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• The environment

• The reward function r(s,a)
• Pure delay reward and avoidance problems

• Minimum time to goal

• Games

• The value function V(s)
• Policy : S → A

• Value V (s) := i 
i rt+i

• Find the optimal policy  that 
maximizes V (s) for all states s.



A minimum time to goal world

Value function                 Optimal policy                  Optimal value

for random                                                                     function

movement



Assume:

• finite set of states S, finite set of actions A

• at each discrete time agent observes state st S and chooses action at A

• then receives immediate reward rt

• and state changes to st+1

• Markov assumption: st+1 = (st,at) and rt = r(st,at)

• i.e. rt and st+1 depend only on current state and action

• functions  and r may be non-deterministic

• functions  and r not necessarily known to the agent



r(s,a) V*(s)

An optimal policy







Optimal policy:

• *(s) = argmaxa[r (s,a) + V *((s,a))]

• Doesn't work if we don't know r and .

The Q-function:

• Q (s,a) := r (s,a) + V *((s,a))

• *(s) = argmaxaQ (s,a)

r(s,a)

Q(s,a)



• Note Q and V* closely related:
V *(s) = maxa' Q (s,a' )

• Therefore Q can be written as:

Q (st ,at) := r (st ,at) + V *((st ,at)) =

r (st ,at) +  maxa' Q (st+1 ,a' )

• If Q^ denote the current approximation of Q then it can be updated by:

Q^(s,a) := r +  maxa' Q
^(s',a' )



• Value-Based:
• Learn value function
• Implicit policy (e.g. greedy selection)
• Example: Deep Q Networks (DQN)

• Policy-Based:
• No value function
• Learn explicit (stochastic) policy
• Example: Stochastic Policy Gradients

• Model-Based:
• Learn transition model
• Implicit policy
• Example: Dreamer

• Actor-Critic:
• Learn value function
• Learn policy using value function
• Example: Asynchronous Advantage Actor Critic (A3C)







For each s, a initialize table entry Q^(s,a) := 0.

Observe current state s.

Do forever:

1. Select an action a and execute it

2. Receive immediate reward r

3. Observe the new state s'

4. Update the table entry for Q^(s,a):
Q^(s,a) := r +  maxa' Q

^(s',a' )

5. s := s'



Q ^(s1 ,aright) := r +  maxa' Q
^(s2 ,a' )

:= 0 + 0.9 max{63, 81, 100}

:= 90



• Exploration

• Selecting the best action

• Probabilistic choice

• Improving convergence

• Update sequences

• Remember old state-action transitions and their immediate reward

• Non-deterministic MDPs

• Temporal Difference Learning



















• DQN - baseline

• Double DQN - de-overestimate values

• Prioritized experience

• Dueling networks

• Distributional DQN - probability 
distribution

• Noisy DQN - parametric noise

• -> ADDITIVE





























• Take parameterized policy πθ0

• Sample an episode τ with parameters θ1

• If it is better, then push parameters in that direction

• If not, then push parameters the other way

• (aka: vanilla policy gradient)













• Value-Based:
• Learn value function
• Implicit policy (e.g. greedy selection)
• Example: Deep Q Networks (DQN)

• Policy-Based:
• No value function
• Learn explicit (stochastic) policy
• Example: Stochastic Policy Gradients

• Model-Based:
• Learn transition model
• Implicit policy
• Example: Dreamer

• Actor-Critic:
• Learn value function
• Learn policy using value function
• Example: Asynchronous Advantage Actor Critic (A3C)



Learn policy direct or learn transition first and then policy?



• s → a → s’ → a’ → s’’ → a’’ → s’’’ → a’’’ → s’’’’

• Learning a policy s → a

• Learning how to react in an environment

• Learning a transition s → a → s’

• Learning how the environment reacts



• Learning

• Agent changing state in the environment

• Irreversible state change

• Forward Path s → a → s’ → a’ → s’’ → a’’ → s’’’ → a’’’ → s’’’’

• Planning

• Agent changing own local state

• Reversible local state change

• Backtracking Tree





Learn policy directly

Learn model 
and then plan actions

Use experience to 
update both model and policy



• Value-Based:
• Learn value function
• Implicit policy (e.g. greedy selection)
• Example: Deep Q Networks (DQN)

• Policy-Based:
• No value function
• Learn explicit (stochastic) policy
• Example: Stochastic Policy Gradients

• Model-Based:
• Learn transition model
• Implicit policy
• Example: Dreamer

• Actor-Critic:
• Learn value function
• Learn policy using value function
• Example: Asynchronous Advantage Actor Critic (A3C)



• An Actor that controls how our agent behaves (policy-based method).

• A Critic that measures how good the action taken is (value-based 
method).

• Two ideas to reduce variance

• Temporal difference bootstrapping

• Baseline subtraction





• Asynchronous: The algorithm is an asynchronous algorithm where multiple 
worker agents are trained in parallel, each with their environment. This allows the 
algorithm to train faster as more workers are training in parallel and attain a 
more diverse training experience as each worker's experience is independent.

• Advantage: Advantage is a metric to judge how good its actions were and how 
they turned out. This allows the algorithm to focus on where the network's 
predictions were lacking. Intuitively, this will enable it to measure the advantage 
of taking action, following the policy π at the given timestep.

• Actor-Critic: The Actor-Critic aspect of the algorithm uses an architecture that 
shares layers between the policy and value function.



1. Fetch the global network parameters

2. Interact with the environment by following 
the local policy for n number of steps

3. Calculate value and policy loss

4. Get gradients from losses

5. Update the global network

6. Repeat

https://pylessons.com/A3C-reinforcement-learning

https://pylessons.com/A3C-reinforcement-learning




• Value-Based:

• Learn value function

• Implicit policy (e.g. greedy selection)

• Example: Deep Q Networks (DQN)

• Policy-Based:

• No value function

• Learn explicit (stochastic) policy

• Example: Stochastic Policy Gradients

• Actor-Critic:

• Learn value function

• Learn policy using value function

• Example: Asynchronous Advantage Actor Critic (A3C)





• In multi-agent systems it may be beneficial to learn

• Environment dynamics

• Reward functions

• Other agents’ strategies

• Can be useful for cooperative as well as competitive scenarios

• Finding solutions by hand may be difficult and time-consuming

• Learning may help

• Also lets the agent adapt to changes in the environment



• Centralized:

• One brain/algorithm deployed across many agents

• Prescriptive:

• Suggests how agents should behave

• Cooperative: Agents cooperate to achieve a goal

• Shared team reward

• Numbers of agents

• One (single-agent)

• Two (very common)

• Finite

• Infinite

• Decentralized:

• All agents learn individually

• Communication limitations defined by environment

• Descriptive:

• Forecast how agent will behave

• Competitive: Agents compete against each other

• Zero-sum games

• Individual opposing rewards

• Neither: Agents maximize their utility which may require 
cooperating and/or competing

• General-sum games



• Non-stationary environment when multiple agents learn

• Simultaneous learning and teaching for individual agent

• Lack of observability (e.g., actions and rewards of other agents)

• Multiple Agents -> Large State Space (Esp. with simultaneous actions)











• A Dec-POMDP can be defined with the tuple:                                        where



• A local policy for each agent is a mapping from its observation sequences to actions, Ω* → A

• State is unknown, so beneficial to remember history

• A joint policy is a local policy for each agent

• Goal is to maximize expected cumulative reward over a finite or infinite horizon

• For finite-horizon cannot remember the full observation history

• In infinite case, a discount factor, γ, is used



• Agents must consider the choices of all others in addition to the state and action uncertainty 
present in POMDPs.

• This makes DEC-POMDPs much harder to solve (NEXP-complete).

• No common state estimate (centralized belief state)

• Each agent depends on the others

• This requires a belief over the possible policies of the other agents

• Can’t transform Dec-POMDPs into a continuous state MDP (how POMDPs are typically solved)



• Sequential (not “one shot” or greedy)

• Cooperative (not single agent or competitive)

• Decentralized (not centralized execution or free, instantaneous 
communication)

• Decision-theoretic (probabilities and values)











• Though no theoretical guarantees exist, single-agent algorithms may 
produce interesting results in multi-agent systems

• Ways to stabilize the learning process

• Clever design of reward systems

• Training populations of agents

• Can allow agents to generalize



• Extra information is used for guidance during 
learning, e.g., actor-critic setup or value function 
decomposition

• At execution time agents act based on local 
observations

• Examples of algorithms

• QMIX

• COMA

• MADDPG





• Non zero sum; win/win

• Vilfredo Pareto

• Pareto front is, in a cooperative setting, the 
combination of choices where no agent can 
be better off without at least making one 
other agent worse off

• It is the optimal cooperative strategy, the best 
outcome without hurting others.



• Dealing with non-stationarity and partial observability can be done 
(ignored) by separate training, no communication

• Realism can be improved with Centralized Training/Decentralized 
Execution -> Centralized controller, or interaction graphs

• Active field of research; overview

• Value based: VDN, QMIX

• Policy based: COMA, MADDPG

• Opponent modeling: DRON, LOLA

• Communication: Diplomacy game

• Psychology: Heuristics













Image from Bozansky et al. 2016















• Follow-ups to Minimax Q:

• Friend-or-Foe Q-Learning (Littman ‘01)

• Correlated Q-learning (Greenwald & Hall ‘03)

• Nash Q-learning (Hu & Wellman ‘03)

• Coco-Q (Sodomka et al. ‘13)

• Function approximation:

• LSPI for Markov Games (Lagoudakis & Parr ‘02)









• Train one agent at a time, and fix policies of all the other agents

• After a number of iterations distribute the policy learned by the training 
agent to all the other agents of its type



• Challenge: When two ally agents are occupying the same position in the 
environment, the image-like state representation for each agent will be 
identical, so their policies will be exactly the same.

• Solution: To break this symmetry – use a stochastic policy for agents. The 
actions taken by the agent are drawn from a distribution derived by taking 
a softmax over the Q-values of the neural network. This allows allies to 
take different actions if they occupy the same state and break the 
ambiguity.











• Policy evaluation is analogous

• Policy improvement: use regret minimization algorithms

• Average strategies converge to Nash in self-play

• Convergence guarantees are on the average policies



• Policy gradient is doing a form of CFR minimization!

• Several new policy gradient variants inspired connection to regret



• Multi-agent, partial information, competition

• Algorithm: Counterfactual regret minimization

• Minimize the regret of not having taken the right action, playing many 
“what-ifs” (counterfactuals)

• CFR is probabilistic multi-agent version of competitive minimax

• Works quite well in Poker

• Complicated code, see paper



Pluribus





• A model-free off-policy actor-
critic algorithm, combining 
DPG and DQN.

• DQN stabilizes the learning of 
Q-function by experience replay 
and the frozen target network.

• DQN works in discrete space, 
and DDPG extends it to 
continuous space with the 
actor-critic framework while 
learning a deterministic policy.



• Multi-agent DDPG (MADDPG) (Lowe et al., 2017) 
extends DDPG to an environment where multiple 
agents are coordinating to complete tasks with only 
local information. 

• In the viewpoint of one agent, the environment is non-
stationary as policies of other agents are quickly 
upgraded and remain unknown. 

• MADDPG is an actor-critic model redesigned 
particularly for handling such a changing environment 
and interactions between agents.

• Centralized critic + decentralized actors, changes 
non-stationary problems to stationary problems

• Actors can use estimated policies of other agents 
for learning

• Policy ensembles is good for reducing variance





https://deepmind.google/discover/blog/alphastar-grandmaster-level-in-
starcraft-ii-using-multi-agent-reinforcement-learning/

https://deepmind.google/discover/blog/alphastar-grandmaster-level-in-starcraft-ii-using-multi-agent-reinforcement-learning/
https://deepmind.google/discover/blog/alphastar-grandmaster-level-in-starcraft-ii-using-multi-agent-reinforcement-learning/


• Computational complexity

• AlphaGo Zero (per agent):

• 64 GPUs & 19 CPUs

• OpenAI Dota Five

• 256 GPUs & 128000 CPUs

• Lack of good benchmarks

• Reproducability



www.ida.liu.se/~TDDE13
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