Hide menu

TDDE09 Natural Language Processing

Natural Language Processing (NLP) develops methods for making human language accessible to computers. This course aims to provide you with a theoretical understanding of and practical experience with the advanced algorithms that power modern NLP. The course focuses on methods based on deep neural networks.

Intended learning outcomes

On completion of the course, you should be able to:

  1. explain central concepts, models, and algorithms of NLP
  2. implement NLP algorithms and apply them to realistic problems
  3. evaluate NLP components and systems with appropriate methods
  4. identify, assess, and make use of NLP research literature

For each intended learning outcome, there is a set of knowledge requirements describing what you need to demonstrate to earn a certain grade. You can find these knowledge requirements on the Examination page.

Course content

The course covers

  • state-of-the-art algorithms for the analysis and interpretation of natural language
  • relevant machine learning methods with a focus on deep neural networks
  • validation methods
  • NLP applications
  • NLP tools, software libraries, and data
  • NLP research and development

in the following areas: word representations, language modelling, sequence labelling, syntactic analysis, and machine translation.

Teaching and working methods

The means of instruction for this course include video lectures, interactive sessions, tutored computer labs, and supervision in connection with a project. You are also expected to study independently, both individually and in groups. When you plan your time for the course, you should calculate approximately

  • 36 hours to watch and revise the video lectures
  • 12 hours to attend the interactive sessions
  • 56 hours to prepare for, work on, and reflect on the labs
  • 56 hours to plan, work on, and reflect on the project

Course literature

The reading for this course consists of individual sections from the following books:

For follow-up and in-depth reading, we recommend the following:

Feedback policy

What you can expect from us. We try our best to give you prompt, constructive, and meaningful feedback on how well you meet the knowledge requirements set out for the course. We offer feedback in various forms; you can find the details on the Examination page. Our focus is on formative feedback, which you can use to improve your learning (and we can use to improve our teaching!) while the course is ongoing.

What we expect from you. We expect you to familiarise yourself with the knowledge requirements set out for the course and to actively seek our feedback on how well you meet these requirements. We also expect you to reflect on the feedback we provide and grasp opportunities to put it to good use.

Communication policy

What we expect from you. This website is the primary source of information about the course, and we expect you to keep yourself up-to-date with what we publish here. We also send out information via the University’s email list for the course and the class team on Microsoft Teams, and we expect you to read these channels regularly while the course is ongoing.

What you can expect from us. When you contact us via email or chat, you can expect an answer during standard working hours, 8–17. (We do not respond to emails or chat in the evening or during the weekend.) For more personal contact, you can talk to the examiner in class or book an appointment.

Special needs

Accessibility. If any part of the course is not accessible to you due to challenges with technology or the course format, please let the examiner know so we can make appropriate accommodations.

Students with disabilities. If you have a documented disability, you should contact the examiner as soon as possible regarding accommodations. Book an appointment with the examiner

Page responsible: Marco Kuhlmann
Last updated: 2022-12-31