
•

•

•

• Can we use supervised learning to learn how to act?

• E.g. engineering robot behavior can be fragile and time consuming

• Things humans do without thinking require extremely detailed
instructions for a robot. Even robust locomotion is hard.

Humorous reminder from IEEE
Spectrum: The DARPA 2015
Humanoid Challenge “Fail
Compilation”
To be fair, this is the state of the
art:
https://youtu.be/NR32ULxbjYc

https://youtu.be/NR32ULxbjYc

• Yes, one can learn a mapping from problem state (e.g. position) to action

• As in all supervised learning, this requires a teacher

• Sometimes called ”imitation learning”

• However, supervised learning with robots can get tedious as providing examples of

correct behaviour is difficult to automate

• Can we remove the human from the loop?

1. An automated teacher like a planning or optimal control algorithm can generate

supervised examples if it has a model of the environment

• Mordatch et al, https://www.youtube.com/watch?v=IxrnT0JOs4o

• LiU’s research with real nano-quadcopters (deep ANN on-board the microcontroller)

2. Reinforcement learning attempts to generalize this to learning from scratch in

completely unknown environments

https://www.youtube.com/watch?v=IxrnT0JOs4o

• Reinforcement Learning is learning what to do – how to map
situations to actions – so as to maximum a numerical reward.

Reinforcement Learning: An introduction
Sutton & Barto

• Rather than learning from explicit training data, or discovering
patterns in static data, reinforcement learning discovers the
best option (highest reward) from trial and error.

• Inverse Reinforcement Learning

• Learn reward function by observing an expert

• “Apprenticeship learning“

• E.g. Abbeel et al. Autonomous Helicopter Aerobatics
through Apprenticeship Learning

• The environment

• The reinforcement function r(s,a)
• Pure delay reward and avoidance problems

• Minimum time to goal

• Games

• The value function V(s)
• Policy p: S → A

• Value V p(s) := Si gi rt+i

• Find the optimal policy p* that
maximizes V p*(s) for all states s.

A minimum time to goal world

Value function Optimal policy Optimal value

for random function

movement

Assume:

• finite set of states S, finite set of actions A

• at each discrete time agent observes state st S and chooses action at A

• then receives immediate reward rt

• and state changes to st+1

• Markov assumption: st+1 = d(st,at) and rt = r(st,at)

• i.e. rt and st+1 depend only on current state and action

• functions d and r may be non-deterministic

• functions d and r not necessarily known to the agent

r(s,a) V*(s)

An optimal policy

Optimal policy:

• p*(s) = argmaxa[r (s,a) + gV *(d(s,a))]

• Doesn't work if we don't know r and d.

The Q-function:

• Q (s,a) := r (s,a) + gV *(d(s,a))

• p*(s) = argmaxaQ (s,a)

r(s,a)

Q(s,a)

• Note Q and V* closely related:
V *(s) = maxa' Q (s,a')

• Therefore Q can be written as:

Q (st ,at) := r (st ,at) + gV *(d(st ,at)) =

r (st ,at) + g maxa' Q (st+1 ,a')

• If Q^ denote the current approximation of Q then it can be updated by:

Q^(s,a) := r + g maxa' Q
^(s',a')

• Value-Based:

• Learn value function

• Implicit policy (e.g. greedy selection)

• Example: Deep Q Networks (DQN)

• Policy-Based:

• No value function

• Learn explicit (stochastic) policy

• Example: Stochastic Policy Gradients

• Actor-Critic:

• Learn value function

• Learn policy using value function

• Example: Asynchronous Advantage Actor Critic (A3C)

For each s, a initialize table entry Q^(s,a) := 0.

Observe current state s.

Do forever:

1. Select an action a and execute it

2. Receive immediate reward r

3. Observe the new state s'

4. Update the table entry for Q^(s,a):
Q^(s,a) := r + g maxa' Q

^(s',a')

5. s := s'

Q ^(s1 ,aright) := r + g maxa' Q
^(s2 ,a')

:= 0 + 0.9 max{63, 81, 100}

:= 90

• Exploration

• Selecting the best action

• Probabilistic choice

• Improving convergence

• Update sequences

• Remember old state-action transitions and their immediate reward

• Non-deterministic MDPs

• Temporal Difference Learning

• The main components in policy gradient are the policy model and the value
function.

• Actor-critic methods learn the value function in addition to the policy.

• Knowing the value function assists the policy update, such as by
reducing gradient variance in vanilla policy gradients.

• A model-free off-policy actor-
critic algorithm, combining
DPG and DQN.

• DQN stabilizes the learning of
Q-function by experience replay
and the frozen target network.

• DQN works in discrete space,
and DDPG extends it to
continuous space with the
actor-critic framework while
learning a deterministic policy.

• To tackle a high-dimensional state space or continous states we can use a neural network as

function approximator

• Lunar Lander experiment

• 8 continous/discrete states

• XY-Pos, XY-Vel, Rot, Rot-rate, Leg1/Leg2 ground contact

• 4 discrete actions

• Left thrust

• Right thrust

• Main engine thrust

• NOP

• Rewards

• Move from top to bottom of the screen (+ ~100-140)

• Land between the posts (+100)

• Put legs on ground (+10 per leg)

• Penalties

• Using main engine thrust (-0.3 per frame)

• Crashing (-100)

• Solved using Stochastic Policy Gradients

• Value-Based:

• Learn value function

• Implicit policy (e.g. greedy selection)

• Example: Deep Q Networks (DQN)

• Policy-Based:

• No value function

• Learn explicit (stochastic) policy

• Example: Stochastic Policy Gradients

• Actor-Critic:

• Learn value function

• Learn policy using value function

• Example: Asynchronous Advantage Actor Critic (A3C)

• In multi-agent systems it may be beneficial to learn

• Environment dynamics

• Reward functions

• Other agents’ strategies

• Can be useful for cooperative as well as competitive scenarios

• Finding solutions by hand may be difficult and time-consuming

• Learning may help

• Also lets the agent adapt to changes in the environment

• Non-stationary environment when multiple agents learn

• Simultaneous learning and teaching for individual agent

• Lack of observability (e.g., actions and rewards of other agents)

• Model-based algorithms

• Try to model the behavior of other agents

• More specific models may improve performance, but at a loss of
generality

• Model-free algorithms

• Do not use models

• May perform worse or take longer to converge

• Though no theoretical guarantees exist, single-agent algorithms may
produce interesting results in multi-agent systems

• Ways to stabilize the learning process

• Clever design of reward systems

• Training populations of agents

• Can allow agents to generalize

• Extra information is used for guidance during
learning, e.g., actor-critic setup or value function
decomposition

• At execution time agents act based on local
observations

• Examples of algorithms

• QMIX

• COMA

• MADDPG

• Centralized:

• One brain/algorithm deployed across many agents

• Prescriptive:

• Suggests how agents should behave

• Cooperative: Agents cooperate to achieve a goal

• Shared team reward

• Numbers of agents

• One (single-agent)

• Two (very common)

• Finite

• Infinite

• Decentralized:

• All agents learn individually

• Communication limitations defined by environment

• Descriptive:

• Forecast how agent will behave

• Competitive: Agents compete against each other

• Zero-sum games

• Individual opposing rewards

• Neither: Agents maximize their utility which may require
cooperating and/or competing

• General-sum games

• Train one agent at a time, and fix policies of all the other agents

• After a number of iterations distribute the policy learned by the training
agent to all the other agents of its type

• Challenge: When two ally agents are occupying the same position in the
environment, the image-like state representation for each agent will be
identical, so their policies will be exactly the same.

• Solution: To break this symmetry – use a stochastic policy for agents. The
actions taken by the agent are drawn from a distribution derived by taking
a softmax over the Q-values of the neural network. This allows allies to
take different actions if they occupy the same state and break the
ambiguity.

• Multi-agent DDPG (MADDPG) (Lowe et al., 2017)
extends DDPG to an environment where multiple
agents are coordinating to complete tasks with only
local information.

• In the viewpoint of one agent, the environment is non-
stationary as policies of other agents are quickly
upgraded and remain unknown.

• MADDPG is an actor-critic model redesigned
particularly for handling such a changing environment
and interactions between agents.

• Centralized critic + decentralized actors, changes
non-stationary problems to stationary problems

• Actors can use estimated policies of other agents
for learning

• Policy ensembles is good for reducing variance

• Computational complexity

• AlphaGo Zero (per agent):

• 64 GPUs & 19 CPUs

• OpenAI Dota Five

• 256 GPUs & 128000 CPUs

• Lack of good benchmarks

• Reproducability

www.ida.liu.se/~TDDE13

	Slide 1: TDDE13 LE3 HT2023 Multi-agent Learning
	Slide 2: Classes of Learning Problems
	Slide 3: From Supervised to Reinforcement Learning - Learning How to Act
	Slide 4: Learning How to Act
	Slide 5: Reinforcement Learning Basic Concept
	Slide 6: Reinforcement Learning: Key Concepts
	Slide 7: Reinforcement Learning: Key Concepts
	Slide 8: Reinforcement Learning: Key Concepts
	Slide 9: Reinforcement Learning: Key Concepts
	Slide 10: Reinforcement Learning: Key Concepts
	Slide 11: Reinforcement Learning: Key Concepts
	Slide 12: Reinforcement Learning: Key Concepts
	Slide 13: Reinforcement Learning: Key Concepts
	Slide 14: Reinforcement Learning: Key Concepts
	Slide 15: Reinforcement Learning: Key Concepts
	Slide 16: A Reinforcement Learning Problem
	Slide 17: RL Value Function - Example
	Slide 18: Markov Decision Processes
	Slide 19: MDP Example
	Slide 20: Defining the Q-Function
	Slide 21: How to Take Actions Given a Q-Function
	Slide 22: The Q-Function
	Slide 23: The Q-Function
	Slide 24: Reinforcement Learning Concepts
	Slide 25: Reinforcement Learning Algorithms
	Slide 26: Reinforcement Learning Algorithms
	Slide 27: Q-Learning for Deterministic Worlds
	Slide 28: Q-Learning Example
	Slide 29: Q-Learning Continued
	Slide 30: Deep Q-Learning (DQN)
	Slide 31: Deep Q Networks (DQN): Training
	Slide 32: Deep Q Networks (DQN): Training
	Slide 33: Deep Q Networks (DQN): Training
	Slide 34: Deep Q Networks (DQN): Training
	Slide 35: Deep Q Network Summary
	Slide 36: DQN Atari Results
	Slide 37: DQN Atari Results
	Slide 38: Downsides of Q-Learning
	Slide 39: Reinforcement Learning Algorithms
	Slide 40: Deep Q Networks
	Slide 41: Policy Gradient (PG): Key Idea
	Slide 42: Discrete vs Continuous Action Spaces
	Slide 43: Discrete vs Continuous Action Spaces
	Slide 44: Policy Gradient (PG): Key Idea
	Slide 45: Training Policy Gradients: Case Study
	Slide 46: Training Policy Gradients
	Slide 47: Training Policy Gradients
	Slide 48: Training Policy Gradients
	Slide 49: Training Policy Gradients
	Slide 50: Training Policy Gradients
	Slide 51: Actor-Critic Methods
	Slide 52: Actor-Critic Methods
	Slide 53: Deep Deterministic Policy Gradient (DDPG)
	Slide 54: Reinforcement Learning – Neural Networks as Function Approximators
	Slide 55: Reinforcement Learning Neural Networks as Function Approximators
	Slide 56: AlphaGo Beats Top Human Player (2016)
	Slide 57: MuZero: Learning Dynamics for Planning (2020)
	Slide 58: Deep Reinforcement Learning Summary
	Slide 59: Reinforcement Learning Concepts
	Slide 60: Multi-Agent Reinforcement Learning
	Slide 61: Motivation
	Slide 62: Challenges
	Slide 63: Model-based and Model-free Learning
	Slide 64: Markov Models
	Slide 65: MDP, POMDP, and Dec-POMDP
	Slide 66: Multi-Agent Reinforcement Learning
	Slide 67: Multi-Agent Reinforcement Learning
	Slide 68: Decentralized Multi-Agent Deep Reinforcement Learning
	Slide 69: Centralized Learning, Decentralized Execution
	Slide 70: Research in Multi-Agent RL
	Slide 71: Axes of Multi-Agent RL
	Slide 72: Foundations of MARL
	Slide 73: First MARL Algorithm: Minimax-Q (Littman ‘94)
	Slide 74: MARL Formulation
	Slide 75: Nash Q-Learning
	Slide 76: Nash Q-Learning (cont)
	Slide 77: MARL Policies
	Slide 78: MARL Policies
	Slide 79: Multi-Agent Deep Q-Network (MADQN)
	Slide 80: Multi-Agent Deep Q-Network (MADQN)
	Slide 81: Multi-Agent Deep Q-Network (MADQN)
	Slide 82: Multi-Agent Deep Q-Network (MADQN)
	Slide 83: MADQN: Dealing with Ambiguity
	Slide 84: Multi-Agent Deep Deterministic Policy Gradient
	Slide 85
	Slide 86: Challenges in Multi-Agent Learning
	Slide 87: TDDE13 MAS LE3 HT2023: Reinforcement learning Deep reinforcement learning Multi-agent learning

