrival time over all targets

• Minimization of average service time (flowtime)

• Application: search and rescue
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Market-Based MRTA: Combinatorial Auction

• A combinatorial auction is an auction where bidders are allowed to bid on combinations 
of items, or bundles, instead of individual items.

• Given 

• n tasks, 

• m robots, 

• and a bidding rule for bundles of tasks

Auction out all tasks and allocate bundles to robots so that the sum of the bids is 
maximized. 

• Computational cost:

• Bid valuation O(2nv) (v is the cost to compute a single bid)

• Winner determination O((b+n)n) (b is the number of bids)

• Number of auctions 1
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Market-Based MRTA: Combinatorial Auction
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Market-Based MRTA: Combinatorial Auction
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Market-Based MRTA: Combinatorial Auction
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Market-Based MRTA: Combinatorial Auction
• Example bidding strategies for robot exploration

• Single: Each robot bids its surplus for a target (the reward for the target minus the travel 
cost from its current location).

• Three-Combination: Bid on all bundles with no more than 3 targets.

• Graph-Cut: Generate a complete undirected graph from the targets with the travel cost as 
the edge cost. Generate bundles by recursively using the max cut algorithm to split the graph 
into two connected subgraphs.
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Market-Based MRTA: Combinatorial Auction
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Market-Based MRTA: Combinatorial Auction
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Market-Based MRTA: Peer to Peer Trading
• Given an initial allocation of tasks to 

robots, a robot may reallocate its tasks 
by creating an auction for them.

• Corresponds to local search: each 
exchange decreases the solution cost 
while maintaining a feasible solution.

• Improves allocations when there is uncertain, incomplete or changing information.

• Sandholm (1998) proved that with a sufficiently expressive set of local search moves 
(single-task, multitask, swaps, and multiparty exchanges) the global optimum solution 
can be reached in a finite (although potentially large) number of steps.
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Market-Based MRTA: Complex Tasks
• Zlot and Stentz (2006) suggested an auction for complex task 

represented by AND/OR trees.

• Robots bid on nodes along any root-to-leaf path, which can branch at 
OR nodes.

Bid on leaf: agree to execute a primitive task

Bid on AND/OR: agree to complete a complex task

• With some more restrictions an O(LT) winner determination algorithm 
is possible (L = #leaves in the tree and T = #tree nodes).

• Example bidding rule: Bid on the node with the highest surplus (bid 
price minus reserve price) at each level of the tree.

• They also presented a heuristic O(LT2) winner determination algorithm 
for the general case, where a robot bids on any or all nodes in a tree.
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Market-Based MRTA: Complex Tasks
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Summary Market-Based MRTA Approaches
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UAS Case Study



A principled approach to building collaborative 
intelligent autonomous systems for complex missions.

Collaborative Unmanned Aircraft Systems
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Collaborative Unmanned Aircraft Systems

A principled approach to building collaborative 
intelligent autonomous systems for complex missions.

Challenges:

• Support humans and robots including legacy systems

• Support adjustable autonomy and mixed-initiative 

interaction

• Manage tasks and information on many abstraction levels

• Coordinating control, reaction and deliberation

• Coordination of systems, resources and platforms

• Incomplete information at design time and run time

• Inspection, monitoring, diagnosis and recovery on many 

abstraction levels
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Autonomous Systems at AIICS, Linköping University

Micro UAVs
weight < 500 g, 
diameter < 50 cm

Yamaha RMAX
weight 95 kg, 
length 3.6 m

PingWing

LinkMAV

LinkQuad weight ~1 kg, diameter ~70cm
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HDRC3: A Distributed Hybrid Deliberative/Reactive Architecture for Autonomous Systems

D
yK

n
o

w

St
re

am
-b

as
e

d
 P

ro
ce

ss
in

g

Control Kernel

Visual Landing Takeoff … Traj Following

Tr
an

si
ti

o
n

Tr
an

si
ti

o
n

C
o

n
tr

o
l

R
e

ac
ti

ve
D

e
lib

e
ra

ti
ve

Task Specification Trees

Planning

High-level

Low-level

Signals

Symbols

Mission-Specific
User Interfaces

Delegation Resource Reasoning

Platform Server

Hierarchical Concurrent State Machines

FCL PPCL

fly-to scan-area surveil …

High-level

Low-level

Ti
m

e
 r

e
q

u
ir

e
m

en
ts

 /
 K

n
o

w
le

d
ge

…

P. Doherty, J. Kvarnström, M. Wzorek, P. Rudol, F. Heintz and G. Conte. 2014.
HDRC3 - A Distributed Hybrid Deliberative/Reactive Architecture for Unmanned Aircraft Systems.
In K. Valavanis, G. Vachtsevanos, editors, Handbook of Unmanned Aerial Vehicles, pages 849–952.

Lessons learned:

• Logical specifications are essential to building and 

verifying complex systems.

• Clearly defined languages as interfaces provide rigor 

and flexibility.

• Many small programs loosely coupled in a distributed 

system provides flexibility, adaptability and organic 

growth.

• A distributed communication infrastructure greatly 

simplifies development.

• Separate specification of tasks from their execution 

for greater realization flexibility.
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Example Scenario: Search and Relief

Searching for injured people and delivering food, medicine and 
other supplies are highly prioritized activities in disaster relief.
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Example Scenario: Search and Relief

Mission: First scan Area for survivors, then deliver 
emergency supplies to the survivors.

Area
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Example Scenario: Search and Relief
Mission: First scan Area for survivors, then deliver 
emergency supplies to the survivors.
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Human-Robot Collaboration

Delegation

Adjustable
Autonomy

Mixed-Initiative
Interaction

Delegate(A, B, task, constraints)

Delegate(GOP, UAV, task, constraints)
Delegate(UAV, GOP, task, constraints)
Important: Safety, security, trust, etc.

By varying the task and constraints 
parameters the degree of autonomy 
allowed can be controlled.

Patrick Doherty, Fredrik Heintz and Jonas Kvarnström. 2013.
High-level Mission Specification and Planning for Collaborative Unmanned Aircraft 
Systems using Delegation. Unmanned Systems, 1(1):75–119. World Scientific. 
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Collaborative Tasks for UAS

• Tasks need to be 

– general to cover the spectrum from high level goals to detailed plans (task 
constraints),

– assigned to resource constrained physical platforms (interrelated utilities), and

– expanded and modified as parts of tasks are recursively delegated (complex tasks).

• The task representation should

– be highly flexible, distributed and dynamically extendible and 

– support dynamic adjustment of autonomy.
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Task Specification Trees

• A Task Specification Tree (TST) is a distributed data 
structure with a declarative representation that 
describes a complex multi-agent task. 

• A node in a TST corresponds to a task. It has a node 
interface with parameters and a set of node 
constraints that restrict the parameters.

• There are currently six types of nodes: Sequence, 
concurrent, loop, select, goal, and elementary action.

• A TST is associated with a set of tree constraints 
expressing constraints between tasks in the tree.

flyto

Interface: 
  ts, te, Dest
  Speed
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Example Scenario: Search and Relief

Mission: First scan AreaA and AreaB, then fly to Dest.

AreaA

AreaB

Dest
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Example TST
N0

S 

N1

C 
N4

flyto

N3

scan
N2

scan

Interface: ts0, te0

Task: sequence(α1, α4)

Interface: ts4, te4, 
  Dest, Speed4

Task: flyto(Dest, Speed4)

Interface: ts3, te3, AreaB, Speed3

Task: scan(AreaB, Speed3)

Interface: ts2, te2 , 
   AreaA, Speed2

Task: scan(AreaA, Speed2)

α1

Interface: ts1, te1

Task: concurrent(α2, α3)

α2 α3

α4

Mission: First scan AreaA and AreaB, then fly to Dest.
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Delegating TSTs

• What it means to be able to carry out a TST is defined in terms of the Can 
and Delegate predicates.

• Can(B, τ, [ts, te, …], cons) asserts that an agent B has the capabilities and 
resources for achieving a task τ in the interval [ts, te] with the constraints 
cons.

• The semantics of control nodes is platform independent while the 
semantics of elementary action nodes are platform dependent.

– Can(B, S(τ1, …, τn), [ts, te, …], cons) holds iff B either can do or delegate each task τ1, …, τn 

in the sequence so that the constraints are satisfied.
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TST Delegation Example

N0 S0 E0

S

N1 S1 E1

C
N4S4 E4

flyto

N3S3 E3

scan
N2 S2 E2

scanP1 P2

AreaA

AreaB

Dest
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Complex Task Allocation for CUAS

• The goal of the delegation process is to recursively
find a set of platforms that can achieve a task specified as a TST.

• For a task to be achievable every node in the TST must be allocated to a 
platform such that the distributed constraint satisfaction problem 
corresponding to the semantics of the allocated TST is consistent.

• Hence we need to solve a complex task allocation problem.

• Our approach combines auction-based heuristic search for allocation 
and distributed constraint satisfaction for consistency checking partial 
allocations.
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TST Allocation Example

N0 S0 E0

S

N1 S1 E1

C
N4S4 E4

flyto

N3S3 E3

scan
N2 S2 E2

scanP1 P2

P3
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Size of CSP Formulation
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Results Centralized CSP Formulation
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Results Centralized CSP Formulation
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Results Distributed CSP Formulation

TST size 1 (13 nodes)

TST size 2 (25 nodes)

(12N+1 nodes)
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Results Distributed CSP Formulation
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Discussion
• Integrate planning and allocation

• Improve the efficiency of allocating TSTs

– Study approximating algorithms for allocating TSTs

– Study heuristics for allocating TSTs

– Explicitly trade-off quality and efficiency (e.g. anytime algorithms)

– Study restrictions on TSTs that facilitate more efficient allocation algorithms

– Develop more efficient distributed constraint solving algorithms for our specific type of problems

– Further study the interaction between auctions and constraint reasoning to balance guarantees 
and efficiency

• Consider optimization criteria such as

– Maximize robustness to deviations due to uncertainty

– Minimize total execution time and resources usage

– Minimize resource usage and maximize communication quality
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AreaA

AreaB

Dest

Summary
• Discussed complex task allocation for collaborative unmanned 

aircraft systems.

• Outlined a delegation-based collaboration framework  which uses 
Task Specification Trees (TSTs) for specifying complex tasks.

– The consistency of allocations of platforms to TST nodes can be 
checked using distributed constraint satisfaction techniques.

– To delegate a TST a complex task allocation problem has to be 
solved for example using a market-based approach.

• The result is a very rich collaborative robotics framework which 
opens up for many interesting research questions.

S

C flyto

scanscan
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Summary
• A multi-agent system (MAS) can be defined as a loosely coupled network 

of problem solvers that interact to solve problems that are beyond the 
individual capabilities or knowledge of each problem solver.

• Communication

• Game Theory

• Social Choice

• Teamwork

• Task Allocation

2025-11-07TDDE13 - HT25 - Fredrik Heintz - LE2 Distributed AI 106



TDDE13 MAS LE2 HT2025: 
Teamwork

Distributed Problem Solving
Task Allocation
UAS Case Study

www.ida.liu.se/~TDDE13


	Bild 1: TDDE13 LE2 HT2025 - Distributed AI
	Bild 2: Teamwork
	Bild 3: Working Together
	Bild 4: Criteria for Assessing Agent-based Systems
	Bild 5: Cooperative Problem Solving
	Bild 9: Task Sharing and Result Sharing
	Bild 11: Task Sharing and Result Sharing
	Bild 16: Handling Inconsistency
	Bild 17: Coordination
	Bild 18: Coordination Relationships
	Bild 19: Coordination
	Bild 20: Allocating Scarce Resources
	Bild 21: What is an Auction?
	Bild 22: Limit Price
	Bild 23: Limit Price
	Bild 24: Auctions
	Bild 25: Yes, but what is an auction?
	Bild 26: Single versus Multi-dimensional
	Bild 27: Single versus Double-sided
	Bild 28: Open-cry versus Sealed-bid
	Bild 29: Single-unit versus Multi-unit
	Bild 30: First price versus kth price
	Bild 31: Single item versus Multi-item
	Bild 32: Standard Auction Types
	Bild 33: Combinatorial Auctions
	Bild 34: Summary
	Bild 35: Distributed Constraint Solving
	Bild 36: Cooperative Problem Solving
	Bild 37: Distributed Constraint Solving
	Bild 38: Distributed Constraint Solving
	Bild 39: Asynchronous Backtracking
	Bild 40: Asynchronous Backtracking
	Bild 41: Example: Asynchronous Backtracking
	Bild 42: Comparison
	Bild 43: Asynchronous Weak-Commitment Search (AWC)
	Bild 44: Comparison
	Bild 45: Distributed Constraint Solving
	Bild 46: Task Allocation
	Bild 47: Example Scenario: Search and Relief
	Bild 48: Multi Robot Task Allocation
	Bild 49: Multi Robot Task Allocation: ST-SR-IA
	Bild 50: Multi Robot Task Allocation: ST-SR-TA
	Bild 51: Multi Robot Task Allocation: ST-MR-IA
	Bild 52: Multi Robot Task Allocation Summary
	Bild 53: Complex Task Allocation
	Bild 54: Complex Task Allocation
	Bild 55: Market-Based MRTA Approaches
	Bild 56: A Manager Announces a Task
	Bild 57: Potential Contractors Submit Bids
	Bild 58: The Manager Awards the Contract
	Bild 59: A Contract is Established
	Bild 60: Market-Based MRTA: Single Item Auction
	Bild 61: Market-Based MRTA: Single Item Auction
	Bild 62: Market-Based MRTA: Single Item Auction
	Bild 63: Market-Based MRTA: Single Item Auction
	Bild 64: Market-Based MRTA: Single Item Auction
	Bild 65: Market-Based MRTA: Single Item Auction
	Bild 66: Market-Based MRTA: Single Item Auction
	Bild 67: Market-Based MRTA: Single Item Auction
	Bild 68: Market-Based MRTA: Single Item Auction
	Bild 69: Market-Based MRTA: Single Item Auction
	Bild 70: Market-Based MRTA: Combinatorial Auction
	Bild 71: Market-Based MRTA: Combinatorial Auction
	Bild 72: Market-Based MRTA: Combinatorial Auction
	Bild 73: Market-Based MRTA: Combinatorial Auction
	Bild 74: Market-Based MRTA: Combinatorial Auction
	Bild 75: Market-Based MRTA: Combinatorial Auction
	Bild 76: Market-Based MRTA: Combinatorial Auction
	Bild 77: Market-Based MRTA: Peer to Peer Trading
	Bild 78: Market-Based MRTA: Complex Tasks
	Bild 79: Market-Based MRTA: Complex Tasks
	Bild 80: Summary Market-Based MRTA Approaches
	Bild 81: UAS Case Study
	Bild 82: Collaborative Unmanned Aircraft Systems
	Bild 83: Collaborative Unmanned Aircraft Systems
	Bild 84: Autonomous Systems at AIICS, Linköping University
	Bild 85
	Bild 86: HDRC3: A Distributed Hybrid Deliberative/Reactive Architecture for Autonomous Systems
	Bild 87: Example Scenario: Search and Relief
	Bild 88: Example Scenario: Search and Relief
	Bild 89: Example Scenario: Search and Relief
	Bild 90: Human-Robot Collaboration
	Bild 91: Collaborative Tasks for UAS
	Bild 92: Task Specification Trees
	Bild 93: Example Scenario: Search and Relief
	Bild 94: Example TST
	Bild 95: Delegating TSTs
	Bild 96: TST Delegation Example
	Bild 97: Complex Task Allocation for CUAS
	Bild 98: TST Allocation Example
	Bild 99: Size of CSP Formulation
	Bild 100: Results Centralized CSP Formulation
	Bild 101: Results Centralized CSP Formulation
	Bild 102: Results Distributed CSP Formulation
	Bild 103: Results Distributed CSP Formulation
	Bild 104: Discussion
	Bild 105: Summary
	Bild 106: Summary
	Bild 107: TDDE13 MAS LE2 HT2025:  Teamwork Distributed Problem Solving Task Allocation UAS Case Study

