
•

•

•

• The environment

• The reward function r(s,a)
• Pure delay reward and avoidance problems

• Minimum time to goal

• Games

• The value function V(s)
• Policy : S → A

• Value V (s) := i
i rt+i

• Find the optimal policy that
maximizes V (s) for all states s.

A minimum time to goal world

Value function Optimal policy Optimal value

for random function

movement

Assume:

• finite set of states S, finite set of actions A

• at each discrete time agent observes state st S and chooses action at A

• then receives immediate reward rt

• and state changes to st+1

• Markov assumption: st+1 = (st,at) and rt = r(st,at)

• i.e. rt and st+1 depend only on current state and action

• functions and r may be non-deterministic

• functions and r not necessarily known to the agent

r(s,a) V*(s)

An optimal policy

Optimal policy:

• *(s) = argmaxa[r (s,a) + V *((s,a))]

• Doesn't work if we don't know r and .

The Q-function:

• Q (s,a) := r (s,a) + V *((s,a))

• *(s) = argmaxaQ (s,a)

r(s,a)

Q(s,a)

• Note Q and V* closely related:
V *(s) = maxa' Q (s,a')

• Therefore Q can be written as:

Q (st ,at) := r (st ,at) + V *((st ,at)) =

r (st ,at) + maxa' Q (st+1 ,a')

• If Q^ denote the current approximation of Q then it can be updated by:

Q^(s,a) := r + maxa' Q
^(s',a')

• Value-Based:
• Learn value function
• Implicit policy (e.g. greedy selection)
• Example: Deep Q Networks (DQN)

• Policy-Based:
• No value function
• Learn explicit (stochastic) policy
• Example: Stochastic Policy Gradients

• Model-Based:
• Learn transition model
• Implicit policy
• Example: Dreamer

• Actor-Critic:
• Learn value function
• Learn policy using value function
• Example: Asynchronous Advantage Actor Critic (A3C)

For each s, a initialize table entry Q^(s,a) := 0.

Observe current state s.

Do forever:

1. Select an action a and execute it

2. Receive immediate reward r

3. Observe the new state s'

4. Update the table entry for Q^(s,a):
Q^(s,a) := r + maxa' Q

^(s',a')

5. s := s'

Q ^(s1 ,aright) := r + maxa' Q
^(s2 ,a')

:= 0 + 0.9 max{63, 81, 100}

:= 90

• Exploration

• Selecting the best action

• Probabilistic choice

• Improving convergence

• Update sequences

• Remember old state-action transitions and their immediate reward

• Non-deterministic MDPs

• Temporal Difference Learning

• DQN - baseline

• Double DQN - de-overestimate values

• Prioritized experience

• Dueling networks

• Distributional DQN - probability
distribution

• Noisy DQN - parametric noise

• -> ADDITIVE

• Take parameterized policy πθ0

• Sample an episode τ with parameters θ1

• If it is better, then push parameters in that direction

• If not, then push parameters the other way

• (aka: vanilla policy gradient)

• Value-Based:
• Learn value function
• Implicit policy (e.g. greedy selection)
• Example: Deep Q Networks (DQN)

• Policy-Based:
• No value function
• Learn explicit (stochastic) policy
• Example: Stochastic Policy Gradients

• Model-Based:
• Learn transition model
• Implicit policy
• Example: Dreamer

• Actor-Critic:
• Learn value function
• Learn policy using value function
• Example: Asynchronous Advantage Actor Critic (A3C)

Learn policy direct or learn transition first and then policy?

• s → a → s’ → a’ → s’’ → a’’ → s’’’ → a’’’ → s’’’’

• Learning a policy s → a

• Learning how to react in an environment

• Learning a transition s → a → s’

• Learning how the environment reacts

• Learning

• Agent changing state in the environment

• Irreversible state change

• Forward Path s → a → s’ → a’ → s’’ → a’’ → s’’’ → a’’’ → s’’’’

• Planning

• Agent changing own local state

• Reversible local state change

• Backtracking Tree

Learn policy directly

Learn model
and then plan actions

Use experience to
update both model and policy

• Value-Based:
• Learn value function
• Implicit policy (e.g. greedy selection)
• Example: Deep Q Networks (DQN)

• Policy-Based:
• No value function
• Learn explicit (stochastic) policy
• Example: Stochastic Policy Gradients

• Model-Based:
• Learn transition model
• Implicit policy
• Example: Dreamer

• Actor-Critic:
• Learn value function
• Learn policy using value function
• Example: Asynchronous Advantage Actor Critic (A3C)

• An Actor that controls how our agent behaves (policy-based method).

• A Critic that measures how good the action taken is (value-based
method).

• Two ideas to reduce variance

• Temporal difference bootstrapping

• Baseline subtraction

• Asynchronous: The algorithm is an asynchronous algorithm where multiple
worker agents are trained in parallel, each with their environment. This allows the
algorithm to train faster as more workers are training in parallel and attain a
more diverse training experience as each worker's experience is independent.

• Advantage: Advantage is a metric to judge how good its actions were and how
they turned out. This allows the algorithm to focus on where the network's
predictions were lacking. Intuitively, this will enable it to measure the advantage
of taking action, following the policy π at the given timestep.

• Actor-Critic: The Actor-Critic aspect of the algorithm uses an architecture that
shares layers between the policy and value function.

1. Fetch the global network parameters

2. Interact with the environment by following
the local policy for n number of steps

3. Calculate value and policy loss

4. Get gradients from losses

5. Update the global network

6. Repeat

https://pylessons.com/A3C-reinforcement-learning

https://pylessons.com/A3C-reinforcement-learning

• Value-Based:

• Learn value function

• Implicit policy (e.g. greedy selection)

• Example: Deep Q Networks (DQN)

• Policy-Based:

• No value function

• Learn explicit (stochastic) policy

• Example: Stochastic Policy Gradients

• Actor-Critic:

• Learn value function

• Learn policy using value function

• Example: Asynchronous Advantage Actor Critic (A3C)

• In multi-agent systems it may be beneficial to learn

• Environment dynamics

• Reward functions

• Other agents’ strategies

• Can be useful for cooperative as well as competitive scenarios

• Finding solutions by hand may be difficult and time-consuming

• Learning may help

• Also lets the agent adapt to changes in the environment

• Centralized:

• One brain/algorithm deployed across many agents

• Prescriptive:

• Suggests how agents should behave

• Cooperative: Agents cooperate to achieve a goal

• Shared team reward

• Numbers of agents

• One (single-agent)

• Two (very common)

• Finite

• Infinite

• Decentralized:

• All agents learn individually

• Communication limitations defined by environment

• Descriptive:

• Forecast how agent will behave

• Competitive: Agents compete against each other

• Zero-sum games

• Individual opposing rewards

• Neither: Agents maximize their utility which may require
cooperating and/or competing

• General-sum games

• Non-stationary environment when multiple agents learn

• Simultaneous learning and teaching for individual agent

• Lack of observability (e.g., actions and rewards of other agents)

• Multiple Agents -> Large State Space (Esp. with simultaneous actions)

• A Dec-POMDP can be defined with the tuple: where

• A local policy for each agent is a mapping from its observation sequences to actions, Ω* → A

• State is unknown, so beneficial to remember history

• A joint policy is a local policy for each agent

• Goal is to maximize expected cumulative reward over a finite or infinite horizon

• For finite-horizon cannot remember the full observation history

• In infinite case, a discount factor, γ, is used

• Agents must consider the choices of all others in addition to the state and action uncertainty
present in POMDPs.

• This makes DEC-POMDPs much harder to solve (NEXP-complete).

• No common state estimate (centralized belief state)

• Each agent depends on the others

• This requires a belief over the possible policies of the other agents

• Can’t transform Dec-POMDPs into a continuous state MDP (how POMDPs are typically solved)

• Sequential (not “one shot” or greedy)

• Cooperative (not single agent or competitive)

• Decentralized (not centralized execution or free, instantaneous
communication)

• Decision-theoretic (probabilities and values)

• Though no theoretical guarantees exist, single-agent algorithms may
produce interesting results in multi-agent systems

• Ways to stabilize the learning process

• Clever design of reward systems

• Training populations of agents

• Can allow agents to generalize

• Extra information is used for guidance during
learning, e.g., actor-critic setup or value function
decomposition

• At execution time agents act based on local
observations

• Examples of algorithms

• QMIX

• COMA

• MADDPG

• Non zero sum; win/win

• Vilfredo Pareto

• Pareto front is, in a cooperative setting, the
combination of choices where no agent can
be better off without at least making one
other agent worse off

• It is the optimal cooperative strategy, the best
outcome without hurting others.

• Dealing with non-stationarity and partial observability can be done
(ignored) by separate training, no communication

• Realism can be improved with Centralized Training/Decentralized
Execution -> Centralized controller, or interaction graphs

• Active field of research; overview

• Value based: VDN, QMIX

• Policy based: COMA, MADDPG

• Opponent modeling: DRON, LOLA

• Communication: Diplomacy game

• Psychology: Heuristics

Image from Bozansky et al. 2016

• Follow-ups to Minimax Q:

• Friend-or-Foe Q-Learning (Littman ‘01)

• Correlated Q-learning (Greenwald & Hall ‘03)

• Nash Q-learning (Hu & Wellman ‘03)

• Coco-Q (Sodomka et al. ‘13)

• Function approximation:

• LSPI for Markov Games (Lagoudakis & Parr ‘02)

• Train one agent at a time, and fix policies of all the other agents

• After a number of iterations distribute the policy learned by the training
agent to all the other agents of its type

• Challenge: When two ally agents are occupying the same position in the
environment, the image-like state representation for each agent will be
identical, so their policies will be exactly the same.

• Solution: To break this symmetry – use a stochastic policy for agents. The
actions taken by the agent are drawn from a distribution derived by taking
a softmax over the Q-values of the neural network. This allows allies to
take different actions if they occupy the same state and break the
ambiguity.

• Policy evaluation is analogous

• Policy improvement: use regret minimization algorithms

• Average strategies converge to Nash in self-play

• Convergence guarantees are on the average policies

• Policy gradient is doing a form of CFR minimization!

• Several new policy gradient variants inspired connection to regret

• Multi-agent, partial information, competition

• Algorithm: Counterfactual regret minimization

• Minimize the regret of not having taken the right action, playing many
“what-ifs” (counterfactuals)

• CFR is probabilistic multi-agent version of competitive minimax

• Works quite well in Poker

• Complicated code, see paper

Pluribus

• A model-free off-policy actor-
critic algorithm, combining
DPG and DQN.

• DQN stabilizes the learning of
Q-function by experience replay
and the frozen target network.

• DQN works in discrete space,
and DDPG extends it to
continuous space with the
actor-critic framework while
learning a deterministic policy.

• Multi-agent DDPG (MADDPG) (Lowe et al., 2017)
extends DDPG to an environment where multiple
agents are coordinating to complete tasks with only
local information.

• In the viewpoint of one agent, the environment is non-
stationary as policies of other agents are quickly
upgraded and remain unknown.

• MADDPG is an actor-critic model redesigned
particularly for handling such a changing environment
and interactions between agents.

• Centralized critic + decentralized actors, changes
non-stationary problems to stationary problems

• Actors can use estimated policies of other agents
for learning

• Policy ensembles is good for reducing variance

https://deepmind.google/discover/blog/alphastar-grandmaster-level-in-
starcraft-ii-using-multi-agent-reinforcement-learning/

https://deepmind.google/discover/blog/alphastar-grandmaster-level-in-starcraft-ii-using-multi-agent-reinforcement-learning/
https://deepmind.google/discover/blog/alphastar-grandmaster-level-in-starcraft-ii-using-multi-agent-reinforcement-learning/

• Computational complexity

• AlphaGo Zero (per agent):

• 64 GPUs & 19 CPUs

• OpenAI Dota Five

• 256 GPUs & 128000 CPUs

• Lack of good benchmarks

• Reproducability

www.ida.liu.se/~TDDE13

	Slide 1: TDDE13 LE3 HT2024 Multi-agent Learning
	Slide 2: Classes of Learning Problems
	Slide 3: Reinforcement Learning: Key Concepts
	Slide 4: Reinforcement Learning: Key Concepts
	Slide 5: Reinforcement Learning: Key Concepts
	Slide 6: Reinforcement Learning: Key Concepts
	Slide 7: Reinforcement Learning: Key Concepts
	Slide 8: Reinforcement Learning: Key Concepts
	Slide 9: Reinforcement Learning: Key Concepts
	Slide 10: Reinforcement Learning: Key Concepts
	Slide 11: Reinforcement Learning: Key Concepts
	Slide 12: Reinforcement Learning: Key Concepts
	Slide 13: A Reinforcement Learning Problem
	Slide 14: RL Value Function - Example
	Slide 15: Markov Decision Processes
	Slide 16: MDP Example
	Slide 17: Defining the Q-Function
	Slide 18: How to Take Actions Given a Q-Function
	Slide 19: The Q-Function
	Slide 20: The Q-Function
	Slide 21: Reinforcement Learning Approaches
	Slide 22: Reinforcement Learning Algorithms
	Slide 23: Reinforcement Learning Algorithms
	Slide 24: Q-Learning for Deterministic Worlds
	Slide 25: Q-Learning Example
	Slide 26: Q-Learning Continued
	Slide 27: Deep Q-Learning (DQN)
	Slide 28: Deep Q Networks (DQN): Training
	Slide 29: Deep Q Networks (DQN): Training
	Slide 30: Deep Q Networks (DQN): Training
	Slide 31: Deep Q Networks (DQN): Training
	Slide 32: Deep Q Network Summary
	Slide 33: DQN Atari Results
	Slide 34: DQN Atari Results
	Slide 35: Rainbow DQN
	Slide 36: Downsides of Q-Learning
	Slide 37: Reinforcement Learning Algorithms
	Slide 38: Deep Q Networks
	Slide 39: Policy Gradient (PG): Key Idea
	Slide 40: Discrete vs Continuous Action Spaces
	Slide 41: Discrete vs Continuous Action Spaces
	Slide 42: Policy Gradient (PG): Key Idea
	Slide 43: Training Policy Gradients: Case Study
	Slide 44: Training Policy Gradients
	Slide 45: Training Policy Gradients
	Slide 46: Training Policy Gradients
	Slide 47: Training Policy Gradients
	Slide 48: Training Policy Gradients
	Slide 49: REINFORCE
	Slide 50: Policy-Gradient Theorem
	Slide 51: REINFORCE
	Slide 52: AlphaGo Beats Top Human Player (2016)
	Slide 53: MuZero: Learning Dynamics for Planning (2020)
	Slide 54: Deep Reinforcement Learning Summary
	Slide 55: Reinforcement Learning Approaches
	Slide 56: Model-Based vs Model-Free RL
	Slide 57: Learning Policies vs Learning Transitions
	Slide 58: Learning vs Planning
	Slide 59: Model-Based RL
	Slide 60: Model-Based RL
	Slide 61: Reinforcement Learning Approaches
	Slide 62: Actor-Critic RL
	Slide 63: Actor-Critic RL
	Slide 64: A3C – Asynchronous Advantage Actor-Critic
	Slide 65: A3C – Asynchronous Advantage Actor-Critic
	Slide 66: Deep Reinforcement Learning Summary
	Slide 67: Reinforcement Learning Concepts
	Slide 68: Multi-Agent Reinforcement Learning
	Slide 69: Multiagent RL (MARL) – Motivation
	Slide 70: Axes of Multi-Agent RL
	Slide 71: MARL – Challenges
	Slide 72: Markov Models
	Slide 73
	Slide 74: Complexity Results
	Slide 75: MDP, POMDP, and Dec-POMDP
	Slide 76: Dec-POMDP
	Slide 77: Dec-POMDP
	Slide 78: Dec-POMDP
	Slide 79: What Problems are Dec-POMDPs Good For?
	Slide 80: Multi-Agent Reinforcement Learning
	Slide 81: Multi-Agent Reinforcement Learning
	Slide 82: MARL Policies
	Slide 83: MARL Policies
	Slide 84: Decentralized Multi-Agent Deep Reinforcement Learning
	Slide 85: Centralized Learning, Decentralized Execution
	Slide 86: Research in Multi-Agent RL
	Slide 87: Cooperation
	Slide 88: Cooperative Behavior
	Slide 89: Value Iteration – Recap
	Slide 90: Turn-Taking 2P Zero-sum Perfect Info. Games
	Slide 91: 2P Zero-Sum Perfect Info. Value Iteration
	Slide 92: Minimax
	Slide 93: Two-Player Zero-Sum Policy Iteration
	Slide 94: 2P Zero-Sum Games with Simultaneous Moves
	Slide 95: Markov Games
	Slide 96: Value Iteration for Zero-Sum Markov Games
	Slide 97: First MARL Algorithm: Minimax-Q (Littman ‘94)
	Slide 98: First MARL Algorithm: Minimax-Q (Littman ‘94)
	Slide 99: First MARL Algorithm: Minimax-Q (Littman ‘94)
	Slide 100: MARL Formulation
	Slide 101: First Era of MARL
	Slide 102: Multi-Agent Deep Q-Network (MADQN)
	Slide 103: Multi-Agent Deep Q-Network (MADQN)
	Slide 104: Multi-Agent Deep Q-Network (MADQN)
	Slide 105: Multi-Agent Deep Q-Network (MADQN)
	Slide 106: MADQN: Dealing with Ambiguity
	Slide 107: Foundations of MARL
	Slide 108: Nash Q-Learning
	Slide 109: Nash Q-Learning (cont)
	Slide 110: Counterfactual Regret Minimization (CFR)
	Slide 111: CFR is Policy Iteration
	Slide 112: Regret Policy Gradients (Srinivasan et al. ‘18)
	Slide 113: Counterfactual Regret Minimization
	Slide 114: Poker
	Slide 115: Centralized Critic Decentralized Actor Approaches
	Slide 116: Deep Deterministic Policy Gradient (DDPG)
	Slide 117: Multi-Agent Deep Deterministic Policy Gradient
	Slide 118
	Slide 119: AlphaStar
	Slide 120: Challenges in Multi-Agent Learning
	Slide 121: TDDE13 MAS LE3 HT2024: Reinforcement learning Deep reinforcement learning Multi-agent learning

