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Cooperative Problem Solving
• How does a group of agents work together to solve problems?

• If we “own” the whole system, we can design agents to help each other 
whenever asked. In this case, we can assume agents are benevolent: our 
best interest is their best interest.

• Problem-solving in benevolent systems is cooperative distributed 
problem solving (CDPS).

• There are three stages:

• Problem decomposition

• Sub-problem solution

• Answer synthesis

decomposition solution synthesis



Distributed Constraint Solving



Distributed Constraint Solving

• CSP: (X, D, C)
• X = {x1, x2,…, xn} variables

• D = {d1, d2,…,dn} domains (finite)

• C = {c1,c2,…,cr} constraints

For each c ϵ C
• var(c) = {xi, xj, …, xk} scope

• rel(c) ϵ di x dj x … x dk permitted tuples

• Solution: total assignment satisfying all constraints
• DisCSP: (X, D, C, A, )

• A = {a1, a2, …, ak} agents

• : X -> A maps variables to agents

• c is known by agents owning var(c)



Distributed Constraint Solving

Common assumptions:

• Agents communicate by sending messages

• An agent can send messages to others, iff it knows their identifiers

• The delay transmitting a message is finite but random

• For any pair of agents, messages are delivered in the order they were 
sent

• Agents know the constraints in which they are involved, but not the 
other constraints

• Each agent owns a single variable (agents = variables)

• Constraints are binary (2 variables involved)



Asynchronous Backtracking
• Each agent starts with instantiated variables, and knows all constraints 

that concern it

• Agent graph is connected, but not necessarily fully connected.  Each 
agent has a set of values for the agents connected to it by incoming links 
(agent view)

• Agents can change their values or message agents that are linked to them

• Messages are either Ok? or noGood



Asynchronous Backtracking
• Agent view: the values of all agents linked to a particular agent
• Message Handling

• Ok? -> Agent wants to know if it can assign a certain value to itself, so it asks 
another agent
• Receiving agent updates agent view and checks for consistency, makes sure updated 

agent view is not a “noGood” 
• Oks only sent to lower priority agents

• NoGood -> in evaluating an Ok? Message, an agent cannot find a value for itself that 
is consistent, then its updated agent view is noGood and a NoGood (backtracking) 
message is sent to another agent.
• Nogoods only sent to higher priority agents

• NoGoods can be seen as derived constraints
• Preventing infinite loops by having a total order among agents for 

communication
• Only need to know order of agents that one agent is linked to



Example: Asynchronous Backtracking

Source: M. Yokoo, E.H. Durfee, T. Ishida, K. Kuwabara, Distributed constraint satisfaction for formalizing distributed
problem solving, in: 12th International Conference on Distributed Computing Systems (ICDCS-92), 1992,
pp. 614–621.



Comparison

Source: M. Yokoo, E.H. Durfee, T. Ishida, K. Kuwabara, Distributed constraint satisfaction for formalizing distributed
problem solving, in: 12th International Conference on Distributed Computing Systems (ICDCS-92), 1992,
pp. 614–621.



Asynchronous Weak-Commitment Search (AWC)
• Improvement over asynchronous backtracking

• Uses local dynamic priority values rather than static global ordering

• When an agent generates a nogood value, it promotes itself within its 
local network

• In ABT, an agent backtracks at dead-ends by sending a nogood to a 
higher priority agent

• in AWC, an agent gives up the attempt to satisfy its constraints and 
delegates the problem to other agents by raising its own priority



Comparison

Source: M. Yokoo, E.H. Durfee, T. Ishida, K. Kuwabara, Distributed constraint satisfaction for formalizing distributed
problem solving, in: 12th International Conference on Distributed Computing Systems (ICDCS-92), 1992,
pp. 614–621.



Distributed Constraint Solving
• Exact algorithms (DisCSP and DCOP)

• Asynchronous Backtracking (ABT), 

• Asynchronous Weak-Commitment Search (AWCS),

• Asynchronous Distributed Optimization (ADOPT, BnB-ADOPT), 

• Distributed Pseudotree Optimization Procedure (DPOP)

• Approximate Algorithms with quality guarantees
• k-optimality, 

• Bounded max-sum

• Approximate Algorithms without quality guarantees
• Distributed Stochastic Algorithm (DSA), 

• Max-Sum



Task Allocation



Example Scenario: Search and Relief
Mission: First scan Area for survivors, then deliver 
emergency supplies to the survivors.



Multi Robot Task Allocation
• Given 

• n tasks, 

• m robots, and 

• a global objective function

allocate the tasks so that the objective function is maximized (or 
minimized).

• Gerkey and Matarić (2004) classified multi robot task allocation along 
three dimensions:
• Single-task robots (ST) vs. multi-task robots (MT)

• Single-robot tasks (SR) vs. multi-robot tasks (MR)

• Instantaneous assignment (IA) vs. Time-extended assignment (TA)



Multi Robot Task Allocation: ST-SR-IA
• Given 

• n independent tasks, 

• m≥n robots, and 

• a utility function u(i,j) representing the utility for robot j doing task i

assign every task to exactly one robot so that the total utility is maximized.

• Optimal Assignment Problem which can be solved in O(mn2) time by 
Kuhn’s Hungarian method (1955).

• Example: m UAVs delivering n≤m boxes.



Multi Robot Task Allocation: ST-SR-TA
• Given 

• n independent tasks, 

• m<n robots, and 

• a cost function c(i,j) representing the cost (time) for robot j doing task i, 

create a schedule of tasks for each robot so that the total cost is 
minimized.

• Scheduling Problem R||∑wjCj which is NP-hard. 

• Using an optimal assignment for the first m tasks and a greedy 
assignment for the rest as robots finish their tasks produces a 3-
competitive solution.

• Example: m UAVs delivering n>m boxes.



Multi Robot Task Allocation: ST-MR-IA
• Given 

• n independent tasks, 

• m robots, and

• a utility function u(i, {j1, …, jk}) representing the utility for the coalition consisting of 
robots j1, …, jk together doing task i,

find a set of mutually exclusive coalitions maximizing the utility.

• Set Partition Problem which is NP-hard. 

• Assumes that the utility for each coalition is known. Coalitional game 
theory is a very active research area.

• Example: m UAVs delivering n boxes where some boxes require several 
UAVs to be carried.



Multi Robot Task Allocation Summary
Problem Optimization Problem (Gerkey & Matarić) Complexity

ST-SR-IA Optimal Assignment O(mn2)

ST-SR-TA Scheduling: R||∑wjCj NP-hard

ST-MR-IA Coalition + Set Partitioning NP-hard

ST-MR-TA Coalition + Scheduling MPTm||∑wjCj NP-hard

MT-SR-IA Coalition + Set Partitioning NP-hard

MT-SR-TA Coalition + Scheduling MPTm||∑wjCj NP-hard

MT-MR-IA Coalition + Set Covering NP-hard

MT-MR-TA Coalition + Scheduling MPTmMPMn||∑wjCj NP-hard

◼ IA problems correspond to assignment problems while 
TA problems correspond to scheduling problems.

◼ MR/MT problems also involve a coalition forming problem.



Complex Task Allocation
• Interrelated utilities 

• The utility depends on all tasks allocated to a robot or even on the allocation to 
other robots.

• Example: When delivering boxes, the time it takes depends on the location of the 
UAV at the start of the task. And this depends on the previous task of the UAV.

• Combinatorial optimization problem.

• Task constraints

• There are dependencies between tasks such as precedence constraints, timing 
constraints and communication constraints.

• Example: First deliver box1 and then within 10 minutes deliver box2.

• Constraint satisfaction/optimization problem



Complex Task Allocation
• Complex tasks 

• Tasks can be achieved in many possible ways.

• Example: To deliver boxes a UAV can either deliver them directly or use a carrier which can load 
several boxes.

• Task decomposition problem (planning problem)

• Uncertainty

• The actual utility or cost might not be known.

• Example: UAV1 needs between 8 and 12 minutes to deliver box2.

• Stochastic optimization

• Multi-dimensional cost and utility functions 

• Example: Maximize the utility of the mission while minimizing the resource usage.

• Multi-criteria optimization



Market-Based MRTA Approaches
• The general idea is to create a market where tasks can be traded in such a way that a 

global objective function is optimized.

• Each robot has an individual utility function that specifies that robot’s preferences 
based on information available to the robot. For example, maximize the revenue minus 
the cost for each task. This is the basis for the bidding rule of a robot.

• The auctioneer determines who is awarded a task based on the robots’ bids (winner 
determination).

• Auctions are communication and computation efficient.

• The objective of the system designer is to engineer the costs, revenues, and auction 
mechanism in such a way that individual self-interest leads to globally efficient 
solutions.

• Many market mechanisms follow the Contract Net Protocol.



A Manager Announces a Task
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Potential Contractors Submit Bids
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The Manager Awards the Contract

Manager

Contractor

Award



A Contract is Established

Manager

Contractor

Contract



Market-Based MRTA: Single Item Auction
• Given 

• n tasks, 

• m robots, 

• and a bidding rule for individual tasks

Auction out the tasks sequentially and allocate each task according to the best bid. 

• Computational cost:

• Bid valuation v (the cost to compute a single bid)

• Winner determination O(m)

• Number of auctions n

• An important question is how to design bidding rules to optimize a global objective 

function.



Market-Based MRTA: Single Item Auction



Market-Based MRTA: Single Item Auction



Market-Based MRTA: Single Item Auction



Market-Based MRTA: Single Item Auction



Market-Based MRTA: Single Item Auction



Market-Based MRTA: Single Item Auction



Market-Based MRTA: Single Item Auction



Market-Based MRTA: Single Item Auction



Market-Based MRTA: Single Item Auction
• MINISUM

• Minimize the sum of the path costs over all robots

• Minimization of total energy or distance

• Application: planetary surface exploration

• MINIMAX

• Minimize the maximum path cost over all robots

• Minimization of total completion time (makespan)

• Application: facility surveillance, mine clearing

• MINIAVE

• Minimize the average arrival time over all targets

• Minimization of average service time (flowtime)

• Application: search and rescue



Market-Based MRTA: Combinatorial Auction

• A combinatorial auction is an auction where bidders are allowed to bid on combinations 
of items, or bundles, instead of individual items.

• Given 

• n tasks, 

• m robots, 

• and a bidding rule for bundles of tasks

Auction out all tasks and allocate bundles to robots so that the sum of the bids is 
maximized. 

• Computational cost:

• Bid valuation O(2nv) (v is the cost to compute a single bid)

• Winner determination O((b+n)n) (b is the number of bids)

• Number of auctions 1



Market-Based MRTA: Combinatorial Auction



Market-Based MRTA: Combinatorial Auction



Market-Based MRTA: Combinatorial Auction



Market-Based MRTA: Combinatorial Auction
• Example bidding strategies for robot exploration

• Single: Each robot bids its surplus for a target (the reward for the target minus the travel 
cost from its current location).

• Three-Combination: Bid on all bundles with no more than 3 targets.

• Graph-Cut: Generate a complete undirected graph from the targets with the travel cost as 
the edge cost. Generate bundles by recursively using the max cut algorithm to split the graph 
into two connected subgraphs.



Market-Based MRTA: Combinatorial Auction



Market-Based MRTA: Combinatorial Auction



Market-Based MRTA: Peer to Peer Trading
• Given an initial allocation of tasks to 

robots, a robot may reallocate its tasks 
by creating an auction for them.

• Corresponds to local search: each 
exchange decreases the solution cost 
while maintaining a feasible solution.

• Improves allocations when there is uncertain, incomplete or changing information.

• Sandholm (1998) proved that with a sufficiently expressive set of local search moves 
(single-task, multitask, swaps, and multiparty exchanges) the global optimum solution 
can be reached in a finite (although potentially large) number of steps.



Market-Based MRTA: Complex Tasks
• Zlot and Stentz (2006) suggested an auction for complex task 

represented by AND/OR trees.

• Robots bid on nodes along any root-to-leaf path, which can branch at 
OR nodes.

Bid on leaf: agree to execute a primitive task

Bid on AND/OR: agree to complete a complex task

• With some more restrictions an O(LT) winner determination algorithm 
is possible (L = #leaves in the tree and T = #tree nodes).

• Example bidding rule: Bid on the node with the highest surplus (bid 
price minus reserve price) at each level of the tree.

• They also presented a heuristic O(LT2) winner determination algorithm 
for the general case, where a robot bids on any or all nodes in a tree.



Market-Based MRTA: Complex Tasks
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Summary Market-Based MRTA Approaches



UAS Case Study



A principled approach to building collaborative 
intelligent autonomous systems for complex missions.

Collaborative Unmanned Aircraft Systems



Collaborative Unmanned Aircraft Systems

A principled approach to building collaborative 
intelligent autonomous systems for complex missions.

Challenges:

• Support humans and robots including legacy systems

• Support adjustable autonomy and mixed-initiative 

interaction

• Manage tasks and information on many abstraction levels

• Coordinating control, reaction and deliberation

• Coordination of systems, resources and platforms

• Incomplete information at design time and run time

• Inspection, monitoring, diagnosis and recovery on many 

abstraction levels



Autonomous Systems at AIICS, Linköping University

Micro UAVs
weight < 500 g, 
diameter < 50 cm

Yamaha RMAX
weight 95 kg, 
length 3.6 m

PingWing

LinkMAV

LinkQuad weight ~1 kg, diameter ~70cm





HDRC3: A Distributed Hybrid Deliberative/Reactive Architecture for Autonomous Systems
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P. Doherty, J. Kvarnström, M. Wzorek, P. Rudol, F. Heintz and G. Conte. 2014.
HDRC3 - A Distributed Hybrid Deliberative/Reactive Architecture for Unmanned Aircraft Systems.
In K. Valavanis, G. Vachtsevanos, editors, Handbook of Unmanned Aerial Vehicles, pages 849–952.

Lessons learned:

• Logical specifications are essential to building and 

verifying complex systems.

• Clearly defined languages as interfaces provide rigor 

and flexibility.

• Many small programs loosely coupled in a distributed 

system provides flexibility, adaptability and organic 

growth.

• A distributed communication infrastructure greatly 

simplifies development.

• Separate specification of tasks from their execution 

for greater realization flexibility.



Example Scenario: Search and Relief

Searching for injured people and delivering food, medicine and 
other supplies are highly prioritized activities in disaster relief.



Example Scenario: Search and Relief

Mission: First scan Area for survivors, then deliver 
emergency supplies to the survivors.

Area



Example Scenario: Search and Relief
Mission: First scan Area for survivors, then deliver 
emergency supplies to the survivors.



Human-Robot Collaboration

Delegation

Adjustable
Autonomy

Mixed-Initiative
Interaction

Delegate(A, B, task, constraints)

Delegate(GOP, UAV, task, constraints)
Delegate(UAV, GOP, task, constraints)
Important: Safety, security, trust, etc.

By varying the task and constraints 
parameters the degree of autonomy 
allowed can be controlled.

Patrick Doherty, Fredrik Heintz and Jonas Kvarnström. 2013.
High-level Mission Specification and Planning for Collaborative Unmanned Aircraft 
Systems using Delegation. Unmanned Systems, 1(1):75–119. World Scientific. 



Collaborative Tasks for UAS

• Tasks need to be 

– general to cover the spectrum from high level goals to detailed plans (task 
constraints),

– assigned to resource constrained physical platforms (interrelated utilities), and

– expanded and modified as parts of tasks are recursively delegated (complex tasks).

• The task representation should

– be highly flexible, distributed and dynamically extendible and 

– support dynamic adjustment of autonomy.



Task Specification Trees

• A Task Specification Tree (TST) is a distributed data 
structure with a declarative representation that 
describes a complex multi-agent task. 

• A node in a TST corresponds to a task. It has a node 
interface with parameters and a set of node 
constraints that restrict the parameters.

• There are currently six types of nodes: Sequence, 
concurrent, loop, select, goal, and elementary action.

• A TST is associated with a set of tree constraints 
expressing constraints between tasks in the tree.

flyto

Interface:
ts, te, Dest
Speed



Example Scenario: Search and Relief

Mission: First scan AreaA and AreaB, then fly to Dest.

AreaA

AreaB

Dest



Example TST
N0

S 

N1

C 
N4

flyto

N3

scan
N2

scan

Interface: ts0, te0

Task: sequence(α1, α4)

Interface: ts4, te4, 
Dest, Speed4

Task: flyto(Dest, Speed4)

Interface: ts3, te3, AreaB, Speed3

Task: scan(AreaB, Speed3)

Interface: ts2, te2 , 
AreaA, Speed2

Task: scan(AreaA, Speed2)

α1

Interface: ts1, te1

Task: concurrent(α2, α3)

α2 α3

α4

Mission: First scan AreaA and AreaB, then fly to Dest.



Delegating TSTs

• What it means to be able to carry out a TST is defined in terms of the Can
and Delegate predicates.

• Can(B, τ, [ts, te, …], cons) asserts that an agent B has the capabilities and 
resources for achieving a task τ in the interval [ts, te] with the constraints 
cons.

• The semantics of control nodes is platform independent while the 
semantics of elementary action nodes are platform dependent.

– Can(B, S(τ1, …, τn), [ts, te, …], cons) holds iff B either can do or delegate each task τ1, …, τn

in the sequence so that the constraints are satisfied.



TST Delegation Example

N0 S0 E0

S

N1 S1 E1

C
N4S4 E4

flyto

N3S3 E3

scan
N2 S2 E2

scanP1 P2

AreaA

AreaB

Dest



Complex Task Allocation for CUAS

• The goal of the delegation process is to recursively
find a set of platforms that can achieve a task specified as a TST.

• For a task to be achievable every node in the TST must be allocated to a 
platform such that the distributed constraint satisfaction problem 
corresponding to the semantics of the allocated TST is consistent.

• Hence we need to solve a complex task allocation problem.

• Our approach combines auction-based heuristic search for allocation 
and distributed constraint satisfaction for consistency checking partial 
allocations.



TST Allocation Example

N0 S0 E0

S

N1 S1 E1

C
N4S4 E4

flyto

N3S3 E3

scan
N2 S2 E2

scanP1 P2

P3



Size of CSP Formulation



Results Centralized CSP Formulation



Results Centralized CSP Formulation



Results Distributed CSP Formulation

TST size 1 (13 nodes)

TST size 2 (25 nodes)

(12N+1 nodes)



Results Distributed CSP Formulation



Discussion
• Integrate planning and allocation

• Improve the efficiency of allocating TSTs

– Study approximating algorithms for allocating TSTs

– Study heuristics for allocating TSTs

– Explicitly trade-off quality and efficiency (e.g. anytime algorithms)

– Study restrictions on TSTs that facilitate more efficient allocation algorithms

– Develop more efficient distributed constraint solving algorithms for our specific type of problems

– Further study the interaction between auctions and constraint reasoning to balance guarantees 
and efficiency

• Consider optimization criteria such as

– Maximize robustness to deviations due to uncertainty

– Minimize total execution time and resources usage

– Minimize resource usage and maximize communication quality



AreaA

AreaB

Dest

Summary
• Discussed complex task allocation for collaborative unmanned 

aircraft systems.

• Outlined a delegation-based collaboration framework  which uses 
Task Specification Trees (TSTs) for specifying complex tasks.

– The consistency of allocations of platforms to TST nodes can be 
checked using distributed constraint satisfaction techniques.

– To delegate a TST a complex task allocation problem has to be 
solved for example using a market-based approach.

• The result is a very rich collaborative robotics framework which 
opens up for many interesting research questions.

S

C flyto

scanscan



Summary
• A multi-agent system (MAS) can be defined as a loosely coupled network 

of problem solvers that interact to solve problems that are beyond the 
individual capabilities or knowledge of each problem solver.

• Communication

• Game Theory

• Social Choice

• Teamwork

• Task Allocation



www.ida.liu.se/~TDDE13
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