Assignment Set 1

Multi Agent Systems (TDDE13), Linköping University
By Fredrik Präntare, Autumn Semester 2023

Directions: Individually (not in groups or pairs) solve the assignments below and send your solutions (with a clear and precise line of reasoning!) to your TA's mail address (Daniel de Leng, daniel.de.leng@liu.se) before the deadline. It is important that you

1. use the course's LaTeX/Word template for the answers (only submit the compiled .pdf; bad formats and file types will be rejected);
2. use "TDDE13: Assignment Set 1" as the header in your mail; and
3. send the answers from your LiU student account.

Deadline: See the course's webpage. After the deadline, you receive only half the points for correct answers.

Prerequisites: Course lectures + the following chapters in the course's textbook (Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations):

- Chapter 3: Introduction to Noncooperative Game Theory: Games in Normal Form;
- Chapter 4: Computing Solution Concepts of Normal-Form Games;
- Chapter 5: Games with Sequential Actions;
- Chapter 12: Teams of Selfish Agents: An Introduction to Coalitional Game Theory.

Exercises:

1 ($0.5 p$) What is a von Neumann and Morgenstern utility function and what does it represent? Define such a utility function for a situation/context relevant to your own daily life, and describe what it represents.

2 ($0.5 p$) If any, what are the key differences between common-payoff games, zero-sum games and constant-sum games? Describe and define an example you know of for two of them. Your examples must be distinct (i.e., they cannot be the same example) and not taken from the course's book!

3 (1.5p) Find all existing pure and mixed Nash equilibria (NE) and the players' expected payouts (in the NEs) in the following normal-form games:

	L	R
U	1,1	1,0
D	$-1,1$	0,1

	C	Y
A	1,0	0,1
B	0,1	1,0

	C1	C 2
R1	1,3	2,1
R2	2,1	1,4

4 ($0.5 p$) Find the row player's pure maxmin solution (both value and strategy) in the following (simultaneous move) normal-form game:

5 ($0.5 p$) In game theory, what are the key differences between cooperative and noncooperative settings? Give an example you know of for each. Your examples must be distinct and not taken from the course's textbook.

6 Design and define your own non-convex 3-player (characteristic function) coalitional game (with transferable utility), for which each coalition (except the empty coalition) must have a distinct (= unique) non-zero value. The coalitional game that you define needs to represent a (potentially fictional) scenario that you can think of.
(a) (0.5p) Describe what the coalitional game that you defined represents.
(b) ($0.5 p$) Compute one player's marginal contributions and her Shapley value. Also, clearly describe (with your scenario as basis) what her Shapley value represents.
(c) ($0.5 p$) Prove that your game is not convex.
(d) ($0.5 p$) Show that the game that you defined is (or that it is not, depending on the game that you defined) additive and/or superadditive.

7 (1.0p) Recall that a coalitional partition function game is defined as a tuple $\langle N, v\rangle$ where:

- $N=\{1, \ldots, n\}$ is a set of agents;
- $v((C, C S)) \mapsto \mathbb{R}$ is a function that maps a value (e.g., potential utility) to every embedded coalition ($C, C S$) over N; see Definition 1.

Definition 1. An embedded coalition (over the agents N) is a pair ($C, C S$), where $C S$ is a coalition structure (see Definition 2) over N, and C is a coalition with $C \in C S$.

Definition 2. A coalition structure $C S=\left\{C_{1}, \ldots, C_{|C S|}\right\}$ over the set of agents N is a set of coalitions with $C_{i} \subseteq N$ for $i=1, \ldots,|C S|, C_{i} \neq \emptyset$ for $i=1, \ldots,|C S|, C_{i} \cap C_{j}=\emptyset$ for all $i \neq j$, and $\bigcup_{i=1}^{|C S|} C_{i}=N$.

Now, suppose we have a partition function game $\langle\{1,2,3\}, v\rangle$ with:

$$
v((C, C S))= \begin{cases}2 & \text { if } 1 \in C \text { and } 2 \in C \\ 1 & \text { else if }|C S|=2 \text { and }|C|=1 \\ 3 & \text { else if }|C S|=2, C \neq \emptyset \text { and } C \neq\{2,3\} \\ 1.5 & \text { else if } C=\{3\} \\ 0 & \text { otherwise }\end{cases}
$$

Your task is to compute $\max _{C S \in \Pi}\left\{\sum_{C \in C S} v((C, C S))\right\}$ and $\arg \max _{C S \in \Pi}\left\{\sum_{C \in C S} v((C, C S))\right\}$, where Π denotes the set of all coalition structures over N.

8 (0.5p) Discuss and critique using the Shapley value for dividing payoff in partition function games.

