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Working Together

« Why and how should agents work together?

» Since agents are autonomous, they have to make decisions at run-time and be capable of
dynamic coordination.

Cooperation is working together as a team to achieve a shared goal.

» Often prompted either by the fact that no one agent can achieve the goal alone, or that cooperation
will obtain a better result (e.g., get result faster).

Coordination is managing the interdependencies between activities.
Negotiation is the ability to reach agreements on matters of common interest.
 Typically involves offer and counter-offer, with compromises made by participants.
Overall they will need to be able to share:
« Tasks
 Information
If agents are designed by different individuals, they may not have common goals.
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Criteria for Assessing Agent-based Systems

* Coherence - how well the [multiagent] system behaves as a unit along
some dimension of evaluation (Bond and Gasser).

* We can measure coherence in terms of solution quality, how efficiently resources
are used, conceptual clarity and so on.

« Coordination - the degree... to which [the agents]... can avoid
“extraneous” activity [such as]... synchronizing and aligning their
activities (Bond and Gasser).

« If the system is perfectly coordinated, agents will not get in each others’ way, in a
physical or a metaphorical sense.
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Cooperative Problem Solving

« How does a group of agents work together to solve problems?

« If we “own” the whole system, we can design agents to help each other
whenever asked. In this case, we can assume agents are benevolent: our
best interest is their best interest.

» Problem-solving in benevolent systems is cooperative distributed
problem solving (CDPS).
* There are three stages:
* Problem decomposition
* Sub-problem solution
« Answer synthesis
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Task Sharing and Result Sharing
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Task Sharing and Result Sharing
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Handling Inconsistency

A group of agents may have inconsistencies in their:
* Beliefs, goals or intentions
 Inconsistent beliefs arise because agents have different views of the
world.
« May be due to sensor faults or noise or just because they can’t see everything.
 Inconsistent goals may arise because agents are built by different people
with different objectives.
» Three ways to handle inconsistency (Durfee at al.)
* Do not allow it to occur.
 Build systems that degrade gracefully in the presence of inconsistency.
« Resolve inconsistencies through negotiation.
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Coordination

« Von Martial suggested that positive coordination is:
« Requested (explicit)
« Non-requested (implicit)
« Non-requested coordination relationships can be as follows.

 Action equality: we both plan to do something, and by recognizing this one of us can
be saved the effort.

« Consequence: What I plan to do will have the side-effect of achieving something you
want to do.

« Favor: What I plan to do will make it easier for you to do what you want to do.
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Coordination Relationships
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Coordination

« Partial global planning
 Joint intentions

* Mutual modeling

» Norms and social laws
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Allocating Scarce Resources

« Allocation of scarce resources amongst a number of agents is central to
multiagent systems.

* Resource might be:
 a physical object
* the right to use land
« computational resources (processor, memory, . .. )

» If the resource isn’t scarce, there is no trouble allocating it.

o If there is no competition for the resource, then there is no trouble
allocating it.
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What is an Auction?

« Concerned with traders and their allocations of:
 Units of an indivisible good; and
« Money, which is divisible.

» Assume some initial allocation.

« Exchange is the free alteration of allocations of goods and money
between traders

Il LINKOPINGS
L UNIVERSITET



Limit Price
« Each trader has a value or limit price that they place on the good.

A buyer who exchanges more than their limit price for a good makes a
loss.

* A seller who exchanges a good for less than their limit price makes a
loss.

 Limit prices clearly have an effect on the behavior of traders.

« There are several models, embodying different assumptions about the
nature of the good.
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Limit Price

* Private value
* Good has an value to me that is independent of what it is worth to you.
» Textbook gives the example of John Lennon’s last dollar bill.

« Common value

« The good has the same value to all of us, but we have differing estimates of what it
is.

« Winner’s curse
 Correlated value
* Our values are related.
« The more you are prepared to pay, the more I should be prepared to pay.
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Auctions

« A market institution defines how the exchange takes place.
» The change of allocation is market clearing.
» Difference between allocations is net trade.

« Component for each trader in the market.
« Each trader with a non-zero component has a trade or transaction price.
 Absolute value of the money component divided by the good component.

 Traders with positive good component are buyers
 Traders with negative good component are sellers
* One way traders are either buyers or sellers but not both.
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Yes, but what is an auction?

« An auction is a market institution in which messages from traders
include some price information — this information may be an offer to buy
at a given price, in the case of a bid, or an offer to sell at a given price, in
the case of an ask — and which gives priority to higher bids and lower
asks.

 This definition, as with all this terminology, comes from Dan Friedman.
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Single versus Multi-dimensional

» Single dimensional auctions

» The only content of an offer are the price and quantity of some specific
type of good.

e “I’ll bid $200 for those 2 chairs”
e Multi dimensional auctions
 Offers can relate to many different aspects of many different goods.

* “I'm prepared to pay $200 for those two red chairs, but $300 if you
can deliver them tomorrow.”
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Single versus Double-sided

* Single-sided markets
 Either one buyer and many sellers, or one seller and many buyers.
 The latter is the thing we normally think of as an auction.

« Two-sided markets

« Many buyers and many sellers.

» Single sided markets with one seller and many buyers are “sell-side”
markets.

» Single-sided markets with one buyer and many sellers are “buy-side”.
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Open-cry versus Sealed-bid

* Open cry
 Traders announce their offers to all traders
* Sealed bid
 Only the auctioneer sees the offers.
* Clearly as a bidder in an open-cry auction you have more information.
 In some auction forms you pay for preferential access to information.
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Single-unit versus Multi-unit

« How many units of the same good are we allowed to bid for?
» Single unit
* One at a time.
« Might repeat if many units to be sold.
e Multi-unit
 Bid both price and quantity.
« “Unit” refers to the indivisible unit that we are selling.
» Single fish versus box of fish.
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First price versus kth price

 Does the winner pay the highest price bid, the second highest price, or
the kth highest price?
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Single item versus Multi-item

* Not so much quantity as heterogeneity.
» Single item
« Just the one indivisible thing that is being auctioned.
e Multi-item
« Bid for a bundle of goods.
» “Two red chairs and an orange couch, or a purple beanbag.”

* Valuations for bundles are not linear combinations of the values of the
constituents.
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Standard Auction Types

 English auction

* Dutch auction

* First-price sealed bid auction
* Vickrey auction
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Combinatorial Auctions

* Auctions for bundles of goods.
» A good example of bundles of good are spectrum licenses.

 For the 1.7 to 1.72 GHz band for Brooklyn to be useful, you need a
license for Manhattan, Queens, and Staten Island.

 Most valuable are the licenses for the same bandwidth.
e But a different bandwidth license is more valuable than no license
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summary

« A multi-agent system (MAS) can be defined as a loosely coupled network
of problem solvers that interact to solve problems that are beyond the
individual capabilities or knowledge of each problem solver.

« Communication
« Game Theory
 Social Choice

« Teamwork

« Task Allocation
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Distributed Constraint Solving
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Cooperative Problem Solving

« How does a group of agents work together to solve problems?

« If we “own” the whole system, we can design agents to help each other
whenever asked. In this case, we can assume agents are benevolent: our
best interest is their best interest.

» Problem-solving in benevolent systems is cooperative distributed
problem solving (CDPS).

\
* There are three stages: S 7&
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* Sub-problem solution N O
« Answer synthesis < —
decomposition solution synthesis
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Distributed Constraint Solving
« CSP: (X, D, O)

« X ={x, Xx,,..., X} variables

- D={d,d,,....d.} domains (finite)

 C={c,cC,,...,C,y constraints

ForeachceC

* var(c) ={x; X, ..., ;. scope

* rel(c)ed;xd;x...xd,  permitted tuples
 Solution: total assignment satisfying all constraints
* DisCSP: (X, D, C, A, ¢)

- A=Aa,a,, .., a} agents

s f: X->A maps variables to agents

* cis known by agents owning var(c)

2025-11-07
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Distributed Constraint Solving

Common assumptions:

» Agents communicate by sending messages

« An agent can send messages to others, iff it knows their identifiers
* The delay transmitting a message is finite but random

 For any pair of agents, messages are delivered in the order they were
sent

« Agents know the constraints in which they are involved, but not the
other constraints

« Each agent owns a single variable (agents = variables)
 Constraints are binary (2 variables involved)

38
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Asynchronous Backtracking

« Each agent starts with instantiated variables, and knows all constraints
that concern it

« Agent graph is connected, but not necessarily fully connected. Each
agent has a set of values for the agents connected to it by incoming links
(agent view)

« Agents can change their values or message agents that are linked to them
» Messages are either Ok? or noGood
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Asynchronous Backtracking

« Agent view: the values of all agents linked to a particular agent
* Message Handling

* Ok? -> Agent wants to know if it can assign a certain value to itself, so it asks
another agent

* Receiving agent updates agent view and checks for consistency, makes sure updated
agent view is not a “noGood”

* Oks only sent to lower priority agents

* NoGood -> in evaluating an Ok? Message, an agent cannot find a value for itself that
is consistent, then its uEdated agent view is noGood and a NoGood (backtracking)
message 1s sent to another agent.

« Nogoods only sent to higher priority agents
« NoGoods can be seen as derived constraints
- Preventing infinite loops by having a total order among agents for
communication
* Only need to know order of agents that one agent is linked to
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Example: Asynchronous Backtracking

dd link requfsr {nagaad,{(){l,
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Source: M. Yokoo, E.H. Durfee, T. Ishida, K. Kuwabara, Distributed constraint satisfaction for formalizing distributed
problem solving, in: 12th International Conference on Distributed Computing Systems (ICDCS-92), 1992,
pp. 614-621.
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Comparison
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Source: M. Yokoo, E.H. Durfee, T. Ishida, K. Kuwabara, Distributed constraint satisfaction for formalizing distributed
problem solving, in: 12th International Conference on Distributed Computing Systems (ICDCS-92), 1992,
pp. 614-621.
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Asynchronous Weak-Commitment Search (AWC)

« Improvement over asynchronous backtracking
 Uses local dynamic priority values rather than static global ordering

 When an agent generates a nogood value, it promotes itself within its
local network

« In ABT, an agent backtracks at dead-ends by sending a nogood to a
higher priority agent

* in AWC, an agent gives up the attempt to satisfy its constraints and
delegates the problem to other agents by raising its own priority
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Comparison

TDDE13 - HT25 - Fredrik Heintz - LE2 Distributed Al

COMPARISON BETWEEN ASYNCHRONOUS BACKTRACKING AND

ASYNCHRONOUS WEAK-COMMITMENT SEARCH (DISTRIBUTED N-QUEENS)

E,SFIIEIII"DH{HL‘}

asynchronous asynchronous

backtracking backtracking with weak-commitment
min-conflict heuristic

n | ratio | cycles | ratio cycles | ratio cycles
10 | 100% | 105.4 | 100% 102.6 | 100% 41.5
50| 50% | 325.4 | bH6TL 326.8 | 100% 29.1
100 | 14% | 510.0 | 30% 504.3 | 100% 20.8
1000 0% 16% 323.8 | 100% 29.6

Source: M. Yokoo, E.H. Durfee, T. Ishida, K. Kuwabara, Distributed constraint satisfaction for formalizing distributed
problem solving, in: 12th International Conference on Distributed Computing Systems (ICDCS-92), 1992, pp. 614-621.

2025-11-07

44

II LINKOPINGS
L UNIVERSITET



TDDE13 - HT25 - Fredrik Heintz - LE2 Distributed Al 2025-11-07 45

Distributed Constraint Solving

 Exact algorithms (DisCSP and DCOP)
« Asynchronous Backtracking (ABT),
« Asynchronous Weak-Commitment Search (AWCS),
« Asynchronous Distributed Optimization (ADOPT, BnB-ADOPT),
 Distributed Pseudotree Optimization Procedure (DPOP)

« Approximate Algorithms with quality guarantees
 k-optimality,
* Bounded max-sum

« Approximate Algorithms without quality guarantees
 Distributed Stochastic Algorithm (DSA),
 Max-Sum
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Task Allocation
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Example Scenario: Search and Relief

Mission: First scan Area for survivors, then deliver
emergency supplies to the survivors.
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Multi Robot Task Allocation

* Glven
* n tasks,
 mrobots, and
* a global objective function
allocate the tasks so that the objective function is maximized (or
minimized).
» Gerkey and Matari¢ (2004 ) classified multi robot task allocation along
three dimensions:
* Single-task robots (ST) vs. multi-task robots (MT)
 Single-robot tasks (SR) vs. multi-robot tasks (MR)
 Instantaneous assignment (IA) vs. Time-extended assignment (TA)
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Multi Robot Task Allocation: ST-SR-1A

* Given
- n independent tasks,
 m=n robots, and
« a utility function u(i,j) representing the utility for robot j doing task 1
assign every task to exactly one robot so that the total utility is maximized.

« Optimal Assignment Problem which can be solved in O(mn?) time by
Kuhn’s Hungarian method (1955).

« Example: m UAVs delivering n<m boxes.
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Multi Robot Task Allocation: ST-SR-TA

* Glven
- n independent tasks,
* m<n robots, and
* a cost function c(i,j) representing the cost (time) for robot j doing task 1,
create a schedule of tasks for each robot so that the total cost is
minimized.

» Scheduling Problem R||Yw;C; which is NP-hard.

 Using an optimal assignment for the first m tasks and a greedy
assignment for the rest as robots finish their tasks produces a 3-
competitive solution.

« Example: m UAVs delivering n>m boxes.
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Multi Robot Task Allocation: ST-MR-1A

* Glven
- n independent tasks,
 mrobots, and

e a utility function u(i, {j,, ..., j;.}) representing the utility for the coalition consisting of
robots j,, ..., j, together doing task 1,

find a set of mutually exclusive coalitions maximizing the utility.
 Set Partition Problem which is NP-hard.

« Assumes that the utility for each coalition is known. Coalitional game
theory is a very active research area.

« Example: m UAVs delivering n boxes where some boxes require several
UAVs to be carried.
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Multi Robot Task Allocation Summary
Optimization Problem (Gerkey & Mataric)

ST-SR-I1A Optimal Assignment O(mn?)
ST-SR-TA Scheduling: R| | 3w,C, NP-hard
ST-MR-IA Coalition + Set Partitioning NP-hard
ST-MR-TA  Coalition + Scheduling MPTm | | 3w;C; NP-hard
MT-SR-1A Coalition + Set Partitioning NP-hard
MT-SR-TA Coalition + Scheduling MPTm | | 3w,C, NP-hard
MT-MR-IA  Coalition + Set Covering NP-hard
MT-MR-TA  Coalition + Scheduling MPTmMPMn| | 3w,C, NP-hard

= [A problems correspond to assignment problems while
TA problems correspond to scheduling problems.

= MR/MT problems also involve a coalition forming problem.

II LINKOPINGS
L UNIVERSITET




TDDE13 - HT25 - Fredrik Heintz - LE2 Distributed Al 2025-11-07

Complex Task Allocation

e Interrelated utilities

 The utility depends on all tasks allocated to a robot or even on the allocation to
other robots.

« Example: When delivering boxes, the time it takes depends on the location of the
UAV at the start of the task. And this depends on the previous task of the UAV.

« Combinatorial optimization problem.
 Task constraints

» There are dependencies between tasks such as precedence constraints, timing
constraints and communication constraints.

« Example: First deliver box1 and then within 10 minutes deliver box2.
 Constraint satisfaction/optimization problem

53
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Complex Task Allocation

« Complex tasks
» Tasks can be achieved in many possible ways.

« Example: To deliver boxes a UAV can either deliver them directly or use a carrier which can load
several boxes.

« Task decomposition problem (planning problem)
« Uncertainty
» The actual utility or cost might not be known.
« Example: UAV1 needs between 8 and 12 minutes to deliver box2.
 Stochastic optimization
« Multi-dimensional cost and utility functions
« Example: Maximize the utility of the mission while minimizing the resource usage.

* Multi-criteria optimization
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Market-Based MRTA Approaches

The general idea is to create a market where tasks can be traded in such a way that a
global objective function is optimized.

Each robot has an individual utility function that specifies that robot’s preferences
based on information available to the robot. For example, maximize the revenue minus
the cost for each task. This is the basis for the bidding rule of a robot.

The auctioneer determines who is awarded a task based on the robots’ bids (winner
determination).

Auctions are communication and computation efficient.

The objective of the system designer is to engineer the costs, revenues, and auction
mechanism in such a way that individual self-interest leads to globally efficient
solutions.

Many market mechanisms follow the Contract Net Protocol.

LINKOPINGS
Il-" UNIVERSITET



A Manager Announces a Task

\ » Task Announcement
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Potential Contractors Submit Bids
R
6 Bids

Potential

Contractor
Potential 5

Contractor Potential
Contractor Q

Potential
Contractor

Manager

Potential
Contractor

Il LINKOPINGS
L UNIVERSITET



The Manager Awards the Contract
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A Contract is Established

! Contract é
Manager\ ?

L
A O

II LINKOPINGS
e UNIVERSITET



Market-Based MRTA: Single Item Auction

* Glven
e ntasks,
* mrobots,

 and a bidding rule for individual tasks

Auction out the tasks sequentially and allocate each task according to the best bid.

« Computational cost:
 Bid valuation v (the cost to compute a single bid)
¢ Winner determination O(m)

e« Number of auctions n

« An important question is how to design bidding rules to optimize a global objective
function.
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Market-Based MRTA: Single Item Auction

F F
F
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Market-Based MRTA: Single Item Auction
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Market-Based MRTA: Single Item Auction

" Bid on A: (86) ﬁ

Bid on B: (91) ~—
B [® Bid on C: 23 e

\Bid on D: (37)

/Bid on A: (90)
Bid on B: (85)
Bid on C: (41)

Bid on D: 27
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Market-Based MRTA: Single Item Auction
A
R Q
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Market-Based MRTA: Single Item Auction

" "Bid on A- (109)

Bid on B: 107

<

" Bid on A: (90)
Bid on B: 85
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Market-Based MRTA: Single Item Auction

/Bld on A: 109

e <
/// B r
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Market-Based MRTA: Single Item Auction

I
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Market-Based MRTA: Single Item Auction
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Market-Based MRTA: Single Item Auction

« MINISUM
« Minimize the sum of the path costs over all robots
« Minimization of total energy or distance
 Application: planetary surface exploration

« MINIMAX
« Minimize the maximum path cost over all robots
« Minimization of total completion time (makespan)
 Application: facility surveillance, mine clearing

« MINIAVE

« Minimize the average arrival time over all targets
« Minimization of average service time (flowtime)
 Application: search and rescue
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Market-Based MRTA: Combinatorial Auction

« A combinatorial auction is an auction where bidders are allowed to bid on combinations
of items, or bundles, instead of individual items.

* Given
* n tasks,
* mrobots,
 and a bidding rule for bundles of tasks

Auction out all tasks and allocate bundles to robots so that the sum of the bids is
maximized.

« Computational cost:

 Bid valuation O(2™v) (v is the cost to compute a single bid)

¢ Winner determination O((b+n)") (b is the number of bids)
* Number of auctions 1
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Market-Based MRTA: Combinatorial Auction

=

23

r 107 37 r
109

21 4 21

r 108 107 r
90
85 27

71

II LINKOPINGS
L UNIVERSITET



TDDE13 - HT25 - Fredrik Heintz - LE2 Distributed Al

Market-Based MRTA:

Sy
5 [

\

Bid on {A}: 86
Bid on {B}: 21
Bid on {C}: 23
Bid on {D}: 37
Bid on {A,B}: 107
Bid on {A,C}: 130
Bid on {A.D}: 146
Bid on{B.C}: 132
Bid on {BE,D}; 144
Bid on {C,D}: 44
Bid on {A B,C}: 151
Bid on {A B,D}: 165
Bid on {A,C,D}: 153

Bid on {B,C,D}: 151
Bid on {A,B.C.D}; 172

[ Bid on {A}: 90
Bid on {B}: 85

\

Bid on {C}: 41
Bid on {D}: 27
Bid on {A B}: 106
Bid on {A,C}: 148
Bid on {A D}: 13
Bid on {B,C}: 150
Bid on {B,D}: 134
Bid on {C,D}: 48
Bid on {A,B.C}: 169
Bid on {A,B.D}: 155

Bid on {A,C.D}. 1585
Bid on {B,C,D}: 157
Bid on {A,B,C,D}: 176
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Market-Based MRTA: Combinatorial Auction

I
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Market-Based MRTA: Combinatorial Auction

« Example bidding strategies for robot exploration

« Single: Each robot bids its surplus for a target (the reward for the target minus the travel
cost from its current location).

« Three-Combination: Bid on all bundles with no more than 3 targets.

* Graph-Cut: Generate a complete undirected graph from the targets with the travel cost as

the edge cost. Generate bundles by recursively using the max cut algorithm to split the graph
into two connected subgraphs.

/ Maximal cut
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Market-Based MRTA: Combinatorial Auction
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Market-Based MRTA: Peer to Peer Trading

$12

: o : T
e Given an initial allocation of tasks to

robots, a robot may reallocate its tasks
by creating an auction for them.

» Corresponds to local search: each s12 $10
exchange decreases the solution cost \IST
while maintaining a feasible solution. Total cost: $55

« Improves allocations when there is uncertain, incomplete or changing information.

« Sandholm (1998) proved that with a sufficiently expressive set of local search moves
(single-task, multitask, swaps, and multiparty exchanges) the global optimum solution
can be reached in a finite (although potentially large) number of steps.
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Market-Based MRTA: Complex Tasks

Zlot and Stentz (2006) suggested an auction for complex task
represented by AND/OR trees.

Robots bid on nodes along any root-to-leaf path, which can branch at
OR nodes.

Bid on leaf: agree to execute a primitive task
Bid on AND/OR: agree to complete a complex task

2025-11-07

cover area
1

With some more restrictions an O(LT) winner determination algorithm ( po ) ( :

is possible (L = #leaves in the tree and T = #tree nodes).

Example bidding rule: Bid on the node with the highest surplus (bid
price minus reserve price) at each level of the tree.

They also presented a heuristic O(LT?) winner determination algorithm
for the general case, where a robot bids on any or all nodes in a tree.

AND

78
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cover area C Cover area C cover area
o QO
C S T =
OP a OP b q>) 8 Z 8 OP a OP b
szs) sm) aQ_ O Q (uo) CSSO)
current solution cost: $40 "(7)J g 4(7), % current solution cost: $40
S 3 S 8
a 2 % J‘(G © é ao
N 2
20/ \s25 oY g a4 B\gl S/ $16
b™s20 @D Cﬁsw a b

COVer area
$25

current solution cost: $25 ‘

New decomposition Old decomposition
and allocation and new allocation
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Summary Market-Based I\/IRTA Approaches

2025-11-07

Approach

I

Theoretical guarantees

Experimental results

Combinatorial auctions

[16], [34]

Optimal (if all bundles are considered) [5]

Good solutions with limited number of task bun-
dles [16]. [34], [40], [41]

Central single task iterated
auctions [9], [36]

Approximation bounds for 18 cases (3 objective
functions, 6 bidding rules) [9]

Close to optimal results when using the appropri-
ate bidding rules [36]

Central instantaneous as-
signment (IA) [7], [13]

Optimal possible; commonly used greedy algo-
rithm is a 2-approximation; greedy algorithm for
online version is 3-competitive [6]

Peer-to-peer trading [17],
[18], [19], [20], [35]

Optimal solution possible in a finite number of
trades with a sufficiently expressive set of contract

In a limited number of rounds, a combination of

single- and multi-task trades outperforms all other

80

types [42] combinations of single-task, multi-task, swap, and
multi-party contracts [12]; allowing non-individual
rational trades can lead to better solutions [43]
Central multi-task auctions Increasing the maximum number of tasks awarded
followed by peer-to-peer per multi-task auction results in poorer solution
trading [44] quality [44]
Auction type Bid Winner Number of
valuation determination auctions
Single-item v O(r) n
Multi-item O(n -v) On-r-m) In/m|
(greedy)
Multi-item O(n - v) O(r - n?) [6] [n/m]
(optimal)
Combinatorial || O(2™-V) | O((b+ n)™)[5] 1
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Collaborative Unmanned Aircraft Systems

A principled approach to building collaborative
intelligent autonomous systems for complex missions.

LINKOPINGS
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Collaborative Unmanned Aircraft Systems

A principled approach to building collaborative

intelligent autonomous systems for complex missions.

Challenges:
Support humans and robots including legacy systems

Support adjustable autonomy and mixed-initiative
Interaction

Manage tasks and information on many abstraction levels
Coordinating control, reaction and deliberation
Coordination of systems, resources and platforms
Incomplete information at design time and run time
Inspection, monitoring, diagnosis and recovery on many
abstraction levels

83
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Autonomous Systems at AlICS, Linkoping University

/ -‘/

' ™

Yamaha RMAX
weight 95 kg,
length 3.6 m

weight < 500 g,
diameter <50 cm

LinkQuad weight ~1 kg, diameter ~70cm

84
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YELECTED AUTONOMOUS FUNCTIONALITIES
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HDRTI* A Distribtiteéd Mybrid Deliberative/Reactive Architecture for Autonoifou¥ Systems

'

Transitio

Time requirements / Knowledge

LINKOPINGS
UNIVERSITET

= Lessons learned:
% * Logical specifications are essential to building and

verifying complex systems.

Clearly defined languages as interfaces provide rigor
and flexibility.

Many small programs loosely coupled 1n a distributed
system provides flexibility, adaptability and organic
growth.

A distributed communication infrastructure greatly

Stream-based Processing

simplifies development.
Separate specification of tasks from their execution
for greater realization flexibility.

- Visual Landing l Takeoff I . Traj Following - Signals

P. Doherty, J. Kvarnstrom, M. Wzorek, P. Rudol, F. Heintz and G. Conte. 2014.
HDRC3 - A Distributed Hybrid Deliberative/Reactive Architecture for Unmanned Aircraft Systems.
In K. Valavanis, G. Vachtsevanos, editors, Handbook of Unmanned Aerial Vehicles, pages 849-952.
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Example Scenario: Search and Relief

2025-11-07

87

Searching for injured people and delivering food, medicine and
other supplies are highly prioritized activities in disaster relief.
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i -

Mission: First scan Area for survivors, then deliver
emergency supplies to the survivors.

2025-11-07
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Example Scenario: Search and Relief

Mission: First scan Area for survivors, then deliver
emergency supplies to the survivors.
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Human-Robot Collaboration

Delegation
Delegate(A, B, task, constraints)

Adjustable Mixed-Initiative
Autonomy Interaction
By varying the task and constraints Delegate(GOP, UAV, task, constraints)
parameters the degree of autonomy Delegate(UAV, GOP, task, constraints)
allowed can be controlled. Important: Safety, security, trust, etc.

90

Patrick Doherty, Fredrik Heintz and Jonas Kvarnstrom. 2013.
II. HHI@%E@I?EST High-level Mission Specification and Planning for Collaborative Unmanned Aircraft
Systems using Delegation. Unmanned Systems, 1(1):75-119. World Scientific.
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Collaborative Tasks for UAS

e Tasks need to be

— general to cover the spectrum from high level goals to detailed plans (task
constraints),

— assigned to resource constrained physical platforms (interrelated utilities), and

— expanded and modified as parts of tasks are recursively delegated (complex tasks).
« The task representation should

— be highly flexible, distributed and dynamically extendible and

— support dynamic adjustment of autonomy.
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Task Specification Trees

» A Task Specification Tree (TST) is a distributed data
structure with a declarative representation that
describes a complex multi-agent task.

 Anodein a TST corresponds to a task. It has a node
[ H]

interface with parameters and a set of node

. . Interface:
constraints that restrict the parameters. t, to, Dest
 There are currently six types of nodes: Sequence, Speed

concurrent, loop, select, goal, and elementary action.

« ATST is associated with a set of tree constraints
expressing constraints between tasks in the tree.
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Example S

2

cenario: Search and Relief

oy

BT e
Mission: First scan Area, and Areas, then fly to Dest.
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Example TST

Interface: t, te,

Task: concurrent(a,, o)

Interface: t;,, te, ,
Area,, Speed,
Task: scan(Area,, Speed,)

Interface: t,, te,
Task: sequence(a,, a,)

2025-11-07

Interface: t;,, te,,
Dest, Speed,
Task: flyto(Dest, Speed,)

Interface: t;, te;, Areag, Speed,
Task: scan(Areag, Speed,)

Mission: First scan Area, and Areas, then fly to Dest.

94
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Delegating TSTs

* What it means to be able to carry out a TST is defined in terms of the Can
and Delegate predicates.

* Can(B, 1, [t, t, ], cons) asserts that an agent B has the capabilities and

resources for achieving a task tin the interval [t, t,] with the constraints
cons.

« The semantics of control nodes is platform independent while the
semantics of elementary action nodes are platform dependent.

— Can(B, §(t,, ..., T,), [t, t, ], cons) holds iff B either can do or delegate each task t,, ..., T,
in the sequence so that the constraints are satisfied.
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Complex Task Allocation for CUAS

The goal of the delegation process is to recursively
find a set of platforms that can achieve a task specified as a TST.

For a task to be achievable every node in the TST must be allocated to a
platform such that the distributed constraint satisfaction problem
corresponding to the semantics of the allocated TST is consistent.

Hence we need to solve a complex task allocation problem.

Our approach combines auction-based heuristic search for allocation
and distributed constraint satisfaction for consistency checking partial
allocations.

97
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TST Allocation Example

2025-11-07
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Size of CSP Formulation

constants | variables | constraints
C1-P1 48 22 129
C1-P2 35 35 138
C1-P3 35 35 147
C1-P4 35 35 156
C2-P1 87 43 417
C2-P2 62 68 435
C2-P3 62 68 453
C2-P4 62 68 471
C3-P1 126 64 867
C3-P2 89 101 894
C3-P3 89 101 921
C3-P4 89 101 048
C4-P1 165 85 1479
C4-P2 116 134 1515
C4-P3 116 134 1551
C4-P4 116 134 1587

2025-11-07
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Results Centralized CSP Formulation
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Results Centralized CSP Formulation
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Results Distributed CSP Formulation
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Results Distributed CSP Formulation
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Discussion

« Integrate planning and allocation

« Improve the efficiency of allocating TSTs
— Study approximating algorithms for allocating TSTs
— Study heuristics for allocating TSTs
— Explicitly trade-off quality and efficiency (e.g. anytime algorithms)
— Study restrictions on TSTs that facilitate more efficient allocation algorithms
— Develop more efficient distributed constraint solving algorithms for our specific type of problems

— Further study the interaction between auctions and constraint reasoning to balance guarantees
and efficiency

« Consider optimization criteria such as
— Maximize robustness to deviations due to uncertainty
— Minimize total execution time and resources usage
— Minimize resource usage and maximize communication quality
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Summary

Discussed complex task allocation for collaborative unmanned
aircraft systems.

Outlined a delegation-based collaboration framework which uses
Task Specification Trees (TSTs) for specifying complex tasks.

— The consistency of allocations of platforms to TST nodes can be
checked using distributed constraint satisfaction techniques.

— To delegate a TST a complex task allocation problem has to be
solved for example using a market-based approach.

The result is a very rich collaborative robotics framework which
opens up for many interesting research questions.

2025-11-07
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summary

« A multi-agent system (MAS) can be defined as a loosely coupled network
of problem solvers that interact to solve problems that are beyond the
individual capabilities or knowledge of each problem solver.

« Communication
« Game Theory
 Social Choice

« Teamwork

« Task Allocation
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