
LAB 2 - Multi-agent Reinforcement Learning

Multi-Agent Systems (TDDE13), Linköping University

October 31, 2024

1 Directions

Solve the exercises below. You should submit a .zip-file containing your source code (i.e.
frozen lake.py and simple hockey.py) and a short report with your results to your TA
(Emil Wiman, emil.wiman@liu.se) before the deadline. Please include the course code
TDDE13 in the email subject line.

Deadline: 23:59, 15 December 2024

2 Preparations

To set up a suitable environment for your experiments, follow the steps below.

• In your working directory, clone the following repositories:
git clone https://github.com/johan-kallstrom/frozen-lake-experiment.git
git clone https://github.com/openai/maddpg.git
git clone https://github.com/johan-kallstrom/multiagent-particle-envs.git

• In your working directory, create a directory for learning curves :
mkdir learning curves

• Add Python 3.7:
module add prog/python/3.7.11

• In your working directory, create a Python virtual environment according to these
instructions (use Python 3.7: python3.7 -m venv my env):
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/

Alternatively (e.g., if installing on your own computer) you could use Anaconda:
https://www.anaconda.com/

• Activate your virtual environment (source my env/bin/activate) and install the
following packages:
pip install wheel
pip install gym==0.10.5
pip install matplotlib==3.3.3
pip install numpy==1.21.6
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pip install protobuf==3.20.0
pip install pyglet==1.5.21
pip install scipy
pip install tensorflow==1.13.1
pip install -e multiagent-particle-envs
pip install -e maddpg

3 Exercises

In this lab you will study aspects of reinforcement learning in two simple environments. The
goal of the lab is to give you a basic understanding of reinforcement learning and related
challenges, as well as some hands-on experience in training agents.

3.1 Ex 1: Trade-off Between Exploration and Exploitation

In this experiment you will study the effects of exploration and exploitation. For simplicity
we will use Q-learning in a single-agent MDP. Implement the Q-learnig algorithm according
to Definition 7.4.1 in the course book, with the following update step:

Q(st, at) = Q(st, at) + α(rt + γmax
a

Q(st+1, a)−Q(st, at)) (1)

where α (0, 1] is the desired learning rate, and the tuple (S, A, T, R, γ) defines the MDP

• S: The states of the MDP

• A: The actions of the MDP

• T: The transition dynamics of the MDP

• R: The reward received when moving from state s to state s’

• γ: The discount factor [0, 1] indicating the importance of immediate and future rewards
respectively

Use ϵ greedy action selection, i.e., with probability ϵ select a random, exploratory action,
otherwise select the action with the maximum Q value. Evaluate your implementation by
trying to maximize the cumulative reward (try to reach above 0.5 in average reward over
10k episodes) in the Frozen Lake environment:
https://gym.openai.com/envs/FrozenLake-v0/

Use the code in frozen-lake-experiment/frozen lake.py as a starting point. Implement the
agent’s act and learn functions, set the initial and final values of ϵ, and implement a strategy
for updating ϵ during learning (to move from exploration to exploitation). The functions
np.argmax, np.random.uniform and env.action space.sample are useful for action selection
and random exploration. Run your experiment by executing (a plot of the result will be
saved in the learning curves directory):
python frozen-lake-experiment/frozen lake.py
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Evaluate the effects of ϵ on the performance. See if you can get close to or above an
accumulated reward of 5000. To get a good result you will need to update ϵ from a large to a
small value during training (you could try to update it continuously or periodically, directly
from the start or after some episodes of learning).

In the report:

• Evaluate and discuss the effects of ϵ on performance. What strategy for updating ϵ
did you use?

• Include a plot of your accumulated reward for your best result.

• What are the major difficulties for learning in this environment? Include a discussion.

3.2 Ex 2: Competitive Multi-Agent Deep Reinforcement Learning

In this experiment you will study competitive learning using the MADDPG algorithm, which
uses the centralized learning, decentralized execution approach to multi-agent learning:
https://arxiv.org/pdf/1706.02275.pdf

The environment is implemented using the multi-agent particle environments:
https://github.com/johan-kallstrom/multiagent-particle-envs

The environment (simple hockey) is illustrated in Figure 1. The goal of each agent (red
and blue) is to move the puck (black) to a position between the goal posts (grey). Study
the code in scenarios/simple hockey.py and then define the functions agent reward and
adversary reward of the reward system to achieve the desired behavior. For inspiration you
can have a look at the list of environments in the repository README.md, and study the
corresponding reward design in multiagent-particle-envs/multiagent/scenarios/.

Figure 1: Simple hockey environment
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Some notes:

• The position/velocity of an agent is given by agent.state.p pos/vel

• the position/velocity of the puck is given by world.landmarks[0].state.p pos/vel

• The positions of goal posts are at [-0.25, -1.0] and [0.25, -1.0] for the lower goal, and
at [-0.25, 1.0] and [0.25, 1.0] for the upper goal

• The training can take a long time!

Train agents by executing python maddpg/experiments/train.py with the following
command line arguments (there may be some warnings about use of deprecated functions):

• --scenario simple hockey

• --max-episode-len 50

• --num-episodes 60000 (see note below about initial tests)

• --exp-name hockey 01

• --save-dir /tmp/hockey 01/

After training you can study the behavior of the agents by executing the same command
with the command line arguments:

• --scenario simple hockey

• --max-episode-len 50

• --load-dir /tmp/hockey 01/

• --display

Before you run a complete experiment, run using only 1000 episodes (num episodes) to
see that everything is working. After that run completes, also run the command above to
display the agents’ behavior (which will still be random), to see how efficient the exploration
process of these agents is. This will help you understand how you should design your reward
system for efficient learning (e.g., if the reward system should be sparse or dense). When
designing your reward system, try to reason about the goal state of this task, and what steps
the agent needs to take to reach it. How can this information be included in the reward
signal?

4



TDDE13 Fall ’24
Multi-Agent Systems Lab 2 - Multi-Agent Learning

In the report:

• Describe the reward system you designed.

• How well do the agents perform after training? Discuss your results and relate them
to your reward system design.

• Are the agents equally good? Can you see any reason/explanation why they would not
be?

• How do you think the length of episodes and size of the hockey rink would affect
learning for your choice of reward system?

• [OPTIONAL] Include a small video of the agents playing against each other. You
could simply use the built-in screen capture on the computers and then upload to
OneDrive and attach a link to the video. Make sure to share it with your TA!

HINT: It may be easier to start by disabling one agent and focusing on training a single
agent to score a goal.

If you have more time:

If you have time and interest to explore further: Try to investigate changes in the scenario,
e.g., adding more agents, using agents with different qualities, or giving agents different tasks
(e.g., attacker and defender); or try running the experiment using decentralized learning by
setting the command line arguments --goodpolicy and --advpolicy to ddpg.
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