Integrating Beam Search and Error
States

Group 6

What we have done

e Extension from baseline project
e Exchange the greedy search to a beam search
e Best first beam search.

e Introduce error states.

Why is this interesting?
e Beam search will improve accuracy
e Best first implementation can efficiency without at the cost of accuracy.

® J.earn from its mistakes.

BEAM SEARCH

e Efficient Search Algorithm

e Maintains Beam of Top Hypotheses @

the =
e Expands Promising Hypotheses £
&

e Prunes Unlikely Hypotheses

ERROR STATES

e Address parsing mistakes

S=[eat, pasta, with]

Q=[sauce]
e Improve accuracy N
Sh Sl R_ @ Er -
- © = — @0
e Recover from mistakes S=[S=feat] PRt Tl ol

Q=[eat, pasta, Q=[pasta, with, Q=[with, sauce] Q=[with, sauce]

with, sauce] sauce] L

=)
S=[eat]
Q=[with, sauce]

If beam search is the answer,
what was the question?

Related work

Best-First Beam Search

Efficient Structured Inference for
Transition Based Parsing with Neural
Networks and Error States

Investigated beam search
Try to answer why it is effective

Analyzed impact of beam
widths

Proposed best-first beam search

Prioritizes the highest scoring
paths at all times

Similar accuracy but faster

Integrated error states for
transition-based parsing

Improved accuracy on various
datasets

Results

e Best beam width? s

® Use Error States or not?

o Use all Error States or a fraction?

e How well does it work for

different languages?

o Size of datasets impactful?

—— Error states
No error states

Best-First Beam Search

—8— uas - Beam Search

~-® - uas - Best-First Beam Search

—— Search Time - Beam Search

-~ Search Time - Best-First Beam Search

Generating less error states

® beam=3
beam=6

Why did it not work?

Features:
They use 14 and 25
We use 6

be
be

o
34
I
o w

Dataset

—— Error states
No error states

Conclusions

Beam Search is better than greedy
Error states don’t necessarily improve performance

~50% of error states might be optimal

