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Classes of Learning Problems

Supervised Learning Unsupervised Learning

Data: x
x Is data, no labels!

Data: (x,y)
X is data, y is label

Goal: Learn function to map  Goal: Learn underlying

xX—-y structure
Apple example: Apple example:
;:;:1,“- N h::-:{,l- _
LR e
N\ . L

This thing is like

This thing is an apple. the other thing.
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Reinforcement Learning

Data: state-action pairs

Goal: Maximize future rewards
over many time steps

Apple example:
r‘f}?}“ .H‘H
| "I

 /

Eat this thing because it
will keep you alive.
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From Supervised

to Reinforcement Learning -

Learning How to Act

rpLex, [PYITORE FalRPLEX

-

-

Humorous reminder from IEEE
Spectrum: The DARPA 2015
Humanoid Challenge “Fail

. Compilation”

To be fair, this is the state of the
art:

*  https://voutu.be/NR32ULxbjYc

« Can we use supervised learning to learn how to act?

- E.g. engineering robot

e Things humans do wit

instructions for a rol

behavior can be fragile and time consuming
hout thinking require extremely detailed

bot. Even robust locomotion is hard.

3
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Learning How to Act

* Yes, one can learn a mapping from problem state (e.g. position) to action
 As in all supervised learning, this requires a teacher
« Sometimes called ”imitation learning”

« However, supervised learning with robots can get tedious as providing examples of
correct behaviour is difficult to automate

« Can we remove the human from the loop?

1. An automated teacher like a planning or optimal control algorithm can generate
supervised examples if it has a model of the environment

« Mordatch et al, https://www.youtube.com/watch?v=IxrnT0JOs40
« LiU’s research with real nano-quadcopters (deep ANN on-board the microcontroller)

2. Reinforcement learning attempts to generalize this to learning from scratch in
completely unknown environments

LINKOPING
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Reinforcement Learning Basic Concept

* Reinforcement Learning is learning what to do — how to map

situations to actions — so as to maximum a numerical reward. ﬂ @%t
Reinforcement Learning: An introduction <)
\ R@Wa;-
SllttOIl & BartO lnterprétm
 Rather than learning from explicit training data, or discovering Ws, &

patterns in static data, reinforcement learning discovers the Agent
best option (highest reward) from trial and error.

 Inverse Reinforcement Learning

 Learn reward function by observing an expert ﬁ
 “Apprenticeship learning” :

« E.g. Abbeel et al. Autonomous Helicopter Aerobatics
through Apprenticeship Learning

LINKOPING
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Reinforcement Learning: Key Concepts

AGENT

Agent: takes actions.

LINKOPING
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Reinforcement Learning: Key Concepts

ENVIRONMENT

Environment: the world in which the agent exists and operates.

LINKOPING
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Reinforcement Learning: Key Concepts

AGENT | Action: a; I ENVIRONMENT

Action: a move the agent can make in the environment.
Action space A:the set of possible actions an agent can make in the environment

LINKOPING
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Reinforcement Learning: Key Concepts

OBSERVATIONS

AGENT | Action: a; I ENVIRONMENT

Observations: of the environment after taking actions.
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Reinforcement Learning: Key Concepts

OBSERVATIONS
State changes: S¢4.1

AGENT | Action: a; I ENVIRONMENT

State: a situation which the agent perceives.
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Reinforcement Learning: Key Concepts

OBSERVATIONS
State changes: S¢4.1

Reward: Tt en

AGENT | Action: ay I ENVIRONMENT

Reward: feedback that measures the success or failure of the agent's action.
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Reinforcement Learning: Key Concepts

OBSERVATIONS
State changes: S¢4.1

Reward: ¢ e

AGENT | Action: ay I ENVIRONMENT

Total Reward B
Return
( ) S\ R, = Z "

i=t
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Reinforcement Learning: Key Concepts

OBSERVATIONS

State changes: S¢4.1
Reward: T

AGENT | Action: a; I ENVIRONMENT

Total Reward £y

Return
( u ) \Rt=zri=Tt+rt+1---+7"t+n+”'

=t
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Reinforcement Learning: Key Concepts

OBSERVATIONS
State changes: S¢4.1

Reward: 1 PR

AGENT | Action: a; I ENVIRONMENT

Discounted

Total Reward N\ -
(Return) Re = Z}’I?‘i
=T
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IIC" UNIVERSITY



TDDE13 - HT23 - Fredrik Heintz - LE3 Multi-agent Learning (partially based on slides from MIT 6S191) 2023-11-24 15

Reinforcement Learning: Key Concepts

OBSERVATIONS
State changes: S¢41

Reward: 1t e

AGENT | Action: a; I ENVIRONMENT

Discounted

o0
Total Reward .
(Return) \ Re = Z yin=y'n+ }’Hl?"Hl e+ Yt e +
i=t

Y. discount factor; 0 <y <1
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A Reinforcement Ledrning Problem

* The environment Agent

* The reinforcement function r(s,a)
 Pure delay reward and avoidance problems statyy’ freward action
* Minimum time to goal
 Games Environment

e The value function V(s)
* Policyn:S—> A

¢ Vahle VTE(S) :: 21 yl rt+i SO aO - Sl al—’.SZ 3’2—’.
. . . 0 | )
 Find the optimal policy n* that | N
) . " Goal: Learn to choose actions that maximize
maximizes V ™(s) for all states s. o+ P21y + . where 0<Y<]

LINKOPING
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RL Value Function - Example

A minimum time to goal world

Value function Optimal policy Optimal value
for random function
movement

2023-11-24
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Markov Decision Processes

Assume:

« finite set of states S, finite set of actions A

- at each discrete time agent observes state s, €S and chooses action a, €A
* then receives immediate reward r,

- and state changes to s,,

« Markov assumption: s,,, = 8(s,,a,) and r, = r(s,,a,)
e i.e.r,and s,,, depend only on current state and action
« functions 6 and r may be non-deterministic
« functions 6 and r not necessarily known to the agent

LINKOPING
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MDP Example

Q
&... IO:L.-.. i L
- 90 q— 100 0 G
A |o A |o A A A A
ol ¥ ) ol ¥ . 100 | I I I
=i =t —p —
< - 81 g 90 g 100
r(s,a) Vis)
—- - G
A
|
— - —p
An optimal policy

LINKOPING
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Defining the Q-Function
Ry =14 + YTy TV Ty + o

Total reward, R, is the discounted sum of all rewards obtained from time t

Q(se ap) = E[R¢|s, a;]

The Q-function captures the expected total future reward an
agent In state, s, can receive by executing a certain action, a

LINKOPING
II." UNIVERSITY
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How to Take Actions Given a Q-Function

Q(st, at) = E[R¢|se at]
P

(state, action)

Ultimately, the agent needs a policy 1 (s), to infer the best action to take at its state, s

Strategy: the policy should choose an action that maximizes future reward

n*(s) = argmax Q(s, a)

LINKOPING
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The Q-Function

Optimal policy:
» 1¥%(s) = argmax,[r (s,a) + yV *(8(s,a))]

e Doesn't work if we don't know r and 9.

The Q-function:

* Q(s,a) :=r(s,a) +yV*(8(s,a))
* 1*(s) = argmax,Q (s,a)

2023-11-24
0
0 |y 100 |, @
-‘.—
0
A o A Jo A
ol ¥ ol ¥ |00l
—— - —
0 0
r(s,a)
0
.‘.—
81
Az 81 A
81| 90| 100 |
Blly Wy
i 7} N[
Q(s,a)

22
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The Q-Function

* Note Q and V* closely related:
V*(s) =max_,Q (s,a")

« Therefore QQ can be written as:
Q(s,,a) :=r(s,,a) +yV*((s,,a)) =
r(s,,a) +ymax,Q(s,,,a’)
 If Q" denote the current approximation of Q then it can be updated by:

Q(s,a) :=r+ymax,Q"(s',a")

LINKOPING
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Reinforcement Learning Concepts

* Value-Based:
e Learn value function
 Implicit policy (e.g. greedy selection)

« Example: Deep Q Networks (DQN) Médel-Free
 Policy-Based:

 No value function Value Function L Policy

 Learn explicit (stochastic) policy

- Example: Stochastic Policy Gradients | Valueghsed PoileysBased
* Actor-Critic: \ Mgortasyd

 Learn value function

 Learn policy using value function
« Example: Asynchronous Advantage Actor Critic (A3C)

Model

LINKOPING
II." UNIVERSITY
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Reinforcement Learning Algorithms

Value Learning Policy Learning

Find Q(s,a) Find m(s)

a = argmax Q(s,a) Sample a ~ 1t (s)

LINKOPING
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Reinforcement Learning Algorithms

f//- \

Value Learning

Find Q(s,a)

a = argmaxQ(s,a)
a

LINKOPING
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Q-Learning for Deterministic Worlds

For each s, a initialize table entry Q" (s,a) := o.

Observe current state s.

2023-11-24

27

Do forever:

1. Select an action a and execute it

2. Receive immediate reward r

3. Observe the new state s’

4. Update the table entry for Q"(s,a):
Q"(s,a) :=r+ymax_,Q"(s',a")

5. §:=8'

LINKOPING

UNIVERSITY
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Q-Learning Example

R &

72

63

100

s
+81

2023-11-24
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20

63

100

< R T

Initial state: §

1

right

Q A(S1 ’aright) =r+y maXa'Q A(S2)a')

:= 0 + 0.9 max{63, 81, 100}

:= Q0

+81

Next state: §

2

LINKOPING
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Q-Learning Continued

« Exploration
 Selecting the best action
 Probabilistic choice

« Improving convergence
« Update sequences
« Remember old state-action transitions and their immediate reward

e Non-deterministic MDPs

« Temporal Difference Learning

LINKOPING
II." UNIVERSITY



TDDE13 - HT23 - Fredrik Heintz - LE3 Multi-agent Learning (partially based on slides from MIT 6S191)

Deep Q-Learning (DQN)

2023-11-24 30

How can we use deep neural networks to model Q-functions?

4 e
Action + State =
- Expected Return
state, s 1 Deep |
. NN sy
"move
right”
action, a
\_ Input Agent Output

e N
State = Expected Return for Each Action
i Q(S,ﬂl)
Deep = Q(s,a3)
NN
= Q(s,a,)
e, Input Agent Output

LINKOPING
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Deep Q Networks (DQN): Training

How can we use deep neural networks to model Q-functions!?

2023-11-24 31

;- _ e 3 N
=] Action + State > State = Expected Return for Each Action
- - Expected Return

| Ed Q(SJHI)
state, s Deep  _ | 0(s, a) — Deep ~ Q(s,az)
— NN — u
| NN
“move
right” state, s = Q(s,a,)
action, a
. Input Agent Output ) _ Input Agent Output

What happens if we take all the best actions?

Maximize target return = train the agent

LINKOPING
I I." UNIVERSITY



TDDE13 - HT23 - Fredrik Heintz - LE3 Multi-agent Learning (partially based on slides from MIT 6S191) 2023-11-24 32

Deep Q Networks (DQN): Training

How can we use deep neural networks to model Q-functions?

4 _ b d g
—_ Action + State - State = Expected Return for Each Action
- Expected Return
L. ~ Q(s,ay)
state, s Dl\j;p . __ Deep I Q(s,az)
[ NN
“move
nght” state, s ~ Q(s,a,)
action, a
\_ Input Agent Output ) e Input Agent Output )
target
' % \
" 5 ' Take all the best actions =
(r ) n’}l«':,lx Q(S ,a )) v target return

LINKOPING
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Deep Q Networks (DQN): Training

How can we use deep neural networks to model Q-functions?

- s
s Action + State =
i | Expected Return
state, s . Deep

. NN 0=q9
“move
right”
action, a
X Input Agent Output Y,

i N
State = Expected Return for Each Action
i Q(S:al)
Deep = Q(s,ay)
NN
state, s ~ (i)
\_ Input Agent Output )
predicted
Network
Q(s,a) prediction

33
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How can we use deep neural networks to model Q-functions?
P _ X i ke
Action + State > State = Expected Return for Each Action
- Expected Return
P ~ Q(s,a,)
state, s DSEP — Q(s,a) __ Deep I Q(s, az)
. NN
“move
right” state, s = Q(s,a,)
action, a
. Input Agent Output ) . Input Agent Output )
predicted

target
A

L= [“ (r +y max Q(s’,a’)) — Q(s, a)”zl Q-Loss

34
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Deep Q Network Summary

Use NN to learn Q-function and then use to infer the optimal policy, m(s)

state, s > Q(s,ay) =20
@ \
T E?\Tp Q(S,ﬂz) =3 —» n(s):argmax@(s,a)
83 =a, <::
* Q(s,a3) =0
=

Send action back to environment and receive next state

LINKOPING
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DON Atari Results

Gonvgluﬁon Convglution Fully cgnnected Fully cgnnected
_‘r”.l "'5“'."_
o " . . 2 |
a —

oy o . . . v
/- ey A\ g 3
. . . ETE

e d:// B .\  \\ mrm
§\, . . . n

e 9 A @ Q l ¥ -
\ . . . S

AL . . . j —
D B\ = <l .
8 | ™ ™ . 2+
L] L L] L |::|

: : a . . . —
k+0)
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DON Atari Results

“' Surpass Below I :
human-level human-level ]

% Human Level Performance

‘ -8
LTI Ssmsmmmmem MO
LR G P

3

LINKOPING
huue,



TDDE13 - HT23 - Fredrik Heintz - LE3 Multi-agent Learning (partially based on slides from MIT 6S191) 2023-11-24 38

Downsides of Q-Learning

Complexity:
* (Can model scenarios where the action space is discrete and small
* Cannot handle continuous action spaces

Flexibility:
* Policy is deterministically computed from the Q function by maximizing the
reward = cannot learn stochastic policies

To address these, consider a new class of RL training algorithms:
Policy gradient methods

LINKOPING
IIC" UNIVERSITY
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Reinforcement Learning Algorithms

LINKOPING
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=

Policy Learning

Find m(s)

Sample a ~ n(s)
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Deep Q Networks

DQN: Approximate Q-function and use to infer the optimal policy, m(s)

» Q(s,ay) =20
= \
Deep
NN Q(s,az) =3 — g(s) = argmax Q(s, a)
p 4 a
state, s — Q(s,a3) =0
=p

LINKOPING
IIC" UNIVERSITY
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Policy Gradient (PG): Key Idea

Policy Gradient: Directly optimize the policy m(s)

Z P(ayls) = 1

— Pig's) =U.9\ (€A / J
E‘E&P P(ay|s) = 01— m(s)~ P(als)
2 =a, 4=
state, s P =0
=

e What are some advantages of this formulation?

LINKOPING
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Discrete vs Continuous Action Spaces

Discrete action space: which direction should | move? <@ $2 m)

 P(als)

B .

= g =

LINKOPING
II." UNIVERSITY
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Discrete vs Continuous Action Spaces

Continuous action space: how fast should | move!

P(als)
_ | \ +«
Faster — S Faster
State, 5 Leﬁ r . | : R- I ;

LINKOPING
II." UNIVERSITY



TDDE13 - HT23 - Fredrik Heintz - LE3 Multi-agent Learning (partially based on slides from MIT 6S191) 2023-11-24

Policy Gradient (PG): Key Idea

Policy Gradient: Enables modeling of continuous action space

j Plals) =1
(==
b A
— Meanu =-1 1
Deep ~ P(als) = N(u,0%)
NN / n(s) ~ P(als)
— Variance, 6 = 0.5 = —0.8 [m/s]
&=
siate, s P(a|s) = N(u,o%)

-1

Faster Faster
Left <:| ::>

Right

44
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Training Policy Gradients: Case Study

2023-11-24 45

Reinforcement Learning Loop: Case Study — Self-Driving Cars
| State changes: S¢41 Agent:  vehicle
Reward. Ty AR>? 3 State: camerg, lidar, etc

Action: steering wheel angle

Reward: distance traveled

LINKOPING
IIC" UNIVERSITY
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Training Policy Gradients
Training Algorithm

|. Initialize the agent

2. Run a policy until termination
3. Record all states, actions, rewards - (s0.0473)
- . @000 }“' (s3,a3,73)
4. Decrease probability of actions that L
resulted in low reward
r e ‘ (511 a1,T1)
5. Increase probability of actions that
resulted in high reward (So, o, 7o)

LINKOPING
IIC" UNIVERSITY
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Training Policy Gradients
Training Algorithm
|. Inttialize the agent

Run a policy until termination

Record all states, actions, rewards

A W N

resulted in low reward

5. Increase probability of actions that
resulted in high reward

|
|
ﬁ |
Decrease probability of actions that |
|
|
|
|

LINKOPING
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Training Policy Gradients
Training Algorithm %

|. Inttialize the agent

Run a policy until termination

Record all states, actions, rewards

s <Lk ihed

Decrease probability of actions that
resulted in low reward

5. Increase probabllity of actions that
resulted in high reward

LINKOPING
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Training Policy Gradients
Training Algorithm
|. Inttialize the agent

Run a policy until termination

Record all states, actions, rewards

~

oo [k B

Decrease probability of actions that
resulted in low reward

5. Increase probability of actions that
resulted in high reward v

2023-11-24
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Training Policy Gradients

Training Algorithm
|. Inttialize the agent

Run a policy until termination

Record all states, actions, rewards

ol B

Decrease probability of actions that
resulted in low reward

5. Increase probability of actions that
resulted in high reward

2023-11-24 50

log-likelihood of action

loss = —log P(a;|s;) R;

reward

Gradient descent update:

w' =w — Vloss
w=w +EV log P(a;|s;) Rt]
Policy gradient!

LINKOPING
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Actor-Critic Methods

« The main components in policy gradient are the policy model and the value
function.
 Actor-critic methods learn the value function in addition to the policy.

* Knowing the value function assists the policy update, such as by
reducing gradient variance in vanilla policy gradients.

Actor-critic methods consist of two models, which may optionally share parameters:

¢ Critic updates the value function parameters w and depending on the algorithm it could be action-

value @ (als) or state-value V,,(s).

e Actor updates the policy parameters 6 for mg(al|s), in the direction suggested by the critic.

LINKOPING
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Actor-Critic Methods

1. Initialize s, 0, w at random; sample a ~ my(als).
2.Fort=1...T:

1. Sample reward r; ~ R(s, a) and next state s’ ~ P(s'|s, a);
. Then sample the next action a’ ~ my(a’|s’);

. Update the policy parameters: 8 < 0 + Q. (s,a)Vglnmy(als);

A W oM

. Compute the correction (TD error) for action-value at time t:

0 = 14 + 'YQw(S’: a',) - QW(S: a‘)
and use it to update the parameters of action-value function:
W W+ 00V Qu(s, a)

5.Update a + a’ and s + s’

Two learning rates, ag and a,, are predefined for policy and value function parameter updates

respectively.

LINKOPING
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Deep Deterministic Policy Gradient (DDPG])

Algorithm 1 DDPG algorithm

° A mOdel_free Off'pOhCy aCtor_ Randomly initialize critic network Q (s, a|#%) and actor u(s|0*) with weights #% and §*.

‘e . S Initialize target network @’ and p/ with weights 9" < 09, 9" « g~
critic algorithm, combining sl e e et
for episode = 1, M do
DPG aIld DQN. Initialize a random process N for action exploration
Receive initial observation state s
o I : fort=1,Tdo
° DQN Stablllzes the learnlng Of Select action a; = u(s¢|0") + N; according to the current policy and exploration noise

. . Execute action a; and observe reward r; and observe new state s;
Q-function by experience replay store tansition (s.ar. r 50.1) in &

Sample a random minibatch of N transitions (s;, a;, 7, Si+1) from R
and the frozen target network. Set g, = 1 +7Q (8151 1 (51411071169
Update critic by minimizing the loss: L = % Sy — Q(si,ai]09))?
Update the actor policy using the sampled policy gradient:

 DQN works in discrete space, 1
. V()/A J =~ — V(, S,a ()Q s=si,a=pu(s; V()u 1(s|0* Si
and DDPG extends it to L e R A st W 1)

Continuous Space With the Update the target networks: , /
o, o . 02 «— 769 + (1 —7)6°
actor-critic framework while B oty — ot
1 1M1 1 1 end for
learning a deterministic policy. et
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Reinforcement Learning - Neural Networks as Function Approximators

function approximator
* Lunar Lander experiment
» 8 continous/discrete states
* XY-Pos, XY-Vel, Rot, Rot-rate, Leg1/Leg2 ground contact
* 4 discrete actions
» Left thrust
* Right thrust
* Main engine thrust
« NOP
* Rewards
* Move from top to bottom of the screen (+ ~100-140)
» Land between the posts (+100)
» Putlegs on ground (+10 per leg)
* Penalties
» Using main engine thrust (-0.3 per frame)
* Crashing (-100)
* Solved using Stochastic Policy Gradients

To tackle a high-dimensional state space or continous states we can use a neural network as

-

Experience 1 Stote/Action/Reword/S’\

Memory
L ]
E Experience OBSERVE
? batch Sampled, stochastic policy
ACT
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Reinforcement Learning Neural Networks as Function Approximators
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AlphaGo Beats Top Human Player (2016)

Human expert Supervised Learning
positions policy network policy netwark Se-lf-playr data Value network

* 7Ry Classification o\ N
EETEREILIRIn > o — Self Self
S 1Y ;'-;.; .‘Play ’ ‘Play‘ ’
J

Regression

—

) Inttial training: human data

L sl

2) Self-play and reinforcement learning
=> super-human performance \_ J

3) “Intuition” about board state
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MuZero: Learning Dynamics for Planning (2020)

Human Domain Enown
Go data knowledge rules

AlphaGe becomes the first program to master Go using
naural networks and tree search
{Jan 2018, Mature)

AlpRaGo Zero

o
d‘-‘ui
= \

—

AlphaGo Zero lparns to play completely on its own,
without human knowledge

(Oer 2017, Hature)

Mulero

Enown
Go Chess shogi rules

AlphaZero masters three perfect information games
uging a single algorithm for all games

(Dec 2018, Science)

Go Chess Shogi Atari

MuZero loarns the rules of the Eame .a:lr.-'.'.'in_g t to also

master grwvironments with unknown dynamics
(Dec 2020, Mature)
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Deep Reinforcement Learning Summary

* Agents acting in * Q function: expected * Learn and optimize the
environment total reward given s, a policy directly

* State-action pairs =2 * Policy determined by * Applicable to
maximize future rewards selecting action that continuous action

« Discounting maximizes Q function spaces

58
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Reinforcement Learning Concepts

* Value-Based:
e Learn value function
 Implicit policy (e.g. greedy selection)

« Example: Deep Q Networks (DQN) Médel-Free
 Policy-Based:

 No value function Value Function L Policy

 Learn explicit (stochastic) policy

- Example: Stochastic Policy Gradients | Valueghsed PoileysBased
* Actor-Critic: \ Mgortasyd

 Learn value function

 Learn policy using value function
« Example: Asynchronous Advantage Actor Critic (A3C)

Model
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Multi-Agent Reinforcement Learning
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Motivation

 In multi-agent systems it may be beneficial to learn
* Environment dynamics
* Reward functions
» Other agents’ strategies

 Can be useful for cooperative as well as competitive scenarios

 Finding solutions by hand may be difficult and time-consuming
 Learning may help
» Also lets the agent adapt to changes in the environment
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Challenges

« Non-stationary environment when multiple agents learn
« Simultaneous learning and teaching for individual agent

 Lack of observability (e.g., actions and rewards of other agents)
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Model-based and Model-free Learning

« Model-based algorithms
 Try to model the behavior of other agents
« More specific models may improve performance, but at a loss of
generality
« Model-free algorithms
* Do not use models
« May perform worse or take longer to converge
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No Agents Single Agent Multiple Agents
Markov Decision Markov Game
State Known Markov Chain (a.k.a. Stochastic

Process (MDP)

Game)

State Observed
Indirectly

Hidden Markov
Model (HMM)

Partially-Observable
Markov Decision
Process (POMDP)

Partially-Observable
Stochastic Game
(POSG)

64
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MDP, POMDP, and Dec-POMDP

Agent |+—
Agent |+— Agent |+— a4 04, T
a S, T a or — | System
—| System —| System a, 0y, T
Agent |e
(a) (b) (¢)

Figure: (a) Markov decision process (MDP) (b) Partially observable Markov decision process (POMDP)
(c) Decentralized partially observable Markov decision process with two agents (Dec-POMDP)
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Multi-Agent Reinforcement Learning

Cemral
ontroller

~
Sharable
wewaﬂons i ﬁ : ...
Agent 7 Agent N Agem ’ ~ | :
/ t ) :
Agent 3 : ; :

Local policy

455 N

1
1 . '
i Observations Obscn ations Obicr\atlons Oquatlons Obsm:mons ()bscn ations |
]

( System ) ( System ) ( System )

(b) Decentralized setting
with networked agents

(a) Centralized setting (c) Fully decentralized setting
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Multi-Agent Reinforcement Learning

joint state St
_|°1::f ) ) reward 1y
= Agent 1 3 =
u N
Vv
02 > M) |
> Agent 2 — joint action 3, R
| — » O
. N
s M
o :
u

Source: Nowe, Vrancx & De Hauwere 2012
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Decentralized Multi-Agent Deep Reinforcement Learning

« Though no theoretical guarantees exist, single-agent algorithms may
produce interesting results in multi-agent systems
« Ways to stabilize the learning process
e Clever design of reward systems

 Training populations of agents
« Can allow agents to generalize
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Centralized Learning, Decentralized Execution

 Extra information is used for guidance during
learning, e.g., actor-critic setup or value function Update 1t C
decomposition

At execution time agents act based on local (SyapSti1 )
observations

- Examples of algorithms
« QMIX
- COMA } !
- MADDPG Environment
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Research in Multi-Agent RL

Large
Problems

Small
Problems

Approximate
Solution
Methods

Tabular
Solution
Methods

Single Agent

Approximate
Solution
Methods

Tabular
Solution
Methods

Multiple (e.g. 2) Agents

70
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Axes of Multi-Agent RL

« Centralized: * Decentralized:
* One brain/algorithm deployed across many agents  All agents learn individually
« Communication limitations defined by environment
 Prescriptive: » Descriptive:
» Suggests how agents should behave » Forecast how agent will behave

Cooperative: Agents cooperate to achieve a goal Competitive: Agents compete against each other
« Shared team reward » Zero-sum games
 Individual opposing rewards
Neither: Agents maximize their utility which may require

Numbers of agents

* One (single-agent) cooperating and/or competing
« Two (very common) * General-sum games
 Finite

* Infinite
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Foundations of MARL

= Reinforcement Multiagent
) . .
o0 Learning Reinforcement
© 2 .
L0 Learning

o

2]
T E Approximate Dynamic Game Theory
= e Programming

o
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First MARL Algorithm: Minimax-Q (Littman ‘94)

Q-values are over joint actions: Q(s, a, o)
m s = state
m a = your action
m 0 = action of the opponent

Instead of playing action with highest Q(s, a, 0), play MaxMin

Q(s,a,0) = (1 —a)Q(s,a,0) + a(r +~vV(s))
V(s) = max moin Z Q(s, a, 0)ms(a)
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MARL Formulation

m The agents choose actions according to their policies.

m For agent j, the corresponding policy is defined as 7/ : S — Q(A/), where Q(A/) is the
collection of probability distributions over agent j's action space A.

m Let w=[n!, .-, 7] - is the joint policy of all agents, then

() = Vi(5:m) = 3 1 B plrllso = 5.7]
t=0

= Q-function such that the Q-function Qs : S x Al x ... x AN 5 R of agent j under the
joint policy 7r:

QL (s,a) = (s, @) + 1Eqp[vi(s)]
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Nash Q-Learning

m In MARL, the objective of each agent is to learn an optimal policy to maximize its value
function

m Optimizing the v for agent j depends on the joint policy 7 of all agents

m A Nash equilibrium is a joint policy 7 such that no player has incentive to deviate
unilaterally. It is represented by a particular joint policy

SRR
such that for all s € S,j € {1,---, N} it satisfies:
Visime) = V(s ) > V(s; )
Here 7.7 is the joint policy of all agents except j as

—j 1 —1 +1 N
ﬂ-*J_[ﬂ- "'77T{l< 77T'>I|< 7"'77T>i<]

* 9
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Nash Q-Learning (cont)

m In a Nash equilibrium, each agent acts with the best response 7. to others, provided that
all other agents follow the policy .’

m For a NN-agent stochastic game, there is at least one Nash equilibrium with stationary
policies, assuming players are rational

m Given Nash policy ., the Nash value function

yNash [V%.* (s),---, V,,ly* (s)]

Q(S, a)Nash _ ES/NP[r(Sp a) + ’YVNaSh(SI)]

where r(s,a) = [r!(s,a), - ,rV(s, a)]
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2023-11-24 77

obs1 . :Shared action1

? policies :
ot SR obs2 ! _» action2

A : obs2 [> action2 ;
obs action obs3 action3 obs3 7 - * action3

obs4 actiond
obs4 L s/ 0 actiond
(a) Single-agent (b) Multiple logical entities, single "super-agent” (c) Multi-agent
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MARL Policies

SingleAgentEnv | Agent | Policy

Policy 1

Number of distinct policies
| is fixed. There may be up
to hundreds of policies
(constrained by memory
required to store weights).

MultiAgentEnv Policy 2

Z 5

Agent N

"
Number of agents in the env\ Policy 3

can vary over time. There may
be hundreds or more agents.
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Multi-Agent Deep Q-Network (MADQN]

m N pursuit-evasion — a set of agents (the
pursuers) are attempting to chase another
set of agents (the evaders)

m The agents in the problem are
self-interested (or heterogeneous), i.e.
they have different objectives

m The two pursuers are attempting to catch
the two evaders
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Multi-Agent Deep Q-Network (MADQN]

Challenge: defining the problem in such a way that an arbitrary number of agents can be
represented without changing the architecture of the deep Q-Network.

Solution (under some assumptions):

m The image tensor is of size 4x W x H, where W and H are the height and width of our
two dimensional domain and four is the number of channels in the image.

m Channels:
m Background Channel: contains information about any obstacles in the environment
m Opponent Channel: contains information about all the opponents
m Ally Channel: contains information about all the allies

m Self Channel: contains information about the agent making the decision

LINKOPING
UNIVERSITY



TDDE13 - HT23 - Fredrik Heintz - LE3 Multi-agent Learning (partially based on slides from MIT 6S191) 2023-11-24 81

Multi-Agent Deep Q-Network (MADQN]

Background Channel Opponent Channel Ally Channel Self Channel

" .

\*\ e

Four Channel Image
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Multi-Agent Deep Q-Network (MADQN]

 Train one agent at a time, and fix policies of all the other agents

 After a number of iterations distribute the policy learned by the training
agent to all the other agents of its type

Improved Agent Policies

Learn Distribute

reward

l =

Update act

3| | Neural ﬁ—[-p Environment| | —» i{ — ﬁ{
Net

T \ &

observation
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MADQN: Dealing with Ambiguity

« Challenge: When two ally agents are occupying the same position in the
environment, the image-like state representation for each agent will be
identical, so their policies will be exactly the same.

* Solution: To break this symmetry — use a stochastic policy for agents. The
actions taken by the agent are drawn from a distribution derived by taking
a softmax over the Q-values of the neural network. This allows allies to
take different actions if they occupy the same state and break the
ambiguity.
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Multi-Agent Deep Deterministic Policy Gradient

e Multi-agent DDPG (MADDPG) (Lowe et al., 2017)
extends DDPG to an environment where multiple
agents are coordinating to complete tasks with only
local information.

 In the viewpoint of one agent, the environment is non-
stationary as policies of other agents are quickly
upgraded and remain unknown.

« MADDPG is an actor-critic model redesigned
particularly for handling such a changing environment
and interactions between agents.

» Centralized critic + decentralized actors, changes
non-stationary problems to stationary problems

 Actors can use estimated policies of other agents
for learning

 Policy ensembles is good for reducing variance

R ———

execution

_________________________________

— e e e o - e = e o e e U e e e e e = = e e e e - -
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Algorithm 1: Multi-Agent Deep Deterministic Policy Gradient for NV agents

for episode = 1 to M do
Initialize a random process A for action exploration
Receive initial state x
for ¢ = 1 to max-episode-length do
for each agent 7, select action a; = pg, (0;) + N; w.r.t. the current policy and exploration

Execute actions a = (aq, ..., ay) and observe reward r and new state x’
Store (x, a, r,x’) in replay buffer D
X+ x'

for agent: = 1to N do S
Sample a random minibatch of S samples (x?, a’, 7, x"7) from D

Setyj:’rg'i‘f}/Q? (xﬁ,a&,...,a/fzv)|a;c:”;c(oi) ,
Update critic by minimizing the loss £(0;) = § Y. (yj - Q¥(x%,al,..., afv))
Update actor using the sampled policy gradient:

ai=p; (o))

VBZ-J ~ § Zvaiﬂi(og)vaiQ?(xja a{a ey Gy 70"3\[)
J

end for
Update target network parameters for each agent <:

0, «— 10; + (1 — 1)0;

end for
end for
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Challenges in Multi-Agent Learning

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

« Computational complexity

» AlphaGo Zero (per agent):
64 GPUs & 19 CPUs

* OpenAl Dota Five
* 256 GPUs & 128000 CPUs

 Lack of good benchmarks
« Reproducability
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