Assignment Set 2

Multi Agent Systems (TDDE13), Linköping University
By Fredrik Präntare, Autumn Semester 2023

Directions: Individually (not in groups or pairs) solve the assignments below and send your solutions (with a clear and precise line of reasoning!) to your TA's mail address (Daniel de Leng, daniel.de.leng@liu.se) before the deadline. It is important that you

1. use the course's $L a T e X / W o r d ~ t e m p l a t e ~ f o r ~ t h e ~ a n s w e r s ~(o n l y ~ s u b m i t ~ t h e ~ c o m p i l e d ~$.pdf; bad formats and file types will be rejected);
2. use "TDDE13: Assignment Set 2" as the header in your mail; and
3. send the answers from your LiU student account.

Deadline: See the course's webpage. After the deadline, you receive half the points for correct answers.

Prerequisites: Course lectures + the following chapters in the course's textbook (Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations):

- Chapter 9: Aggregating Preferences: Social Choice;
- Chapter 10: Protocols for Strategic Agents: Mechanism Design;
- Chapter 11: Protocols for Multiagent Resource Allocation: Auctions.

Assignments:

1 (1.0p) In an informal fashion, thoroughly describe Arrow's impossibility theorem and discuss its consequences.

2 (1.0p) Show that plurality voting between three or more alternatives is not necessarily dominant-strategy truthful (i.e., that being truthful is not a dominant strategy).

3 (1.0p) In the example below, which outcome $o \in\{a, b, c, d\}$ is the Condorcet winner and why?

$$
\begin{array}{ll}
\text { P1: } & c \succ b \succ a \succ d \\
\text { P2: } & b \succ c \succ a \succ d \\
\text { P3: } & a \succ c \succ b \succ d \\
\text { P4: } & a \succ d \succ c \succ b \\
\text { P5: } & b \succ c \succ d \succ a
\end{array}
$$

$x \succ y$ denotes that the outcome $x \in\{a, b, c, d\}$ is (strictly) preferred to $y \in\{a, b, c, d\}$ by the row's corresponding player.

4 (1.0p) Give an example of a situation you know of where it is typically preferable to choose a Condorcet winner over using the plurality method.

5 (1.0p) Show that, in a sealed-bid single-item Vickrey auction, a truthful bidder is guaranteed a utility which is non-negative.

6 (1.0p) What are the main differences between indirect and direct mechanisms? Give an example for both of them.

7 (1.0p) Explain, from a computational perspective, why synergistic effects such as substitutability and complementarity (i.e., goods in a bid bundle can affect each others' values) make the winner determination problem for combinatorial auctions much more difficult compared to when the bids are only additive (i.e., each good has a value, and every bid bundle's value is the sum of its goods' values) in the items that are being auctioned.

