TDDE13 LE3 HT2024

Multi-agent Learning

Fredrik Heintz Outline:

Dept. of Computer Science
Linkoping University

fredrik.heintz@liu.se
@FredrikHeintz

LINKOPING
IIQ" UNIVERSITY

Reinforcement learning
Deep reinforcement learning
Multi-agent reinforcement learning



TDDE13 - HT24 - Fredrik Heintz - LE3 Multi-agent Learning (partially based on slides from MIT 6S191)

Classes of Learning Problems

Supervised Learning Unsupervised Learning

Data: x
x Is data, no labels!

Data: (x,y)
X is data, y Is label

Goal: Learn function to map  Goal: Learn underlying

Xy structure
Apple example: Apple example:
Sl Tl
|ff i ‘\'I ff- ) \'|
X \__/

This thing is like

This thing is an apple. the other thing.

2024-1-29 2

Reinforcement Learning

Data: state-action pairs

Goal: Maximize future rewards
over many time steps

Apple example:
r‘f;-;d:t .‘HH
| I'I

 /

Eat this thing because it
will keep you alive.
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Reinforcement Learning: Key Concepts

AGENT

Agent: takes actions.

LINKOPING
II.“ UNIVERSITY



TDDE13 - HT24 - Fredrik Heintz - LE3 Multi-agent Learning (partially based on slides from MIT 6S191) 2024-11-29 4

Reinforcement Learning: Key Concepts

ENVIRONMENT

Environment: the world in which the agent exists and operates.
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Reinforcement Learning: Key Concepts

AGENT | Action: a; I ENVIRONMENT

Action: a move the agent can make in the environment.
Action space A:the set of possible actions an agent can make in the environment
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Reinforcement Learning: Key Concepts

OBSERVATIONS

AGENT | Action: a; I ENVIRONMENT

Observations: of the environment after taking actions.
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Reinforcement Learning: Key Concepts

OBSERVATIONS
State changes: S¢4.1

AGENT | Action: a; I ENVIRONMENT

State: a situation which the agent perceives.
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Reinforcement Learning: Key Concepts

OBSERVATIONS
State changes: S¢4.1

Reward: T e

AGENT | Action: a; I ENVIRONMENT

Reward: feedback that measures the success or failure of the agent's action.
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Reinforcement Learning: Key Concepts

OBSERVATIONS
State changes: S¢4.1

Reward: ¢ e

AGENT | Action: ay I ENVIRONMENT

Total Reward B
Return
( ) S\ R, = Z 7

i=t
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Reinforcement Learning: Key Concepts

OBSERVATIONS

State changes: S¢4.1
Reward: T

AGENT | Action: a; I ENVIRONMENT

Total Reward B

Return
( . ) \th Zri = Tt+rt+1 ...+Tt.|.n+‘”

i=t
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Reinforcement Learning: Key Concepts

OBSERVATIONS
State changes: S¢41
99,4

Reward: T en

AGENT | Action: a; I ENVIRONMENT

Discounted

o0
Total Reward N\ -
(Return) Re = Zylri
=t
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Reinforcement Learning: Key Concepts

OBSERVATIONS
State changes: S¢4.1

Reward: 1t e

AGENT | Action: a; I ENVIRONMENT

Discounted

Total Reward \
(Return) Ry = Z y'n=yrn+yting vyt rga + -

Y. discount factor; 0 < ¥y < 1
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A Reinforcement Learning Problem

* The environment Agent

* The reward function r(s,a)
 Pure delay reward and avoidance problems statyy’ freward action
* Minimum time to goal
 Games Environment

e The value function V(s)
* Policyn:S—> A

¢ Vahle VTE(S) = Zl yl rt+i 80 20 - 51 al—»sz 3.2—’
. . . o | )
 Find the optimal policy n* that | N
. . " Goal: Learn to choose actions that maximize
maximizes V ™(s) for all states s. 0+ + 21y + . where 0<Y<]
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RL Value Function - Example

A minimum time to goal world

Value function Optimal policy Optimal value
for random function
movement

2024-11-29
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Markov Decision Processes

Assume:

« finite set of states S, finite set of actions A

- at each discrete time agent observes state s, €S and chooses action a, €A
* then receives immediate reward r,

- and state changes to s,,

« Markov assumption: s,,, = 6(s,,a,) and r, = r(s,,a,)
e i.e.r,and s,,, depend only on current state and action
« functions 6 and r may be non-deterministic
« functions 6 and r not necessarily known to the agent
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MDP Example

0 0
=i L —p —
- - 8] 90 g— 100
r(s,a) Vis)
— - G
A
|
—i —p-
An optimal policy
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Defining the Q-Function
Re =T+ ¥Teyr Y Tea + -

Total reward, Ry, is the discounted sum of all rewards obtained from time t

Q(se ay) = E[R s, a,]

The Q-function captures the expected total future reward an
agent in state, S, can receive by executing a certain action, a

LINKOPING
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How to Take Actions Given a Q-Function

Q(se at) = E[R¢|se at]
P

(state, action)

Ultimately, the agent needs a policy 1 (s), to infer the best action to take at its state, s

Strategy: the policy should choose an action that maximizes future reward

n*(s) = argmax Q (s, a)

LINKOPING
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The Q-Function

Optimal policy:
» 1¥%(s) = argmax,[r (s,a) + yV *(8(s,a))]

e Doesn't work if we don't know r and 9.

The Q-function:

* Q(s,a) :=r(s,a) +yV*(8(s,a))
* 1*(s) = argmax,Q (s,a)

2024-1-29

19
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The Q-Function

* Note Q and V* closely related:
V*(s) =max_,Q (s,a")

« Therefore Q can be written as:
Q (s,,a) :=r(s,,a) +yV*((s,,a)) =
r(s,,a) +ymax,Q(s,,,a’)
 If Q" denote the current approximation of Q then it can be updated by:

Q"(s,a) :=r+ymax,Q"(s',a")

LINKOPING
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Reinforcement Learning Approaches

» Value-Based:

» Learn value function

» Implicit policy (e.g. greedy selection)

« Example: Deep Q Networks (DQN)
 Policy-Based:

e No value function Value Function Actor Policy

« Learn explicit (stochastic) policy i

- Example: Stochastic Policy Gradients Value-Blaad Polidy-Based

 Model-Based:
e Learn transition model \ Madel-Based
» Implicit policy

« Example: Dreamer
» Actor-Critic: Model
 Learn value function
» Learn policy using value function
- Example: Asynchronous Advantage Actor Critic (A3C)

Model-Free

LINKOPING
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Reinforcement Learning Algorithms

Value Learning Policy Learning

Find Q(s,a) Find (s)

a = argmax Q(s,a) Sample a ~ 1t (s)

LINKOPING
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Reinforcement Learning Algorithms

Z \

Value Learning

Find Q (s, a)

a = argmaxQ(s,a)
a
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Q-Learning for Deterministic Worlds

For each s, a initialize table entry Q" (s,a) := o.

Observe current state s.

2024-1-29

24

Do forever:

1. Select an action a and execute it

2. Receive immediate reward r

3. Observe the new state s’

4. Update the table entry for Q"(s,a):
Q"(s,a) :=r+ymax_,Q"(s',a")

5. §:=8'

LINKOPING
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Q-Learning Example

R &

T2

63

100

s
+81

2024-1-29

25

20

63

100

< R T

Initial state: §

I

right

Q A(S1 ’aright) =r+y maXa'Q A(S2)a')

:= 0 + 0.9 max{63, 81, 100}

:= Q0

+81

Next state: §

2
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Q-Learning Continued

« Exploration
 Selecting the best action
 Probabilistic choice

« Improving convergence
« Update sequences
« Remember old state-action transitions and their immediate reward

e Non-deterministic MDPs

« Temporal Difference Learning

LINKOPING
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Deep Q-Learning (DQN)

2024-1-29 27

How can we use deep neural networks to model Q-functions?

7 i
Action + State =2
- Expected Return
state, s i Deep .
. NN Q(s,a)
“move
right”
action, a
\_ Input Agent Output

e N
State = Expected Return for Each Action
= Q(s.ay)
Deep = Q(s,az)
NN
~ Q(s,an)
. Input Agent Output

LINKOPING
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Deep Q Networks (DQNJ: Training

How can we use deep neural networks to model Q-functions?

- _ ks = N
1 Action + State - State - Expected Return for Each Action
- - Expected Return

| et Q(S- a‘l)
state, s Deep __| 0(s, a) — Deep ~ Q(s,az)
oy NN P— 1
| NN
‘move
right” state, § - QG )
action, a
. Input Agent Output _ Input Agent Output

What happens if we take all the best actions?

Maximize target return = train the agent

LINKOPING
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Deep Q Networks (DQNJ: Training

How can we use deep neural networks to model Q-functions?

4 _ b il k'
— Action + State State - Expected Return for Each Action
- Expected Return
L. —~ Q(s,ay)
state, s Dl\'jgp . __ Deep I Q(s,az)
i NN
“move
nght” state, s ~ Q(s,a,)
action, a
\_ Input Agent Output ) e Input Agent Output )
target
f G \
. x ' Take all the best actions =
(r +y max Q(s',a )) — target return

LINKOPING
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Deep Q Networks (DQN): Training

How can we use deep neural networks to model Q-functions?

4 \
Action + State =
Expected Return
state, s Deep
NN ¢l
‘move
right”
action, a
. Input Agent Output )

4 e
State = Expected Return for Each Action
i Q(S! al)
Deep - Q(s,az)
NN
state, s ~ Q(s,an)
\_ Input Agent Output )
predicted
Network
Q(s,a) prediction

30
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state, s

“move
right”

action, a

_ Input

—

2024-11-29
How can we use deep neural networks to model Q-functions?
. A 4 L
Action + State > State = Expected Return for Each Action
Expected Return
—~ Q(s,ay)
Dﬁﬁlp — Q(s,a) | Deep W [ Q@)
NN
state, s = Q(s,)
Agent Output ) . Input Agent Output )
target predicted
A

L=TE [” (r +y max Q(s’, a’)) —Q(s,a) ”2‘ Q-Loss

31
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Deep Q Network Summary

Use NN to learn Q-function and then use to infer the optimal policy, m(s)

state, s > Q(s,a,) =20
= \
W— Ei?p Q(s,a;) =3 —s m(s)=argmaxqQ(s,a)
33 =a C::
» Q(s,az) =0
=

Send action back to environment and receive next state

32
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DON Atari Results

Oonvglutjon Convglution Fully cgnnected Fully cgnnected

a8 L ] =l
! . . .
[ § ‘ . . v
® L] L] .
u
. . .
‘ E [/ . . .
(e g |, B . .
‘ § / . . . “
OB c®: (@ &
| . . » A+
g\ » . . '
> i\ = /R .
g\ . . . 3+0
1 . a 1 L] L LR ~
I“ [E % u g D ™ ™ &
: g . " . €+0O
* t ?
k+0
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DON Atari Results

“' Surpass Below I E
human-level human-level >

% Human Level Performance

‘ F

- | L “Ii“llél“!-!ig“llhii.ﬁ!.‘.-gui:f_
RS U ’§§§§g§§§§5§§§§§§§§§§§§§§5Eifigfgéiégg
2
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Rainbow DON

DQN - baseline
Double DQN - de-overestimate values

(Rt+1+”ft+1q9_-(8t+1e argmax o (Si41. a-’)) —qp(St, At))g

Prioritized experience

w
Pt X

Dueling networks

R+ 741 max a7(Siy1,a") —qo(Se, Ar)
a

S au(fels).a)

qo(s,a) =v,(fe(s)) + ay(fe(s),a) —

j\"actions

Distributional DQN - probability
distribution

Median human-normalized score

200%

100%

2024-1-29 35

DQN
- DDQN
- Prioritized DDQN
Dueling DDQN
A3C
Distributional DQN A,

Noisy DQN [\N

Rainbow

« Noisy DQN - parametric noise
0% -t | |
7 44 100 200
* -> ADDITIVE Millions of frames
LINKOPING
II.“ UNIVERSITY
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Downsides of Q-Learning

Complexity:
* (Can model scenarios where the action space is discrete and small
* Cannot handle continuous action spaces

Flexibility:
* Policy is deterministically computed from the Q function by maximizing the
reward = cannot learmn stochastic policies

To address these, consider a new class of RL training algorithms:
Policy gradient methods

LINKOPING
II.“ UNIVERSITY
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Reinforcement Learning Algorithms

LINKOPING
UNIVERSITY
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=

Policy Learning

Find m(s)

Sample a ~ w(s)
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Deep Q Networks

DQN: Approximate Q-function and use to infer the optimal policy, m(s)

» Q(s,ay) =20
& \
Deep
NN Q(s,az) =3 — g(s) = argmax Q(s, a)
p 4 a
state, s — Q(s,a3) =0
=p

LINKOPING
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Policy Gradient (PG): Key Idea

Policy Gradient: Directly optimize the policy m(s)

Z P(ayls) = 1

— Pagls) =U.9\ JHEA / y,
EENEP P(ay|s) = 01— m(s)~ P(als)
2 =a, 4=
state, s P =0
=

e What are some advantages of this formulation?

LINKOPING
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Discrete vs Continuous Action Spaces

Discrete action space: which direction should | move? {m $2 )

P(als)

B .

= g =

LINKOPING
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2024-1-29

Discrete vs Continuous Action Spaces

Continuous action space: how fast should |

move!

., P(als)

\— - a

i—/\

state, s Left

T o, Faster

Right

41
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Policy Gradient (PG): Key Idea

Policy Gradient: Enables modeling of continuous action space

j Plals) =1
(l==—0o0
b A
— Meanu =-1 1
Deep ~ P(als) = N(u,0%)
NN / n(s) ~ P(als)
— Variance, 6 = 0.5 = —0.8 [m/s]
&=
siate, s P(a|s) = N(u,o%)

-1

Faster Faster
Left <:| ::>

Right

42
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Training Policy Gradients: Case Study

2024-1-29 43

Reinforcement Learning Loop: Case Study — Self-Driving Cars
A State changes: S¢41 Agent:  vehicle
Reward. Ty A% 3 State: camerg, lidar, etc

Action: steering wheel angle

Reward: distance traveled

LINKOPING
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Training Policy Gradients
Training Algorithm

|. Inrtialize the agent

Run a policy until termination

Record all states, actions, rewards

AW

Decrease probability of actions that
resulted in low reward

5. Increase probability of actions that
resulted in high reward

LINKOPING
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Training Policy Gradients
Training Algorithm
| Inttialize the agent

Run a policy until termination

Record all states, actions, rewards

-l

Decrease probability of actions that
resulted in low reward

5. Increase probability of actions that
resulted in high reward

LINKOPING
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Training Policy Gradients
Training Algorithm i‘?ﬁ

|. Initialize the agent |

Run a policy until termination |

Record all states, actions, rewards

ol U

Decrease probability of actions that
resulted in low reward

5. Increase probability of actions that
resulted in high reward

LINKOPING
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Training Policy Gradients
Training Algorithm
|. Inttialize the agent

Run a policy until termination

Record all states, actions, rewards

~

op [k B

Decrease probability of actions that
resulted in low reward

5. Increase probabillity of actions that
resulted in high reward v

2024-11-29

47
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Training Policy Gradients

Training Algorithm log-likelinood of action
. Initialize the agent loss = —log P(a,|s,) R,
2. Run a policy until termination reward
3. Record all states, actions, rewards

i 4. Decrease probability of actions that | Gl sscenttpate:

w’' =w — Vloss

| | w' = w+[Vlog P(a;|s¢) Rt]

5. Increase probability of actions that “Sp———
resulted in high reward

resulted in low reward

LINKOPING
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REINFORCE

 Take parameterized policy my,,

« Sample an episode T with parameters 0,

o If it is better, then push parameters in that direction
* If not, then push parameters the other way

* (aka: vanilla policy gradient)

LINKOPING
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Policy-Gradient Theorem

Policy gradient : E;[Vg(logn(s,a,0))R(7)]

Policy function Score function

Update rule : A0 = a x Vy(logn(s,a,0))R(T)

/N

INgE IN parametel Learning rate

LINKOPING
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REINFORCE

function REINFORCE
Initialise @ arbitrarily
for each episode {s1,a1,m,...,sST—1,a7-1, T} ~ ™9 dO
fort=1to T —1do
0 < 0+ aVyglogmy(st,ar)ve
end for
end for
return ¢
end function

LINKOPING
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AlphaGo Beats Top Human Player (2016)

Human expert Supervised Learning
positions policy network policy netwark Sr—:lf-pla=13.4r data Value network

Classification n ﬁ -
B R — ¥ Self Self
J

Regression

—

) Inttial training: human data

L 1l

2) Self-play and reinforcement learning
=> super-human performance \_ J

3) “Intuition” about board state

LINKOPING
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2024-11-29 53

MuZero: Learning Dynamics for Planning (2020)

Human Domain Enown
Go data knowledge rules

AlphaGo becomes the first program to master Go using
neural networks and tree s2arch
{Jan 2016, Nature)

AlpRaGo Zerd |

o
""-"'-.
3 "

—

AlphaGo Zero learns to play completely on its own,
without human knowledge

(Oet 2017, Nature)

Mulero

Enown
GO Chess shogi rules

AlphaZero masters three perfect information games
using a single algorithm for all games
(Dec 2018, Science)

Go Chess Shogi Atari

MuZero loarns the rules of the Eamea .rlllr'.r.'.'in_g t to also

master environments with unknown dynamics
(Dec 2020, Mature)

LINKOPING
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Deep Reinforcement Leurning Summory

* Agents acting In * Q function: expected * Learn and optimize the
environment total reward given s, a policy directly

* State-action pairs =2 * Policy determined by * Applicable to
maximize future rewards selecting action that continuous action

« Discounting maximizes Q function spaces

54
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Reinforcement Learning Approaches

» Value-Based:

» Learn value function

» Implicit policy (e.g. greedy selection)

« Example: Deep Q Networks (DQN)
 Policy-Based:

e No value function Value Function Actor Policy

« Learn explicit (stochastic) policy i

- Example: Stochastic Policy Gradients Value-Blaad Polidy-Based

 Model-Based:
e Learn transition model \ Madel-Based
» Implicit policy

« Example: Dreamer
» Actor-Critic: Model
 Learn value function
» Learn policy using value function
- Example: Asynchronous Advantage Actor Critic (A3C)

Model-Free
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Model-Based vs Model-Free RL

value/policy
acting
planning direct
RL
model experlence
model
learning

Learn policy direct or learn transition first and then policy?

2024-1-29
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Learning Policies vs Learning Transitions

299

*s—s>a—>s —oa—>s »a »>s »>a’ >s
 Learning a policy s — a
 Learning how to react in an environment

* Learning a transitions »>a —> §’
 Learning how the environment reacts
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Learning vs Planning

 Learning
« Agent changing state in the environment
* Irreversible state change

299

e Forward Paths va—>s >a »>s’  —>a’ 58”7 >a”7 >s

 Planning
« Agent changing own local state
 Reversible local state change
 Backtracking Tree
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Model-Based RL

f'[POhCYN alue]—w
planning acting

Dynamlcs Model]< LEnv1ronment

learning

repeat
Sample environment E to generate data D = (s, a,r’, s’)
Use D tolearn M =T, (s,s’), Ra(s,s’)
forn=1,...,N do
Use M to update policy (s, a)
end for
until 7 converges

2024-1-29

> learning

> planning
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Model-Based RL

Learn policy directly

Learn model
and then plan actions

Use experience to
update both model and policy

Policy/Value
learning acting
Environment
Policy/Value _
planning acting

Dynamlcs Model]< {Environment]

learning

Policy/Value

planning acting

learning

[Dynamics Model]< kEnvironmentj

learning

2024-1-29
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Reinforcement Learning Approaches

» Value-Based:

» Learn value function

» Implicit policy (e.g. greedy selection)

« Example: Deep Q Networks (DQN)
 Policy-Based:

e No value function Value Function Actor Policy

« Learn explicit (stochastic) policy i

- Example: Stochastic Policy Gradients Value-Blaad Polidy-Based

 Model-Based:
e Learn transition model \ Madel-Based
» Implicit policy

« Example: Dreamer
» Actor-Critic: Model
 Learn value function
» Learn policy using value function
- Example: Asynchronous Advantage Actor Critic (A3C)

Model-Free
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Actor-Critic RL

« An Actor that controls how our agent behaves (policy-based method).

A Critic that measures how good the action taken is (value-based
method).
» Two ideas to reduce variance
« Temporal difference bootstrapping
 Baseline subtraction
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Actor-Critic RL

state

\¥\
» Policy
N\
Actor
TD
Critic error
!
- Valqe
Function
/
reward
Environment

action
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A3C - Asynchronous Advantage Actor-Critic

« Asynchronous: The algorithm is an asynchronous algorithm where multiple
worker agents are trained in parallel, each with their environment. This allows the
algorithm to train faster as more workers are training in parallel and attain a
more diverse training experience as each worker's experience is independent.

- Advantage: Advantage is a metric to judge how good its actions were and how
they turned out. This allows the algorithm to focus on where the network's
predictions were lacking. Intuitively, this will enable it to measure the advantage
of taking action, following the policy 7t at the given timestep.

« Actor-Critic: The Actor-Critic aspect of the algorithm uses an architecture that
shares layers between the policy and value function.

LINKOPING
UNIVERSITY



TDDE13 - HT24 - Fredrik Heintz - LE3 Multi-agent Learning (partially based on slides from MIT 6S191) 2024-11-29 65

A3C - Asynchronous Advantage Actor-Critic

Global Network

1. Fetch the global network parameters Polioyn(s) | V(®

2. Interact with the environment by following Network
the local policy for n number of steps

3. Calculate value and policy loss —

4. Get gradients from losses

5. Update the global network — ¥ / f

6. Repeat
! ! ! !

II " LINKOPING https://pvlessons.com/A3C-reinforcement-learning
oY UNIVERSITY R ' °
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Deep Reinforcement Leurning Summory

* Agents acting In * Q function: expected * Learn and optimize the
environment total reward given s, a policy directly

* State-action pairs =2 * Policy determined by * Applicable to
maximize future rewards selecting action that continuous action

« Discounting maximizes Q function spaces

66
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Reinforcement Learning Concepts

* Value-Based:
e Learn value function
 Implicit policy (e.g. greedy selection)

« Example: Deep Q Networks (DQN) Médel-Free
 Policy-Based:

 No value function Value Function L Policy

 Learn explicit (stochastic) policy

- Example: Stochastic Policy Gradients | Valuejnsed Policy-Based
* Actor-Critic: \ RivQorRRoye

 Learn value function

 Learn policy using value function
« Example: Asynchronous Advantage Actor Critic (A3C)

Model
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Multi-Agent Reinforcement Learning
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Multiagent RL (MARL) - Motivation

 In multi-agent systems it may be beneficial to learn
* Environment dynamics
* Reward functions
» Other agents’ strategies

 Can be useful for cooperative as well as competitive scenarios

 Finding solutions by hand may be difficult and time-consuming
 Learning may help
» Also lets the agent adapt to changes in the environment

2024-1-29
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Axes of Multi-Agent RL

 Centralized: * Decentralized:
* One brain/algorithm deployed across many agents  All agents learn individually
« Communication limitations defined by environment
 Prescriptive: » Descriptive:
» Suggests how agents should behave » Forecast how agent will behave

Cooperative: Agents cooperate to achieve a goal Competitive: Agents compete against each other
« Shared team reward » Zero-sum games
 Individual opposing rewards
Neither: Agents maximize their utility which may require

Numbers of agents

* One (single-agent) cooperating and/or competing
» Two (very common) » General-sum games

* Finite

* Infinite
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MARL - Challenges

« Non-stationary environment when multiple agents learn
« Simultaneous learning and teaching for individual agent

 Lack of observability (e.g., actions and rewards of other agents)

« Multiple Agents -> Large State Space (Esp. with simultaneous actions)

n
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Markov Models

No Agents Single Agent Multiple Agents

Markov Decision Markov Game
State Known Markov Chain (a.k.a. Stochastic
Process (MDP) Game)

Partially-Observable | Partially-Observable
Markov Decision Stochastic Game
Process (POMDP) (POSG)

State Observed Hidden Markov
Indirectly Model (HMM)
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DEC- DEC-POMDP
POMDP MDP MDP  DEC-POMDP-COM

MTDP
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Complexity Results

DEC-POMDP
NEXP

/

POMDP
PSPACE

DEC-MDP
NEXP
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MDP, POMDP, and Dec-POMDP

Agent |+— Agent |+— a4 04, T

—| System —| System a,

(a) (b) ()

Figure: (a) Markov decision process (MDP) (b) Partially observable Markov decision process (POMDP)
(c) Decentralized partially observable Markov decision process with two agents (Dec-POMDP)
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Dec-POMDP

« A Dec-POMDP can be defined with the tuple: (1,S,{4;},P,{},0, R, h)where

1 is a finite set of agents indexed 1, . ... n.

S is a finite set of states, with distinguished initial state sg.

A; is a finite set of actions available to agent i, and

A= ®;e1A; is the set of joint actions.

P:S x A s AS is a Markovian transition function.

P(s'|s, d) denotes the probability that after taking joint action @ in state s a transition to state s’
occurs.

(1, is a finite set of observations available to agent i, and

Q= @, 152; is the set of joint observations.

O : A x S — AS is an observation function.

O(o]a, s’) denotes the probability of observing joint observation & given that joint action d was
taken and led to state s’ .

R: A x S —s Ris areward function.

R(d, s") denotes the reward obtained after joint action d was taken and a state transition to s’
occurred.

If the DEC-POMDP has a finite horizon, that horizon is represented by a positive integer h.

2024-1-29
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Dec-POMDP

A local policy for each agent is a mapping from its observation sequences to actions, Q* — A
State is unknown, so beneficial to remember history

A joint policy is a local policy for each agent

» Goal is to maximize expected cumulative reward over a finite or infinite horizon

* For finite-horizon cannot remember the full observation history
h—1

V7(s0) = E [Z R(&,, 51|50, w]
t=0

* Ininfinite case, a discount factor, v, is used

™(s0) [Zq R(ay, st)|so, ’/T]
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Dec-POMDP

« Agents must consider the choices of all others in addition to the state and action uncertainty
present in POMDPs.

« This makes DEC-POMDPs much harder to solve (NEXP-complete).

« No common state estimate (centralized belief state)
« Each agent depends on the others
» This requires a belief over the possible policies of the other agents
« Can't transform Dec-POMDPs into a continuous state MDP (how POMDPs are typically solved)
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What Problems are Dec-POMDPs Good For?

« Sequential (not “one shot” or greedy)
« Cooperative (not single agent or competitive)

 Decentralized (not centralized execution or free, instantaneous
communication)

« Decision-theoretic (probabilities and values)

LINKOPING
II.“ UNIVERSITY



TDDE13 - HT24 - Fredrik Heintz - LE3 Multi-agent Learning (partially based on slides from MIT 6S191) 2024-11-29 80

Multi-Agent Reinforcement Learning

Central
ontroller

~
Sharable
wjewaﬂons €4 f : ...
(D r =2
Agent 7 Agent N Ageﬂt ’ / : :
. L

Local policy

tif I

1
1 . '
i Observations Obscnatlons Obscnzmons Oquauons Obscnanons Obscnauom :
]

( System ) ( System ) ( System )

(b) Decentralized setting
with networked agents

(a) Centralized setting (c) Fully decentralized setting
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Multi-Agent Reinforcement Learning

::01 ) )
z Agent 1 P =
w N
Vv
g <A |
| Agent2 — joint action a; R
S » O
. N
. M
0j E
- - A
N—

Source: Nowe, Vrancx & De Hauwere 2012

joint state St

reward r_t

2024-1-29

81

LINKOPING
UNIVERSITY



TDDE13 - HT24 - Fredrik Heintz - LE3 Multi-agent Learning (partially based on slides from MIT 6S191)

MARL Policies

2024-11-29 82

obs1 . Shared actiond

: policies !
nio Heuont obs2 —) _~ action2

A _ obs2 |:> action2 ;
obs el obs3 action3 obs3 7 - * action3

obs4 actiond
obs4 L =A™ actiond
(a) Single-agent (b) Multiple logical entities, single "super-agent” (c) Multi-agent
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MARL Policies

SingleAgentEnv | Agent | Policy

Policy 1

Number of distinct policies
| is fixed. There may be up
to hundreds of policies
(constrained by memory
required to store weights).

MultiAgentEnv Policy 2

A

Agent N

]
Number of agents in the env\ Policy 3

can vary over time. There may
be hundreds or more agents.
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Decentralized Multi-Agent Deep Reinforcement Learning

« Though no theoretical guarantees exist, single-agent algorithms may
produce interesting results in multi-agent systems
« Ways to stabilize the learning process
e Clever design of reward systems

 Training populations of agents
« Can allow agents to generalize
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Centralized Learning, Decentralized Execution

 Extra information is used for guidance during
learning, e.g., actor-critic setup or value function =~ _Updater | .
decomposition

At execution time agents act based on local (SyapSti1Me)
observations

- Examples of algorithms
« QMIX
- COMA } }
- MADDPG Environment
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Research in Multi-Agent RL

Large
Problems

Small
Problems

Approximate
Solution
Methods

Tabular
Solution
Methods

Single Agent

Approximate
Solution
Methods

Tabular
Solution
Methods

Multiple (e.g. 2) Agents
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Cooperation

« Non zero sum; win/win

e Vilfredo Pareto
 Pareto front is, in a cooperative setting, the
combination of choices where no agent can
be better off without at least making one
other agent worse off

« It is the optimal cooperative strategy, the best
outcome without hurting others.

2024-1-29 87

Pareto Optimization In

Restaurants
A
White Castle  pareto Frontier
..... ...... /
........... Giovanni’s

]
Olive Garden

Affordability

The French™
Laundry '

>

Taste

@ PARETO-OPTIMAL CHOICE
@ DOMINATED CHOICE

7 FIVETHIRTYEIGHT
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Cooperative Behavior HEURISTICS

THE FOUNDATIONS OF ADAPTIVE BEHAVIOR

 Dealing with non-stationarity and partial observability can be done
(ignored) by separate training, no communication

« Realism can be improved with Centralized Training/Decentralized
Execution -> Centralized controller, or interaction graphs

 Active field of research; overview SIMPLE
 Value based: VDN, QMIX HEURISTICS
 Policy based: COMA, MADDPG THAT MAKE Us
« Opponent modeling: DRON, LOLA OMART

——

Communication: Diplomacy game

GERD GIGERENZER, PETER M. Tonb,

PSYCh 010 gy: H euriStiCS AND THE ABC RESEARCH GROUP
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Value Iteration - Recap

Value iteration

Initialize array V arbitrarily (e.g., V(s) =0 for all s € 8™)

Repeat
A+—0
For each s € 8:
v+ V(s)
V(s) < max, )., ,.p(s',7|s,a) ['r + 'yV(s’)]
A + max(A, [v — V(s)|)
until A < @ (a small positive number)

Output a deterministic policy, m =~ m,, such that
n(s) = argmax, 3_,, . p(s',7|s,a) [r + 7V (s')]
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Turn-Taking 2P Zero-sum Perfect Info. Games

Player to play at s: 7(s)

Reward to player i: 7°;

Subset of legal actions LEcALACTIONS(s)
Often assume episodicand v =1

Values of a state to player i: VL (3)
|dentities:

Vs,a,s :ry = —ro, Vi(s) = —Va(s)
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2P Zero-Sum Perfect Info. Value Iteration

Value iteration

Initialize array V; arbitrarily (e.g., V/(s) =0 for all s € 8§7)

Repeat
A+0
For each s € 8:
v V(s)
V(s) ¢ maxa ¥, p(s',11s,0) [ + YV(5)]
A+ max(A, [v — Vi(s)])
until A < 8 (a small positive number)

Let i = t(s)

i =t(s)
Output a deterministic policy, 7 & m,, such that
W(S) = argmax, Es,ﬁp(s', 7Z| 3, a) [Tz+ 7‘4(3,)]

9
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Mini

A K.A. Alpha-Beta, Backward Induction, Retrograde Analysis, etc...

Start from search state S,

Compute a depth-limited approximation: o N .
[ u,(s) if s is terminal, £ g L,
Vid(s) =< hi(s) if d =0, e e el el
| > o Dp(s,a,8)Via-1(s") otherwise. L l | i
---> Minimax Search e eh
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Two-Player Zero-Sum Policy Iteration

2024-11-29 93

e Analogous to adaptation of value iteration SCHHEL e
e Foundation of AlphaGo, AlphaGo Zero, AlphaZero e gﬂ[ iR
o Better policy improvement via MCTS
. : Move
o Deep network func. approximation orobabilities ot
valyati
m Policy prior cuts down breadth
m Value network cuts the depth L =9 .
i -
b DeepMind ’ !
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2P Zero-Sum Games with Simultaneous Moves

Min

I

210 0|1
f 31 4 \ 1|0
LA /

Image from Bozansky et al. 2016
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Markov Games

“Markov Soccer”

Defensive Offensive

|
AT @ I ball Avoid Advance
- opponent to goal

) B T

e

A B ((A)

| ~®“ | L - Defend Intercept
¢ .o- g;lslals IN Wighall goal the ball

00 -+

Figure 3. Left: Illustration of the soccer game. Right: Strategies of
Figure 2: An initial board (left) and a situation requiring a probabilistic choice for A (right). the hand-crafted rule-based agent

Littman ‘94 Heetal. 16

Also: Lagoudakis & Parr ‘02, Uther & Veloso ‘03, Collins ‘07
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Value Iteration for Zero-Sum Markov Games

Value iteration

Initialize array V arbitrarily (e.g., V(s) =0 for all s € 8™)

Repeat
A+0 .
Fo:'_each s€S: min max E(IN?T(S),S/ [Tl (57 a, S/) + ’}/Vl (S/)]
v+ V(s) T2 (s) m1(s)

V(s) + mexg o ptsrisrarr—+r¥ i
A +— max(A, |v —V(s)|)
until A < 6 (a small positive number)

Output a detesministie policy, m =~ 7., sueh-+thet computed above

/e / /
a F A ? ’
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First MARL Algorithm: Minimax-Q (Littman ‘94)

1. Start with arbitrary joint value functions Q(S, a, 0)

3
Max | 0.5
/ my action opponent action

2 | o 01 k_/\/—\/
[ 3 4 \ 1 0
: 43' j 0 Induces a matrix of values
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First MARL Algorithm: Minimax-Q (Littman ‘94)

1. Start with arbitrary joint value functions q(S, a, O)
2. Define policy 7T as in value iteration (by solving an LP)
3. Generate trajectories of tuple (S, a, o, 3,) using
behavior policy 717 = eUNIF(A) + (1 —e)m
4. Update q(s,a,0) = (1 — a)q(s,a,o0)+ a(r(s,a,o,s") +~yv(s"))
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First MARL Algorithm: Minimax-Q (Littman ‘94)

Q-values are over joint actions: Q(s, a, 0)
m s = state
m a = your action
m o0 = action of the opponent

Instead of playing action with highest Q(s, a, 0), play MaxMin

Q(s,a,0) = (1 —a)Q(s,a,0) + a(r +~vV(s))
V(s) = max moin Z Q(s, a, 0)ms(a)

LINKOPING
II.“ UNIVERSITY



TDDE13 - HT24 - Fredrik Heintz - LE3 Multi-agent Learning (partially based on slides from MIT 6S191) 2024-11-29 100

MARL Formulation

m The agents choose actions according to their policies.

m For agent j, the corresponding policy is defined as 7/ : S — Q(A/), where Q(4/) is the
collection of probability distributions over agent j's action space A.

m Let w =[xt .-, 7] - is the joint policy of all agents, then

(5) = Vi(sim) = > 2 plrd]so = 5.7
t=0

= Q-function such that the Q-function Q% : S x Al x ... x AN 5 R of agent j under the
joint policy 7r:

Q(s,a) = (s, @) + 1Eqp[vi(s)]
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First Era of MARL

 Follow-ups to Minimax Q:
 Friend-or-Foe Q-Learning (Littman ‘01)
 Correlated Q-learning (Greenwald & Hall ‘03)
* Nash Q-learning (Hu & Wellman ‘03)
* Coco-Q (Sodomka et al. ‘13)

« Function approximation:
« LSPI for Markov Games (Lagoudakis & Parr ‘02)
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Multi-Agent Deep Q-Network (MADQN]

m N pursuit-evasion — a set of agents (the
pursuers) are attempting to chase another
set of agents (the evaders)

m The agents in the problem are
self-interested (or heterogeneous), i.e.
they have different objectives

m The two pursuers are attempting to catch
the two evaders
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Multi-Agent Deep Q-Network (MADQN]

Challenge: defining the problem in such a way that an arbitrary number of agents can be
represented without changing the architecture of the deep Q-Network.

Solution (under some assumptions):

m The image tensor is of size 4x W x H, where W and H are the height and width of our
two dimensional domain and four is the number of channels in the image.

m Channels:
m Background Channel: contains information about any obstacles in the environment
m Opponent Channel: contains information about all the opponents
m Ally Channel: contains information about all the allies

m Self Channel: contains information about the agent making the decision
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Multi-Agent Deep Q-Network (MADQN]

Background Channel Opponent Channel Ally Channel Self Channel

= L

\*\ e

Four Channel Image
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Multi-Agent Deep Q-Network (MADQN]

 Train one agent at a time, and fix policies of all the other agents

 After a number of iterations distribute the policy learned by the training
agent to all the other agents of its type

Improved Agent Policies

Learn Distribute

reward

l Vahad

Update act

3| | Neural i-c-» Environment| | —» i_[ — i_[
Net

T \ &

observation
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MADQN: Dealing with Ambiguity

« Challenge: When two ally agents are occupying the same position in the
environment, the image-like state representation for each agent will be
identical, so their policies will be exactly the same.

* Solution: To break this symmetry — use a stochastic policy for agents. The
actions taken by the agent are drawn from a distribution derived by taking
a softmax over the Q-values of the neural network. This allows allies to
take different actions if they occupy the same state and break the
ambiguity.
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Foundations of MARL

& Reinforcement Multiagent
) : ;
o0 Learning Reinforcement
© Q :
L0 Learning

o

7))
T E Approximate Dynamic Game Theory
= 8 Programming

o
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Nash Q-Learning

m In MARL, the objective of each agent is to learn an optimal policy to maximize its value
function

m Optimizing the vi for agent j depends on the joint policy 7 of all agents

m A Nash equilibrium is a joint policy 7 such that no player has incentive to deviate
unilaterally. It is represented by a particular joint policy

o = [y, ]
such that for all s € S,j € {1,---, N} it satisfies:
Vj(S;ﬂ'*) = Vj(S;ﬂ'{;,ﬂ'*_j) > Vj(S;ﬂ'j,ﬂ'*_j)
Here 7.7 is the joint policy of all agents except j as

—j 1 —1 +1 N
W*J_[ﬂ- "'77Ti 77Ti 7"'77T>i<]

%9
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Nash Q-Learning (cont)

m In a Nash equilibrium, each agent acts with the best response 7. to others, provided that
all other agents follow the policy .’

m For a NN-agent stochastic game, there is at least one Nash equilibrium with stationary
policies, assuming players are rational

m Given Nash policy ., the Nash value function

yNash [V,%.* (5),---, V‘rlrv* (s)]

0(57 a)Nash _ Eslwp[r(57 a) + ’YVNaSh(S’)]

where r(s,a) = [rl(s,a),---,r"V(s, a)]
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Counterfactual Regret Minimization (CFR)

Zinkevich et al. ‘08

Original game

3 Abstracted
e Algorithm to compute approx N— a.goﬁthm:gﬁ
Nash eq. In 2P zero-sum games
Custom
» algorithm for
e Hugely successful in Poker Al finding a Nt
I iti iAri Nash |
e Size traditionally reduced apriori cquiibrium +— T
equilibrium

based on expert knowledge

e Key innovation: counterfactual Sl o
C C '
values: U, (7'(', S, a,) (o) (7'('7 3) Image form Sandholm “10
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CFR s Policy Iteration

* Policy evaluation is analogous

 Policy improvement: use regret minimization algorithms
» Average strategies converge to Nash in self-play

« Convergence guarantees are on the average policies
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Regret Policy Gradients (Srinivasan et al. /18)

 Policy gradient is doing a form of CFR minimization!

» Several new policy gradient variants inspired connection to regret

NFSP A2C — RPG QPG RM NFSP A2C —— RPG —— QPG RM
it
% 3-,-..%\... > 3 V)“\ ’
S ] c-!"y \'\ KE‘ \‘\fﬁ ﬂ M
;:3 ; : lﬂ.\: é \L\‘ ‘S."‘.“".
\
2 SN,
: bﬂ*’i;f;igf)n ' \. x\v,
. W
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, MWWW ‘ T TR s R AR
v pr;;des . L’p|50;du:-s
NASHCONYV in 2-player Leduc NASHCONYV in 3-player Leduc
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Counterfactual Regret Minimization

« Multi-agent, partial information, competition
 Algorithm: Counterfactual regret minimization

« Minimize the regret of not having taken the right action, playing many
“what-ifs” (counterfactuals)

 CFR is probabilistic multi-agent version of competitive minimax
» Works quite well in Poker

« Complicated code, see paper
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Monkeyflower research Protecting elections from social :

Genome engineering on i
begins to bloom p. 854 i media manipulation »:858

p O k e r a large scale. pp. 849 & 922

30 AUGUST 2019

sciencemag.org

AVAAAS

** CALLING OUR

BLUFF

Al masters multiplayer poker
pp. 864 & 885

h
=<
o

O
N
O
N
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Centralized Critic Decentralized Actor Approaches

e Idea: reduce nonstationarity & credit assignment issues using a central critic
e Examples: MADDPG [Lowe et al., 2017] & COMA [Foerster et al., 2017]

e Apply to both cooperative and competitive games

@ Centralized critic trained to minimize loss:
a:L CI’ItIC az [:(61,) == Ex.a,r,x’ [(Q:r (xa ai,..., aN) = y)Q]e
A y:'ri—i—'yQ;rl(x',a'l,....a,f,v)|a,]:1r,j(oj)
Actor 1 Actor 2 Decentralized actors trained via policy gradient-

Vo,J(0;) = Esnpp o,~x, [V, log Ti(ai|0:) Q7 (%, a1,
o? al s|r a2 02 (j—’
Actor T

Environment
Critic
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Deep Deterministic Policy Gradient (DDPG])

Algorithm 1 DDPG algorithm

* A mOdel_free Off_p01lcy aCtor_ Randomly initialize critic network Q (s, a|#%) and actor u(s|0*) with weights #% and 6+

o1l s o Initialize target network @’ and 1/ with weights 09" < 09, 9#' + g~
critic algorithm, combining il op T P
for episode = 1, M do
DPG aIld DQN. Initialize a random process N for action exploration
Receive initial observation state s;
K . fort=1,Tdo
¢ DQN Stablllzes the learnlng Of Select action a; = p(s4|60") + N; according to the current policy and exploration noise

. . Execute action a; and observe reward r; and observe new state s;
Q-function by experience replay  store tansition (s.ar. r 50.1) in &

Sample a random minibatch of N transitions (s;, a;, 7;, Si+1) from R
and the frozen target network. Set g, = 1 1+ YQ (5151 1 (51411071169
Update critic by minimizing the loss: L = % Y. (yi — Q(si,a;]09))?
Update the actor policy using the sampled policy gradient:

 DQN works in discrete space, 1
. Voud =~ — V.Q(s,al0?)|—, a=pu(s:) Vorp(s]0")]s,
and DDPG extends it to 2 R it W )

Continuous Space With the Update the target networks: , ,
.« . 09 «— 169 + (1 —7)6°
actor-critic framework while B g
1 1M1 ; ; end for
learning a deterministic policy. et
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Multi-Agent Deep Deterministic Policy Gradient

* Multi-agent DDPG (MADDPG) (Lowe et al., 2017)
extends DDPG to an environment where multiple
agents are coordinating to complete tasks with only
local information.

 In the viewpoint of one agent, the environment is non-
stationary as policies of other agents are quickly
upgraded and remain unknown.

« MADDPG is an actor-critic model redesigned
particularly for handling such a changing environment
and interactions between agents.

» Centralized critic + decentralized actors, changes
non-stationary problems to stationary problems

 Actors can use estimated policies of other agents
for learning

 Policy ensembles is good for reducing variance

R ———

execution

_________________________________

—e— e e e e = e = e o e e U e e e e e = = e e e e - -
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Algorithm 1: Multi-Agent Deep Deterministic Policy Gradient for NV agents

for episode = 1 to M do
Initialize a random process N for action exploration
Receive initial state x
for ¢ = 1 to max-episode-length do
for each agent 7, select action a; = pg, (0;) + N; w.r.t. the current policy and exploration

Execute actions a = (a1, ..., ay) and observe reward r and new state x’
Store (x, a, r,x’) in replay buffer D
X X

for agent: = 1to N do S
Sample a random minibatch of S samples (x7, a?,r?,x") from D

Setyj:’r'g'f‘f}/Qf (xﬁ,ai,...,a/fz\])la;e:”;c(oi) ,
Update critic by minimizing the loss £(6;) = § Y., (yj - Q¥(x%,al,..., afv))
Update actor using the sampled policy gradient:

1 : . :
VGiJ ~ § Zvaiﬂi(og)vaiQ?(xja Of{, sy Gy 70’3\[)
J

ai=p;i(0l)

end for
Update target network parameters for each agent ¢:

0! < 10, + (1 — 1)0.

end for
end for
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AlphaStar

Silver League

2000 @

s 4
R o o) RS RN Ry SR R Wi W S T, W—
s
1000
500 leasue
O 1 2 3 4 5 6 7 8 9 10
Percentile
II “ LINKOI https://deepmind.google/discover/blog/alphastar-grandmaster-level-in-
oW UNIVE

starcraft-ii-using-multi-agent-reinforcement-learning/
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Challenges in Multi-Agent Learning

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

« Computational complexity

» AlphaGo Zero (per agent):
64 GPUs & 19 CPUs

* OpenAl Dota Five
* 256 GPUs & 128000 CPUs

 Lack of good benchmarks
« Reproducability
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