
Lab 1 — Centralized Coordination Algorithms
Multi-Agent Systems (TDDE13), Linköping University

Fredrik Präntare (fredrik.prantare@liu.se)

Directions: Solve the problems below and submit your solutions to the online judge.

Coordinating Agents with Centralized Algorithms

So far we’ve mainly focused on modeling agents from a game-theoretic perspective. We’ve
built mathematical models with the aim to analyze the agents’ behaviors, strategies, and
decision-making capabilities; and discussed mechanisms to e.g., make systems of agents
behave in certain ways.

In this lab, we shall instead look at a few different ways to coordinate and organize
multiple agents in a centralized (non-distributed) fashion, so that they can work together to
solve problems. Doing so can significantly affect a multi-agent system’s performance—the
agents can, in many instances, be organized and coordinated so that they can solve tasks
more efficiently, and consequently benefit collectively and individually.

In more detail, we shall look at two well-studied optimization problems in multi-agent
systems and operations research, namely:

� the linear assignment problem (Task 1); and

� the coalition structure generation problem for characteristic function games (Task 2),

and implement solutions for them. We will use the online judge Kattis to automatically
correct your implementations and lab submissions. Although we (strongly) recommend us-
ing the code base implemented in Java (for Task 1) and C++ (for Task 2) that you can
download from the course’s webpage, you decide yourself which of the supported program-
ming languages to use (students have previously used e.g., Python and C). See https:

//liu.kattis.com/help for more information on supported languages and how to get
started. (If you are new to online judges, we strongly recommend that you first solve a
few of the easier problems at https://open.kattis.com/problems before proceeding!)

Task 1: Coordinating Agents with an Assignment Algorithm

Suppose that a set of agents (or players) N have already decided to work together (e.g., in
a coalition C = N) to achieve some goal, and that to achieve this goal, the agents have to
solve a set of tasks M . A question we might ask is: How should we divide the labour (i.e.,
the tasks) between the agents to maximize their joint productivity?

For example, suppose that Joe, Ada and Sam are celebrating a special holiday together.
To make this special occasion enjoyable, they have to:

1. clean the house;

2. cook dinner; and

1

https://liu.kattis.com/help
https://liu.kattis.com/help
https://open.kattis.com/problems

3. decorate the dining table.

If Joe, Ada and Sam have different skills, proclivities and preferences, it is reasonable to
assume that there is also a preferred division of labour that maximizes the group’s welfare
and efficiency (i.e., its potential payoff).

The assignment problem revolves around this question of deciding on whom should per-
form which task—or more generally, finding a cost-minimizing bijection between two sets
(can you see why this is an equivalent problem to finding a value-maximizing bijection?).
In this lab, we shall model this type of situation as a linear assignment problem, in which
we assume that:

1. there’s a cost function c : N ×M 7→ R that represents the incurred cost for a specific
agent-to-task assignment;

2. the agents are required to perform as many tasks as possible by assigning at most one
agent to each task, and at most one task to each agent; and

3. we want to minimize the total cost (i.e., the aggregated sum) of all agent-to-task
assignments.

For simplicity and clarity during this lab, we assume that n = |N | = |M |. This is also
without loss of generality, since if |N | ̸= |M |, we can add “dummy” agents or jobs so that
|N | = |M |.

More formally, the goal of the linear assignment problem is then to find a bijection
f : N 7→M that minimizes: ∑

i∈N

c(i, f(i)).

This is a fundamental problem in the field of combinatorial optimization, and it has many
real-world applications that are important to multi-agent systems and operations research.

A näıve solution to solve this problem is to evaluate all possible bijections, and return one
with the lowest total cost (this bijection is called optimal). However, while there is a factorial
number of such bijections (since there are n! permutations of N), there are algorithms that
can solve the problem much more efficiently, for example the famous Hungarian algorithm
[Kuhn, 1955] that solves it in polynomial time. It is also possible to solve this problem
efficiently in polynomial time by first representing it as a weighted flow network, and then
using e.g., Edmond–Karp’s algorithm (more on this later) to find a minimum cost maximum
flow (i.e., a maximum flow with lowest aggregated cost), which can then be transformed1

into an optimal bijection. This is the approach we shall discuss and use in this lab.

There are a few key reasons why we use this approach here: a) Minimum cost maximum
flow algorithms can be used to solve many different types of assignment problems if you can
find a correct “flow representation” of them, which is often much easier and less complicated
than implementing a new type of algorithm; and b) the efficient solution that we devise here
(i.e., Edmond–Karp’s algorithm) can be broken down into a number of simpler parts (e.g.,
Dijkstra) that can be understood, discussed, implemented and tested separately.

1In complexity theory, we call this type of a transformation a polynomial-time reduction.

2

Against this background, and in more detail, we shall solve the linear assignment problem
with the following 4 steps:

1. Represent the linear assignment problem as a minimum cost maximum flow problem.

2. Implement Edmond–Karp’s algorithm for maximum flow.

3. Make a minor adjustment to Edmond–Karp’s algorithm so that it can solve minimum
cost maximum flow problems. (This step involves implementing Dijkstra’s algorithm
for finding single source shortest paths.)

4. Use our modified algorithm (from step 3) together with our minimum cost maximum
flow problem representation (from step 1) to solve the linear assignment problem.

For now, these steps may seem both unintuitive and disconnected. But as we proceed, they
will (hopefully) appear more rational and become easier to grasp. Note that while you
may choose to implement all of these steps yourself, we strongly recommend you to use the
Java-based code base that you can download from the course’s webpage which contains
a working implementation of Edmond–Karp’s algorithm for minimum cost maximum flow
problems (i.e., you only have to complete Step 1 and Step 4). In any case, you need to
understand the main intuition behind all four steps to complete the lab, so you should at
least read and understand the following sections.

Step 1: Linear Assignment as Minimum Cost Maximum Flow

Suppose we have a weighted flow network (G, fcap, fcost, s, t), where G = (V,E) is a directed
graph (with V being its set of vertices and E its set of edges), fcap : E 7→ N+ its capacity
function, fcost : E 7→ R its cost function, s ∈ V its source and t ∈ V its sink. The question is:
How can we design a flow network of this type for which a minimum cost maximum flow can
efficiently be transformed into an optimal bijection for a given linear assignment problem?
(We urge you to think about this question and try to answer it before reading on!)

The answer to this question is shown in Figure 1. Here, we let there exist |N | vertices
that represent the agents (the “agent vertices”), together with |M | vertices that represent
the tasks (the “task vertices”). Then, we let there be an edge with capacity 1 and cost
0 from the source to every agent vertex. (These edges represent that each agent can be
assigned to exactly one task.) Moreover, we form |N ||M | = n2 edges between the agent and
task vertices—one for every possible agent-to-task assignment. Each such edge is given a
capacity equal to 1, and a cost equivalent to the corresponding agent-to-task assignment’s
cost (given by the linear assignment problem’s cost function). Finally, there is an edge with
capacity 1 and cost 0 from every task vertex to the sink.

3

Figure 1: A linear assignment problem represented as a flow graph.

With this representation in mind, we leave it to the reader to derive (and subsequently
implement) how to convert this weighted flow network’s minimum cost maximum flow into
an optimal bijection for a given linear assignment problem. Moreover, for implementing a
flow graph in this lab, we strongly recommend using an adjacency list (instead of e.g., an
adjacency matrix)—see for example the Java code base provided on the course’s webpage.

Step 2: Edmond–Karp for Maximum Flow

Edmond–Karp’s algorithm for maximum flow is an implementation of the more general
Ford–Fulkerson method. In fact, it is identical to it, except that it also defines how to find
augmenting paths, which it uses breadth-first search for. So, how does Ford–Fulkerson’s
method work? We shall give the main gist of it, and then, after some thought—and perhaps
together with a few online resources—you should be able to implement it yourself.

First, recall that a maximum flow is a network flow for which the aggregated flow on
the edges adjacent to the sink vertex is maximum. In other words, there is no other way of
routing more flow from the source vertex to the sink vertex. Also, note that an augmenting
path is a path (an ordered set of edges) from the source to the vertex for which we can push
additional flow (i.e., the path has “available” net capacity on all of its edges).

Second, suppose we designed and implemented Algorithm 1. This method works as
follows: As long as there is at least one augmenting path, we route as much flow as we
can through it. This process is shown in Figure 2. Perhaps surprisingly, this very simple
algorithm is not only efficient, but it also almost works.

4

Figure 2: An example of finding augmenting paths and routing as much flow as possible
through them. Here we find three different augmenting paths before we stop.

Algorithm 1 : ProblematicAugmentingPathMaxFlowAlgorithm
1: maximum_flow← 0
2: while there is an augmenting path do
3: augmenting_path← FindAugmentingPath()
4: min_cap← FindMinimumCapacityAlongPath(augmenting_path)
5: push min_cap flow along augmenting_path

6: maximum_flow← min_cap

7: return maximum_flow

However, there is one critical flaw to it, which appears when one of the augmenting paths we
choose “blocks” a series of other more “fruitful” (i.e., with a larger total flow) augmenting
paths—see Figure 3 for an example of when this can occur. Consequently, the method may
return a (suboptimal) local optimum.

Figure 3: An example of a locally optimal “blocking” flow. We first have to ”revert” some
of the current flow to route more flow from the source to the sink along an augmenting path.

So, can we remedy this flaw, or do we have to think about a different method to solve the
problem? Luckily, we only have to add residual edges (also called back edges) to fix it. These
residual edges mirror the original edges by pointing in the opposite direction. Moreover, they
have a capacity which is equal to the corresponding original edge’s current flow. So, when
there is no flow, the back edges have a capacity equal to zero. Then, their capacities are
continuously updated as the network’s flow is altered. More importantly, these edges allow
us to partially “undo previous flow”. See Figure 4 for an example.

5

Figure 4: Adding residual edges (coloured cyan in the graph) makes it possible for us to find
new augmenting paths (visualized by the green path) by partially undoing previous flow.

With this in mind, pseudocode for Ford–Fulkerson’s method is displayed in Algorithm 2. As
previously mentioned, this algorithm is equivalent to Edmond–Karp’s algorithm if breadth-
first search is used to find augmenting paths.

Algorithm 2 : FordFulkersonMaxFlowAlgorithm

1: initialize residual (back) edges
2: maximum_flow← 0
3: while there is an augmenting path do
4: augmenting_path← FindAugmentingPath() ▷ Edmond–Karp’s uses BFS here.
5: min_cap← FindMinimumCapacityAlongPath(augmenting_path)
6: push min_cap flow along augmenting_path

7: maximum_flow← min_cap

8: return maximum_flow

You can now try to implement Edmond–Karp’s version of this algorithm, and test
your implementation using https://liu.kattis.com/problems/maxflow before proceed-
ing. (Implementing this algorithm might take a few hours, but it thankfully also constitutes
the main part of this lab. An implementation of this algorithm can then be used to solve
a wide range of different matching problems! Alternatively, you can choose to use the Java
code base that you can download from the course’s webpage.)

Step 3: Edmond-Karp Minimum Cost Maximum Flow

If you have a working Edmond–Karp implementation, this step is relatively simple: Instead
of just finding any augmenting path, we want to find the path with the lowest aggregated
flow cost. This can, in a straightforward fashion, be achieved by using Dijkstra’s algorithm
instead of breadth-first search. (Other single source shortest path algorithms can also be
used.) See Algorithm 3 for pseudocode. Note that since the back edges have a negative cost,
your Dijkstra implementation must allow revisiting nodes when a cheaper path (containing
a negative cost edge) is found. See Figure 5 for an example of this issue. Since the resid-
ual graph will not contain negative-weight cycles, Dijkstra’s algorithm will still terminate.
We recommend you to now implement Dijkstra’s algorithm (separately!), and test your im-
plementation with https://liu.kattis.com/problems/shortestpath1. Then, combine it

6

https://liu.kattis.com/problems/maxflow
https://liu.kattis.com/problems/shortestpath1

Figure 5: Example of using Dijkstra’s algorithm to find the shortest path in a graph contain-
ing a negative weight edge. Node 2 has already been expanded using the path 0-2 with cost
1, but there exists a cheaper path 0-1-2 with cost 0. When this path is found, node 2 must
be revisited. Since no negative weight cycle exists, when node 2 and 3 have been revisited,
the algorithm will terminate. Image source: https://visualgo.net/en/sssp.

with your previous maximum flow implementation, and test the modified algorithm with
https://liu.kattis.com/problems/mincostmaxflow.

Algorithm 3 : MinCostMaxFlowAlgorithm

1: initialize residual (back) edges
2: maximum_flow← 0
3: while there is an augmenting path do
4: augmenting_path← FindAugmentingPathWithMinimumCost() ▷ Use e.g., Dijkstra.
5: min_cap← FindMinimumCapacityAlongPath(augmenting_path)
6: push min_cap flow along augmenting_path

7: maximum_flow← min_cap

8: return maximum_flow

Step 4: Solving Linear Assignment with Edmond-Karp

This step is straightforward. First, implement the weighted flow network from step 1. Then,
use the “modified” algorithm you implemented in step 3 to find the network’s minimum cost
maximum flow. Finally, check the flow on the edges between the agent and task vertices
to extract an optimal bijection (i.e., a solution to the linear assignment problem) from the
weighted flow network.

Final Notes on Task 1

When you have made a correct implementation, submit it here: https://liu.kattis.com/
problems/liu.assignmenteasy. You need to be registered (you can register for free) and
logged in with your liu.kattis account (i.e., not your open.kattis account). Information about

7

https://visualgo.net/en/sssp
https://liu.kattis.com/problems/mincostmaxflow
https://liu.kattis.com/problems/liu.assignmenteasy
https://liu.kattis.com/problems/liu.assignmenteasy

how to format your output and handle the input can be found there (you get this part for
free if you use the code base provided on the course’s webpage). Note that you are allowed
to submit as many solutions as you want—there is no limit, and erroneous submissions
are not penalized! Moreover, to pass the lab, you only need to have at least one accepted
submission. Finally, keep in mind that, while the code quality is not judged, exceptionally
bad and unreadable code will not be graded (even if Kattis accepts it).

Extra (optional): If you want a harder challenge, try implementing the Hungarian
algorithm and solve the harder version of this problem that can be found here https://liu.
kattis.com/problems/liu.assignmenthard. (A correct implementation of the Hungarian
algorithm will get accepted on both versions of the problem!)

Task 2: Coalition Structure Generation

In coalitional game theory, a fundamental algorithmic problem is that of coalition structure
generation. In this problem, we aim to find a partitioning of the agents into a set of ex-
haustive and disjoint coalitions called coalition structures (Definition 1) that maximizes the
system’s performance/utility (e.g., social welfare). In particular, we shall focus on coalition
structure generation for characteristic function games (Definition 2), in which we assume
every coalition has a value assigned to it that corresponds to its potential utility.

Definition 1. Coalition structure. A coalition structure CS = {C1, ..., C|CS|} over the
agents N is a set of coalitions with Ci ⊆ N \ ∅ for i = 1, ..., |CS|, Ci ∩ Cj = ∅ for all i ̸= j,

and
⋃|CS|

i=1 Ci = N .

For example, {{a1, a3}, {a2}} and {{a1}, {a2}, {a3}} are two different coalition structures
over N = {a1, a2, a3}.

Definition 2. Characteristic function game. A characteristic function game is a coalitional
game (N, v), where N is a set of players (agents), and v : 2N 7→ R maps a value to every
possible coalition C ⊆ N . v(∅) = 0 is assumed.

More formally, the conventional coalition structure generation problem for characteristic
function games that we shall work with is defined as follows:

Input: A characteristic function game (N, v).

Output: A coalition structure CS overN that maximizes CS’s value V (CS) =
∑

C∈CS v(C).

This problem is NP-hard, and the number of solutions grows in O(nn), where n = |N |.
Moreover, to even find an approximate solution guaranteed to be within any bound from
optimum, we have to first scan all 2n possible values of the value function! In other words,
it is a pretty difficult computational problem. [Rahwan et al., 2015]

In light of these observations, in this task, we “circumvent” this difficult, and instead
experiment with the coalition structure generation problem in a non-exact fashion—i.e.,
in a non-optimal way that returns a feasible solution to the problem in polynomial time.
There are many different reasonable ways to approach this, including using general-purpose
methods such as local search, genetic algorithms, backtracking and branch-and-bound. You

8

https://liu.kattis.com/problems/liu.assignmenthard
https://liu.kattis.com/problems/liu.assignmenthard

are free to choose and experiment with as many ideas and methods you want and can think
of. In more detail, to complete the task, you need to implement at least one method (not
necessarily one listed here), and achieve a score greater than 20 on the following Kattis
problem: https://liu.kattis.com/problems/liu.csg. (The maximum score is 52.) To
get started, we recommend you to just start experimenting with various way to partition the
different agents (e.g., greedily or randomly).

As before: When you have made a correct implementation, submit it to Kattis. Infor-
mation about how to format your output and handle the input can be found there. Note
that—while the code quality is not judged—exceptionally bad and unreadable code will not
be graded (even if Kattis accepts it).

Extra (optional): Try to beat the current student high score of 34.073051!

References

Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

Talal Rahwan, Tomasz P Michalak, Michael Wooldridge, and Nicholas R Jennings. Coalition
structure generation: A survey. Artificial Intelligence, 229:139–174, 2015.

9

https://liu.kattis.com/problems/liu.csg

