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• Can we use supervised learning to learn how to act?

• E.g. engineering robot behavior can be fragile and time consuming

• Things humans do without thinking require extremely detailed 
instructions for a robot. Even robust locomotion is hard.

Humorous reminder from IEEE 
Spectrum: The DARPA 2015 
Humanoid Challenge “Fail 
Compilation”
To be fair, this is the state of the 
art: 
https://youtu.be/NR32ULxbjYc

https://youtu.be/NR32ULxbjYc


• Yes, one can learn a mapping from problem state (e.g. position) to action

• As in all supervised learning, this requires a teacher 

• Sometimes called ”imitation learning”

• However, supervised learning with robots can get tedious as providing examples of 

correct behaviour is difficult to automate

• Can we remove the human from the loop? 

1. An automated teacher like a planning or optimal control algorithm can generate 

supervised examples if it has a model of the environment

• Mordatch et al, https://www.youtube.com/watch?v=IxrnT0JOs4o

• LiU’s research with real nano-quadcopters (deep ANN on-board the microcontroller)

2. Reinforcement learning attempts to generalize this to learning from scratch in 

completely unknown environments

https://www.youtube.com/watch?v=IxrnT0JOs4o


• Reinforcement Learning is learning what to do – how to map 
situations to actions – so as to maximum a numerical reward.

Reinforcement Learning: An introduction
Sutton & Barto

• Rather than learning from explicit training data, or discovering 
patterns in static data, reinforcement learning discovers the 
best option (highest reward) from trial and error.

• Inverse Reinforcement Learning

• Learn reward function by observing an expert

• “Apprenticeship learning“

• E.g. Abbeel et al. Autonomous Helicopter Aerobatics 
through Apprenticeship Learning























• The environment

• The reinforcement function r(s,a)
• Pure delay reward and avoidance problems

• Minimum time to goal

• Games

• The value function V(s)
• Policy p: S → A

• Value V p(s) := Si gi rt+i

• Find the optimal policy p* that 
maximizes V p*(s) for all states s.



A minimum time to goal world

Value function                 Optimal policy                  Optimal value

for random                                                                     function

movement



Assume:

• finite set of states S, finite set of actions A

• at each discrete time agent observes state st S and chooses action at A

• then receives immediate reward rt

• and state changes to st+1

• Markov assumption: st+1 = d(st,at) and rt = r(st,at)

• i.e. rt and st+1 depend only on current state and action

• functions d and r may be non-deterministic

• functions d and r not necessarily known to the agent



r(s,a) V*(s)

An optimal policy







Optimal policy:

• p*(s) = argmaxa[r (s,a) + gV *(d(s,a))]

• Doesn't work if we don't know r and d.

The Q-function:

• Q (s,a) := r (s,a) + gV *(d(s,a))

• p*(s) = argmaxaQ (s,a)

r(s,a)

Q(s,a)



• Note Q and V* closely related:
V *(s) = maxa' Q (s,a' )

• Therefore Q can be written as:

Q (st ,at) := r (st ,at) + gV *(d(st ,at)) =

r (st ,at) + g maxa' Q (st+1 ,a' )

• If Q^ denote the current approximation of Q then it can be updated by:

Q^(s,a) := r + g maxa' Q
^(s',a' )



• Value-Based:

• Learn value function

• Implicit policy (e.g. greedy selection)

• Example: Deep Q Networks (DQN)

• Policy-Based:

• No value function

• Learn explicit (stochastic) policy

• Example: Stochastic Policy Gradients

• Actor-Critic:

• Learn value function

• Learn policy using value function

• Example: Asynchronous Advantage Actor Critic (A3C)







For each s, a initialize table entry Q^(s,a) := 0.

Observe current state s.

Do forever:

1. Select an action a and execute it

2. Receive immediate reward r

3. Observe the new state s'

4. Update the table entry for Q^(s,a):
Q^(s,a) := r + g maxa' Q

^(s',a' )

5. s := s'



Q ^(s1 ,aright) := r + g maxa' Q
^(s2 ,a' )

:= 0 + 0.9 max{63, 81, 100}

:= 90



• Exploration

• Selecting the best action

• Probabilistic choice

• Improving convergence

• Update sequences

• Remember old state-action transitions and their immediate reward

• Non-deterministic MDPs

• Temporal Difference Learning













































• The main components in policy gradient are the policy model and the value 
function. 

• Actor-critic methods learn the value function in addition to the policy.

• Knowing the value function assists the policy update, such as by 
reducing gradient variance in vanilla policy gradients.





• A model-free off-policy actor-
critic algorithm, combining 
DPG and DQN.

• DQN stabilizes the learning of 
Q-function by experience replay 
and the frozen target network.

• DQN works in discrete space, 
and DDPG extends it to 
continuous space with the 
actor-critic framework while 
learning a deterministic policy.



• To tackle a high-dimensional state space or continous states we can use a neural network as 

function approximator

• Lunar Lander experiment

• 8 continous/discrete states

• XY-Pos, XY-Vel, Rot, Rot-rate, Leg1/Leg2 ground contact

• 4 discrete actions

• Left thrust

• Right thrust

• Main engine thrust

• NOP

• Rewards

• Move from top to bottom of the screen (+ ~100-140)

• Land between the posts (+100)

• Put legs on ground (+10 per leg)

• Penalties

• Using main engine thrust (-0.3 per frame)

• Crashing (-100)

• Solved using Stochastic Policy Gradients











• Value-Based:

• Learn value function

• Implicit policy (e.g. greedy selection)

• Example: Deep Q Networks (DQN)

• Policy-Based:

• No value function

• Learn explicit (stochastic) policy

• Example: Stochastic Policy Gradients

• Actor-Critic:

• Learn value function

• Learn policy using value function

• Example: Asynchronous Advantage Actor Critic (A3C)





• In multi-agent systems it may be beneficial to learn

• Environment dynamics

• Reward functions

• Other agents’ strategies

• Can be useful for cooperative as well as competitive scenarios

• Finding solutions by hand may be difficult and time-consuming

• Learning may help

• Also lets the agent adapt to changes in the environment



• Non-stationary environment when multiple agents learn

• Simultaneous learning and teaching for individual agent

• Lack of observability (e.g., actions and rewards of other agents)



• Model-based algorithms

• Try to model the behavior of other agents

• More specific models may improve performance, but at a loss of 
generality

• Model-free algorithms

• Do not use models

• May perform worse or take longer to converge











• Though no theoretical guarantees exist, single-agent algorithms may 
produce interesting results in multi-agent systems

• Ways to stabilize the learning process

• Clever design of reward systems

• Training populations of agents

• Can allow agents to generalize



• Extra information is used for guidance during 
learning, e.g., actor-critic setup or value function 
decomposition

• At execution time agents act based on local 
observations

• Examples of algorithms

• QMIX

• COMA

• MADDPG





• Centralized:

• One brain/algorithm deployed across many agents

• Prescriptive:

• Suggests how agents should behave

• Cooperative: Agents cooperate to achieve a goal

• Shared team reward

• Numbers of agents

• One (single-agent)

• Two (very common)

• Finite

• Infinite

• Decentralized:

• All agents learn individually

• Communication limitations defined by environment

• Descriptive:

• Forecast how agent will behave

• Competitive: Agents compete against each other

• Zero-sum games

• Individual opposing rewards

• Neither: Agents maximize their utility which may require 
cooperating and/or competing

• General-sum games























• Train one agent at a time, and fix policies of all the other agents

• After a number of iterations distribute the policy learned by the training 
agent to all the other agents of its type



• Challenge: When two ally agents are occupying the same position in the 
environment, the image-like state representation for each agent will be 
identical, so their policies will be exactly the same.

• Solution: To break this symmetry – use a stochastic policy for agents. The 
actions taken by the agent are drawn from a distribution derived by taking 
a softmax over the Q-values of the neural network. This allows allies to 
take different actions if they occupy the same state and break the 
ambiguity.



• Multi-agent DDPG (MADDPG) (Lowe et al., 2017) 
extends DDPG to an environment where multiple 
agents are coordinating to complete tasks with only 
local information. 

• In the viewpoint of one agent, the environment is non-
stationary as policies of other agents are quickly 
upgraded and remain unknown. 

• MADDPG is an actor-critic model redesigned 
particularly for handling such a changing environment 
and interactions between agents.

• Centralized critic + decentralized actors, changes 
non-stationary problems to stationary problems

• Actors can use estimated policies of other agents 
for learning

• Policy ensembles is good for reducing variance





• Computational complexity

• AlphaGo Zero (per agent):

• 64 GPUs & 19 CPUs

• OpenAI Dota Five

• 256 GPUs & 128000 CPUs

• Lack of good benchmarks

• Reproducability



www.ida.liu.se/~TDDE13
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