Word embeddings

Marco Kuhlmann
Department of Computer and Information Science

This work is licensed under a
Creative Commons Attribution 4.0 International License.

One-hot vectors

- To process words using neural networks, we need to represent them as vectors of numerical values.
- The classical way to do this is to use one-hot vectors - vectors in which all components but one are zero.

Word embeddings

Compared to one-hot vectors, word embeddings

- are shorter but dense
- support a useful notion of similarity
- can be learned from data
\longmapsto \# dimensions —

\longmapsto \# dimensions -

Source

You shall know a word by the company it keeps

What do the following sentences tell us about Garrotxa?

- Garrotxa is made from milk.
- Garrotxa pairs well with crusty country bread.
- Garrotxa is aged in caves to enhance mould development.

The distributional hypothesis

- The distributional hypothesis states that words with similar distributions have similar meanings.
with similar distributions = are used and occur in the same contexts
- This suggests that we can learn word representations from co-occurrence statistics.
similar co-occurrence distributions $=$ similar meanings

Co-occurrence matrix

	cheese	bread	goat	sheep
cheese				
bread				
goat				
sheep				

as olives cheese or bread

Co-occurrence matrix

	cheese	bread	goat	sheep
cheese		1		
bread				
goat				
sheep				

as olives cheese or bread
of sheep cheese and milk

Co-occurrence matrix

	cheese	bread	goat	sheep
cheese		1		1
bread				
goat				
sheep				

as olives cheese or bread
of sheep cheese and milk
goat milk cheese can be

Co-occurrence matrix

	cheese	bread	goat	sheep
cheese		1	1	1
bread				
goat				
sheep				

as olives cheese or bread
of sheep cheese and milk
goat milk cheese can be
bread and cheese for breakfast

Co-occurrence matrix

	cheese	bread	goat	sheep
cheese		2	1	1
bread				
goat				
sheep				

as olives cheese or bread
of sheep cheese and milk
goat milk cheese can be
bread and cheese for breakfast
macaroni and cheese with bread

Co-occurrence matrix

	cheese	bread	goat
sheep			
cheese		3	1
bread			1
goat			
sheep			

as olives cheese or bread
of sheep cheese and milk
goat milk cheese can be
bread and cheese for breakfast
macaroni and cheese with bread

Co-occurrence matrix

	cheese	bread	goat	sheep
cheese	14	7	5	1
bread	7	12	0	0
goat	5	0	8	12
sheep	1	0	12	2

Vector similarity $=$ meaning similarity

vector space (PCA)

	cheese	bread	goat	sheep
cheese	1.00	0.80	0.49	0.38
bread	0.80	1.00	0.17	0.04
goat	0.49	0.17	1.00	0.67
sheep	0.38	0.04	0.67	1.00

cosine similarities $\quad \cos (x, y)=\frac{x^{\top} y}{\|x\|\|y\|}$

Learning word embeddings

- Count-based methods: Matrix factorisation

Minimise the difference between the co-occurrence matrix and an approximate reconstruction of it from word embeddings.

- Prediction-based methods: Neural networks

Maximise the likelihood of a corpus under a probability model that is conditioned on the word embeddings.

Evaluation of word embeddings

- visualisation of the embedding space

Requires dimensionality reduction (PCA, t-SNE, UMAP)

- computing relative similarities
cosine similarity, Euclidean distance
- similarity benchmarks

Example: odd one out - breakfast lunch dinner surgery

- analogy benchmarks

Example: woman is to man as sister is to ?

