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The alignment problem

• Language models are trained to generate text that is similar in 
nature to the text in their training data. 

• ere is no incentive in language model training to generate text 
that is helpful, truthful, ethical, etc. 

• As a consequence, language models are not necessarily aligned 
with human intents, preferences, or values.



Aligning to follow instructions

Explain the moon landing to a 6 year old in a few sentences. 

Explain the theory of gravity to a 6 year old. 
Explain the theory of relativity to a 6 year old in a few sentences. 
Explain the big bang theory to a 6 year old. 
Explain evolution to a 6 year old. 

People went to the moon, and they took pictures of what they saw,  
and sent them back to the earth so we could all see them.

Prompt 

GPT-3 

InstructGPT

Aligning language models to follow instructions (OpenAI, 2022)

https://openai.com/research/instruction-following
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Instruction finetuning
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Abstract

How well can NLP models generalize to a va-
riety of unseen tasks when provided with task
instructions? To address this question, we first
introduce SUPER-NATURALINSTRUCTIONS,1
a benchmark of 1,616 diverse NLP tasks and
their expert-written instructions. Our collec-
tion covers 76 distinct task types, including but
not limited to classification, extraction, infill-
ing, sequence tagging, text rewriting, and text
composition. This large and diverse collec-
tion of tasks enables rigorous benchmarking of
cross-task generalization under instructions—
training models to follow instructions on a sub-
set of tasks and evaluating them on the remain-
ing unseen ones.
Furthermore, we build Tk-INSTRUCT, a trans-
former model trained to follow a variety of in-
context instructions (plain language task defi-
nitions or k-shot examples). Our experiments
show that Tk-INSTRUCT outperforms existing
instruction-following models such as Instruct-
GPT by over 9% on our benchmark despite be-
ing an order of magnitude smaller. We further
analyze generalization as a function of various
scaling parameters, such as the number of ob-
served tasks, the number of instances per task,
and model sizes. We hope our dataset and
model facilitate future progress towards more
general-purpose NLP models.2

1 Introduction

The NLP community has witnessed great progress
in building models for generalization to unseen
tasks via in-context instructions (Mishra et al.,

1SUPER-NATURALINSTRUCTIONS represents a super-
sized expansion of NATURALINSTRUCTIONS (Mishra et al.,
2022b) which had 61 tasks.

2The dataset, models, and a leaderboard can be found at
https:// instructions.apps.allenai.org.

} Co-first authors | Co-second authors

• Input: “Context: … ‘That's fantastic, I'm glad we came to 
something we both agree with.’ Utterance: ‘Me too. I hope you 
have a wonderful camping trip.’”
• Output: “Yes”
• Explanation: “The participant engages in small talk when wishing 

their opponent to have a wonderful trip.”

• Input: “Context: … ‘Sounds good, I need food the most, what is 
your most needed item?!’ Utterance: ‘My item is food too’.”
• Output: “Yes”
• Explanation: “The utterance only takes the negotiation forward 

and there is no side talk. Hence, the correct answer is ‘No’.” 

Definition
“... Given an utterance and recent dialogue context containing past 3
utterances (wherever available), output ‘Yes’ if the utterance
contains the small-talk strategy, otherwise output ‘No’. Small-talk is
a cooperative negotiation strategy. It is used for discussing topics
apart from the negotiation, to build a rapport with the opponent.”

Task Instruction

• Input: “Context: … ‘I am excited to spend time 
with everyone from camp!’ Utterance: ‘That’s 
awesome! I really love being out here with my 
son. Do you think you could spare some food?’ ”
• Expected Output: “Yes”

Positive Examples

Negative Examples

Evaluation Instances

Tk-Instruct

Figure 1: An example task from SUP-NATINST
adopted from Chawla et al. (2021). A successful model
is expected to use the provided instructions (including
task definition and demonstration examples) to output
responses to a pool of evaluation instances.

2022b; Sanh et al., 2022; Wei et al., 2022) using
large pretrained language models (Raffel et al.,
2020; Brown et al., 2020). As remarkable as mod-
els like InstructGPT (Ouyang et al., 2022) are, the
contribution of various design choices to their suc-
cess is opaque. In particular, the role of super-
vised data has remained understudied due to lim-
ited data released by the corporate entities behind
major models. In addition, it is nearly impossible
for the research community to extend and re-train
these gigantic models. Addressing these two chal-
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A successful model is expected  
to use the provided instructions 
(including task definition and 
demonstration examples) to 
output responses to a pool of 
evaluation instances. 

Wang et al., 2022

https://aclanthology.org/2022.emnlp-main.340/


Resource → SUP-NATINST
(this work)

NATINST
(Mishra et al., 2022b)

CROSSFIT
(Ye et al., 2021)

PROMPTSOURCE
(Bach et al., 2022)

FLAN
(Wei et al., 2022)

INSTRUCTGPT
(Ouyang et al., 2022)

Has task instructions? 3 3 7 3 3 3
Has negative examples? 3 3 7 7 7 7
Has non-English tasks? 3 7 7 7 3 3
Is public? 3 3 3 3 3 7
Number of tasks 1616 61 269 176 62 –
Number of instructions 1616 61 – 2052 620 14378
Number of annotated tasks types 76 6 13 13⇤ 12 10
Avg. task definition length (words) 56.6 134.4 – 24.8 8.2 –

Table 1: A comparison of SUP-NATINST to a few notable datasets in the field. We obtain the number of tasks,
instructions, and task types of other datasets from their original paper. “–” indicates the fields are not applicable or
unknown. Standards for categorizing task types vary across different datasets (see Fig. 2). *PROMPTSOURCE does
not provide task type annotation for all their tasks, for which we report only the 13 task types annotated for training
T0 (Sanh et al., 2022) instead.
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Figure 2: Compared to other datasets, SUP-NATINST covers a more diverse range of task types. InstructGPT reports
a very coarse categorization of their task types. Bubble size represents the number of tasks of each type in log scale.

lenges necessitates the availability of large-scale
public benchmarks of a broad range of NLP tasks
and their instructions to facilitate developing and
evaluating models that can generalize to unseen
tasks.

In this paper, we construct a meta-dataset (i.e.,
dataset of datasets; Triantafillou et al., 2019) that
consists of a wide variety of NLP tasks with their
instructions, and train a model that can perform
a new task given the instruction, outperforming
InstructGPT (which uses 16⇥ more parameters).

Our dataset, SUPER-NATURALINSTRUCTIONS
(SUP-NATINST for short), is a large benchmark of
1,616 NLP tasks and their natural language instruc-
tions. It brings in a diverse variety of tasks—76
broad task types spanning 55 different languages.
Each task is paired up with an instruction that con-
sists of the task definition for mapping an input text
to a task output and several examples for demon-

strating the desired or undesired output (see Fig.1
as an example task). These tasks and their instruc-
tions are contributed by 88 NLP practitioners, in
response to our public call. These contributions are
consolidated after several rounds of peer-review
and crowdsourced feedback to ensure quality. Hav-
ing this diverse and large-scale data enables us
to carefully split the tasks into training and test
sets and systematically study how state-of-the-art
methods perform on them. Table 1 and Figure 2
highlight properties of SUP-NATINST compared to
relevant benchmarks, emphasizing the diversity of
tasks and instruction types in our benchmark.

Our model, Tk-INSTRUCT, is a generative
model for transforming task inputs given declar-
ative in-context instructions (task definition or k-
shot examples). It is built by multi-task training
of the T5 model (Raffel et al., 2020) over all the
task instructions in our training set, and is eval-
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Super-NaturalInstructions 
1,616 diverse NLP tasks

https://aclanthology.org/2022.emnlp-main.340/


Limitations of instruction finetuning

• Collecting ground-truth data for a large number of relevant tasks 
is expensive and time-intensive. 

• ere are many tasks that do not have a single correct answer. 

• Language modelling as an objective penalises token-level 
mistakes, but many mistakes are at the conversation level. 

• Human preferences are inconsistent.

Credits to Jesse Wu



Explain the theory of 
gravity to a 6 year old.

Optimising for human preferences

Prompt:  Explain the moon landing to a 6 year old in a few sentences.

People went to the 
moon, and they took 
pictures of what they 
saw, and sent them back 
to the earth so we could 
all see them.

WorseBetter



Optimising for human preferences
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is expensive!
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Optimising for human preferences

Language model

Reinforcement learning (PPO)

Reward model

reward 

parameter update

human feedback



Reward model

• We fine-tune a language model that takes a prompt 𝑥 and a 
completion 𝑦, and outputs the reward as a scalar. 

• For training, we sample 𝑚 prompt–response pairs and use a 
cross-entropy loss with the binary human comparisons as labels:

<latexit sha1_base64="jWwh7oEJBJDmw4RHCmkFzgWUcpQ="></latexit>

loss(𝜽) ≔ − 1𝑚 𝑚∑𝑖=1 log(𝜎(𝑅𝜽(𝑥𝑖, 𝑦+𝑖 ) − 𝑅𝜽(𝑥𝑖, 𝑦−𝑖 )))
preferred  

completion
dispreferred  
completion
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Policy gradient

• We want to update the parameters of our language model to 
maximise expected reward. 

• To do so, we sample 𝑚 prompt–response pairs (𝑥𝑖, 𝑦𝑖), compute 
rewards according to our reward model, and do gradient ascent:

reward is positive – take gradient steps to maximise probability
reward is negative – take gradient steps to minimise probability

<latexit sha1_base64="nwpmla05FAhdlMzAvP9nxHoa8eA=">AAAF3HicjVRdT9swFE03urHuC7bHvVhDTDDargFEYagSAoQ2aYyO8iXVpXKSS2vh2CF2unVe3vY27XUP+2f7N7PbDtYWJCwlcc499/j6Xl97EaNSlUp/MnfuTmTv3Z98kHv46PGTp1PTz46kSGIfDn3BRHziEQmMcjhUVDE4iWIgocfg2DvfsvbjDsSSCn6guhE0QtLi9Iz6RBmoOfUbd8DXWLVBkbSp1YKbIryOrTCHiwu8joYICi0gTFjUJgifxcTXbqpD4yGTsKlpxU1PQ7Q/96VJ86jbpPMIc+Ix0tTDIsaBiRaKxvA544Tz33DeKMw3p2ZKxVJvoPGJO5jMOINRbU5PvMaB8JMQuPIZkbLuliLV0CRW1GeQ5nAiISL+OWlB3Uw5CUE2dC+JKZo1SIDORGwerlAP/d9Dk1CGRLUN035kDu/DRUJjqA7s1k1G4Ke5UVPdEywoSNVlUHlf28tb/6vfhk449UUAhZ58DktQIaHc6tVzCNXoV9gBopIYJKogbSCEtEXNX2G1uJxHe5HZIWEDbDXND3EMpeAujbJcd4TmLhXcteLaGG9tlGdIhVFWeTE1pB7zA21dBnsAJxb6mISeOYQ2+l3BhTQphcBIsKBms2DcGnqXcnMiUTUW/1Kg2rdLwUoe7diSVVBfY9em94Dybh715K3BQDU/ppHqv0e2tNJP47jKFonUdSo3ZHhcYB9aCSPxLTQu0z8uUku89m0UbGHKi9cpbFMZjbDLi4WbmNeuZct7Vabd/lFloGwLV7Dsht7ZULvY+ikhmDS0KBYdGoAvwpDwALdoB7g2+DaYPrVtYnol2DaXWEgVxCfVKq7u723W3YaupnPzOtWzZnUcA4fPwxqYCy578eG3OLAC0uzOhBSrIZMNRkR2UbuPGTfNmdvFHb1LxidHi0V3pbjyaXlmY3Nwz0w6L5yXzpzjOmVnw3nnVJ1Dx884mVeZN5lS9jT7Pfsj+7NPvZMZ+Dx3hkb211/+59dj</latexit>𝜽𝑡+1 ≔ 𝜽𝑡 + 𝛼 1𝑚 𝑚∑𝑖=1𝑅(𝑥𝑖, 𝑦𝑖)∇𝜽𝑡 log𝑝𝜽𝑡 (𝑦𝑖 | 𝑥𝑖)

Williams (1992); Schulman et al. (2017)

https://doi.org/10.1007/BF00992696
https://arxiv.org/abs/1707.06347


Figure 2 from Ouyang et al. (2022)

https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf


• Starting from the finetuned language model 𝑝FT, we obtain 
updated language models 𝑝RL using policy gradient methods. 

• To penalise the updated models for diverging too far from the 
finetuned model, we use a modified reward function:

Putting it all together

reward model penalty based on KL divergencesample

<latexit sha1_base64="R7jDZZkqBPXLvTIK3EAn78dEdHM="></latexit>𝑅′(𝑥, 𝑦) = 𝑅(𝑥, 𝑦) − 𝛽 log[𝑝RL𝜽 (𝑦 | 𝑥)/𝑝FT(𝑦 | 𝑥)]

Ouyang et al. (2022); Schulman et al. (2017)

https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://arxiv.org/abs/1707.06347


Effectiveness of human feedback

Supervised learning

Human feedback

Pretrain only

Reference summaries

Figure 1: Fraction of the time humans prefer our models’ summaries over the human-generated
reference summaries on the TL;DR dataset.4Since quality judgments involve an arbitrary decision
about how to trade off summary length vs. coverage within the 24-48 token limit, we also provide
length-controlled graphs in Appendix F; length differences explain about a third of the gap between
feedback and supervised learning at 6.7B.

are incentivized to place probability mass on all human demonstrations, including those that are
low-quality; and distributional shift during sampling can degrade performance [56, 52]. Quality can
often be improved significantly by non-uniform sampling strategies such as beam search [51], but
these can lead to repetition and other undesirable artifacts [69, 23]. Optimizing for quality may be a
principled approach to overcoming these problems.

Our goal in this paper is to advance methods for training language models on objectives that more
closely capture the behavior we care about. To make short-term progress towards this goal, we
focus on abstractive English text summarization, as it has a long history in the NLP community
[16, 8, 54, 59, 50], and is a subjective task where we believe it is difficult to quantify summary quality
without human judgments. Indeed, existing automatic metrics for evaluating summary quality, such
as ROUGE [39], have received criticism for poor correlation with human judgments [55, 45, 6, 33].

We follow the works of [3, 73], who fine-tune language models from human feedback using reward
learning [35]. We first collect a dataset of human preferences between pairs of summaries, then train
a reward model (RM) via supervised learning to predict the human-preferred summary. Finally, we
train a policy via reinforcement learning (RL) to maximize the score given by the RM; the policy
generates a token of text at each ‘time step’, and is updated using the PPO algorithm [58] based on
the RM ‘reward’ given to the entire generated summary. We can then gather more human data using
samples from the resulting policy, and repeat the process. We follow the works of [48, 4] and use
large pretrained GPT-3 models with as many as 6.7 billion parameters.

Our main contributions are four-fold.

(1) We show that training with human feedback significantly outperforms very strong baselines
on English summarization. When applying our methods on a version of the Reddit TL;DR dataset
[63], we train policies via human feedback that produce better summaries than much larger policies
trained via supervised learning. Summaries from our human feedback models are preferred by our
labelers to the original human demonstrations in the dataset (see Figure 1).

(2) We show human feedback models generalize much better to new domains than supervised
models. Our Reddit-trained human feedback models also generate high-quality summaries of news
articles on the CNN/DailyMail (CNN/DM) dataset without any news-specific fine-tuning, almost
matching the quality of the dataset’s reference summaries. We perform several checks to ensure
that these human preferences reflect a real quality difference: we consistently monitor agreement
rates amongst labelers and researchers, and find researcher-labeler agreement rates are nearly as high
as researcher-researcher agreement rates (see Section C.2), and we verify models are not merely
optimizing simple metrics like length or amount of copying (see Appendices F and G.7).

4Throughout the paper, error bars represent 1 standard error.
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