
Lectures

TDDE05 AI Robotics Knowledgeable Robot *Cyrille Berger*

2/44

Robot Architecture

Lecture content

Knowledge Database

- ^o Description Logics
- RDF and the Semantic Web
- SPARQL
- ° Ontologies

1Introduction to AI Robotics

4Foundation of Robotics: Perception

3Foundation of Robotics: Control and State Machines

2Introduction to ROS

5Robotic Architectures

6Reactive Architecture 7Deliberative Architecture

9Knowledgeable Robot 10Machine Learning for Robots 11Human-Aware Robots 12Putting It All Together

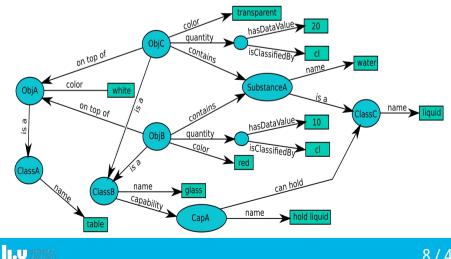
8Decision Theory

- OWL
- $^{\circ}$ Ontologies for Robotics

Knowledge Database

How to store symbols?

- Symbols have properties
- ^o The car's color is red
- ^o The victim's leg is broken
- Symbols have relations to each other
- ^o The glass is on this table
- ^o The victim is in that building
- Symbols have generic properties
- ^o This object is a car, a car has four wheels and can be used to drive humans around


How to access symbols?

- Where are victims with broken legs?
- Where is the glass?
- What can be used to drive humans around?

6/44

Modeled as a graph

Description Logics

What are Description Logics (DL)?

- A family of logic based on Knowledge Representation formalisms
- Describes domain in terms of *concepts* (aka classes), *roles* (aka properties, relationships) and *individuals*

• A subset of first-order logic, that is decidable

Knowledge base

Knowledge is represented as a knowledge base, $K = \langle A, T(R) \rangle$ where:

- T (TBox) is the Terminological Knowledge Knowledge about concepts of a domain
 Victim = Person □ ∃ hasStatus.Injured
- A (ABox) is the Assertion Knowledge Knowledge about individuals / Entities Person(George) hasStatus(Injured, George)

10/44

ALC

- ALC (Attribute Language with Complement) is the smallest deductively complete DL
 - Class constructors: conjuction □, disjunction □, negation ¬
 - ^o Quantifiers restricted to domain and range of roles

ALC: Example

Individuals

Individual *ObjA* is of class *Table* Table(ObjA) Individual *ObjB* is of class *Glass* Glass(ObjA)

Roles

ObjB is *on top of ObjA* onTopOf(ObjB, ObjA)

13 / 44

Examples

TBox

- ^{\circ} Animal \sqsubseteq LivingThing
- ^{\circ} Donkey ≡ Animal $\sqcap \forall$ hasParent.Donkey
- ^{\circ} Horse ≡ Animal $\sqcap \forall$ hasParent.Horse
- [°] Mule = Animal ⊓ ∃ hasParent.Horse ⊓ ∃ hasParent.Donkey
- $^{\circ}$ ∃ hasParent.Mule \sqsubseteq ⊥

ABox

- ^o Horse(Mary) Mule(Peter) Donkey (Sven)
- ^o hasParent(Peter , Mary) hasParent(Peter , Carl)

ALC: Formal Definition

- Set of concept A, B, C...
- Special concepts: universal (op), empty (op)
- Set of role names R, S...
- Set of individuals a,b,c...
- Complex classes are defined with
- C,D:=A | \top | \perp | \neg C | C \sqcap D | C \sqcup D | \forall R.C | \exists R.C
- A TBox is a set of statements of the form C≡D or C⊑D
- A ABox is a set of statements of the form C(a) or R(a,b)

14 / 44

Translation to First order logic (1/2)

$\begin{array}{c} \textbf{Conjunction} \\ Mother \equiv Woman \sqcap Parent \\ \forall x \quad Mother(x) \Longleftrightarrow Woman(x) \land Parent(x) \end{array}$

- disjunction $Parent \equiv Mother \sqcup Father$ $\forall x \ Parent(x) \iff Mother(x) \lor Father(x)$
- negation

Translation to First order logic (2/2)

• existential qualification $Parent \equiv \exists hasChild.Person$ $\forall x \ Parent(x) \iff \exists y \ hasChild(x, y) \land Person(y)$

• universal qualification

 $Person \sqcap Happy \equiv \forall hasChild.Happy \\ \forall x \ Person(x) \land Happy(x) \iff (\forall yhasChild(x, y) \Longrightarrow Happy(y))$

Application of Description logic

• The following questions are of interest with respect to a TBox T:

 $^{\circ}$ Given a concept C , is C satisfiable ($\,\langle$ T , {C (x_0)} $\rangle\,$ has a model); C is a Car and an Animal is not satisfiable

- ² Given two concepts C and D, is C subsumed by D (T \models C \sqsubseteq D); Quadcopters are helicopters
- $^{\circ}$ Given two concepts C and D, are C and D equivalent (T \models C \equiv D); Car and Automobile are equivalent
- $^\circ$ Given two concepts C and D, are C and D disjoint (T \vDash C \sqcap D \sqsubseteq \bot); Cars and Animals are disjoint
- The following problems are of interest with respect to knowledge bases

K= $\langle A,T \rangle$

- [°] Is K consistent (K has a model);
- [◦] Given a concept C and an individual *a*, does K entail *C* (*a*) (*K* ⊨ *C* (*a*)) Is *a* a robot?
- Given a concept C, find all individuals a such that K entails C (a).
 Give me all the victims in the environment

Extensions to ALC

Role hierarchies (H) $hasFather \sqsubseteq hasParent$ Complex role hierarchies (R) $hasParent \circ hasBrother \sqsubseteq hasUncle$ Transitivity $hasAncestor \circ hasAncestor \sqsubseteq hasAncestor$ Inverse role (I) $hasParent \equiv hasChild^-$ Cardinality restrictions (N) $Mammal \sqsubseteq \leq 2hasParent$ Qualified cardinality restrictions (Q) $RichPeople \sqsubseteq \geq 2owns.House$ Closed classes (0) $Days \sqsubseteq \{monday, tuesday, ..., sunday\}$

RDF and the Semantic Web

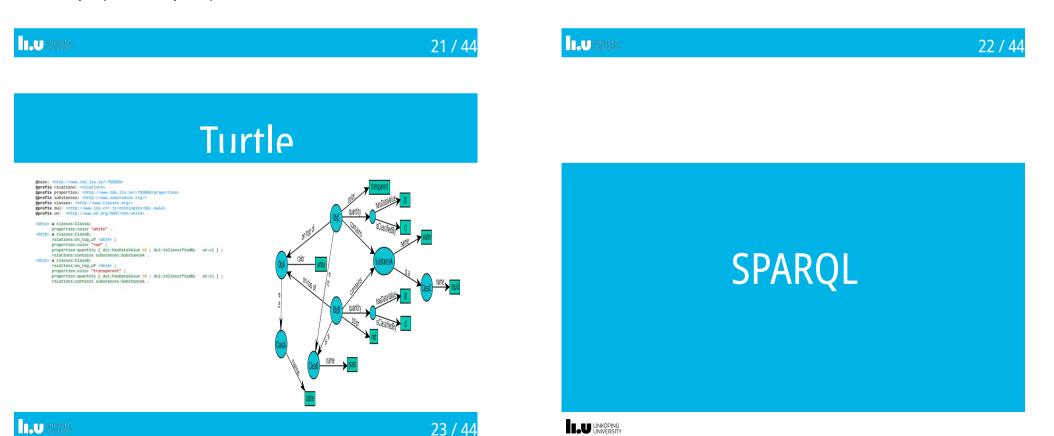
18/4

17/44

RDF

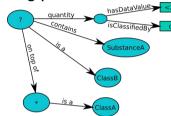
- RDF stands for *Resource Description Framework*
- It is a framework for representing information in the Web
- Basic building block: subject-predicate-object triple

subject predicate object


subject predicate object

^o subject/predicate/object are entities called *resources*

^o subject-predicate-object triple is called *statement*


Resources as URI

- Resources are represented as URI
 - May or may not correspond to a valid website/ document
 - ^o Way of generating unique identifier

Graph matching

- How to access part of the knowledge?
 - ^o We want to query for all glasses on top of a table with less than 15cl of water
- A graph matching problem

25 / 44

SPARQL

- Syntax very similar to

 SELECT <variables> FROM <sources> WHERE <graph constraints>
- ^o SELECT specifies the variables and values
- ^o FROM specifies the data source
- $^{\circ}$ WHERE imposes constraints on solution
- Graph is expressed very similarly than with
- Resources can be URI (<>), Variables (?var) or BlankNode (_:name)

Ouery everything: SELECT ?x ?y ?z WHERE { ?x ?y ?z }

26/44

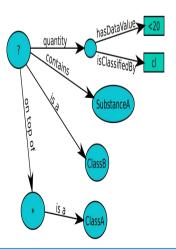
SPARQL - Examples (1/2)

• Select everything which has a color:

PREFIX properties: <http://www.ida.liu.se/~TDDE05/properties>
SELECT ?x ?z WHERE { ?x properties:color ?z }

Select everything which has the color red:

PREFIX properties: <http://www.ida.liu.se/~TDDE05/properties>
SELECT ?x WHERE { ?x properties:color "red" }
PREFIX properties: <http://www.ida.liu.se/~TDDE05/properties>
SELECT ?x WHERE { ?x properties:color ?z FILTER(?z = "red") }

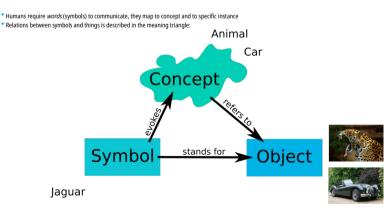

Select everything that has less than 15cl

PREFIX properties: <http://www.ida.liu.se/~TDDE05/properties>
PREFIX dul: <http://www.loa-cnr.it/ontologies/DUL.owl#>
PREFIX un: <http://www.w3.org/2007/ont/unit#>
SELECT ?x WHERE { ?x properties:quantity _:blankNode1 .
_:blankNode1 dul:hasDataValue ?z .
_:blankNode1 dul:isClassifiedBy un:cl .
FILTER(?z < 15) }</pre>

SPAROI - Fxamples (2/2)

BASE: <http://www.ida.liu.se/~TDDE05> PREFIX relations: <relations> PREFIX properties: <http://www.ida.liu.se/~TDDE05/ properties> PREFIX substances: <http://www.substances.org/> PREFIX classes: <http://www.classes.org/> PREFIX dul: <http://www.loa-cnr.it/ontologies/ DIII ow1#> PREFIX un: <http://www.w3.org/2007/ont/unit#> SELECT ?glass WHERE { ?glass is classes:ClassB ; relations:contains substances:SubstanceA ; relations:on_top_of ?table ; properties: quantity [dul:hasDataValue ?quantity ; dul:isClassifiedBy un:cl] . FILTER(?quantity < 15)

?table is classes:ClassA .
}

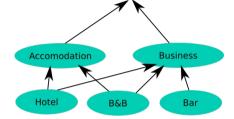

RDF Limitation

- RDF, Turtle, XML is syntax
 - ^o It allows specification of a graph and values
 - ° It allows definition of explicit knowledge
- Need structure!
- Definition of implicit knowledge
- Standardization
 - o <cost> £10</cost> vs <price>£10</price>
 - ^o What does friend(ann, jane) means?
 - ...

29 / 44

Triangle of reference

What is an ontology? (1/2)


Ontologies

A common language is defined by:

- Syntax: common symbols and concepts
- Semantics: agreement about their meanings
- **Taxonomy:** classification of concepts
- Thesauri: associations and relations of concepts
- Ontolgies: rules and knowledge about whcih relations are allowed and make sense

What is an ontology? (2/2)

• A classification of types of entities (concepts/classes):

• Constraints on how they are used: $\forall x, x \in Hotel \implies x \notin B\&B$ $\forall x, \exists y \ x \in Hotel \implies partof(x, y) \land y \in Bar$

33 / 44

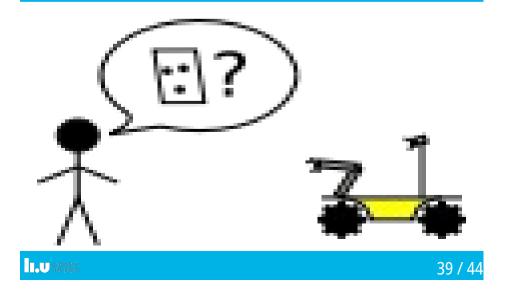
OWL

- OWL stands for Web Ontology Language
- Expresses ontology as RDF
- Based on Description Logic (SHOIN/ SROIQ)

Description Logic Syntax

Axiom (ABox)
:mary a :Person
:john :hasWife :mary
:yohn :hasWife :mary
:vas W i fe (john, mary)

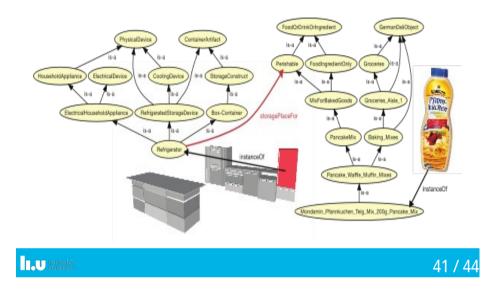
Concept (TBox)
:Woman owl:SubClassOf :Person
W orman [Person
W orman [Person
:Person own!:EquivalentClass :HumanBeing
Person = HumanBeing
:hasWife owl:SubPropertyOf :hasSpouse
i.as W i fe [hasSpouse


What can we do with an ontology?

- Define terms and concepts
- Check the validity of our data
- Infer new facts
 - For instance, to ask questions such as give me the object that contain water

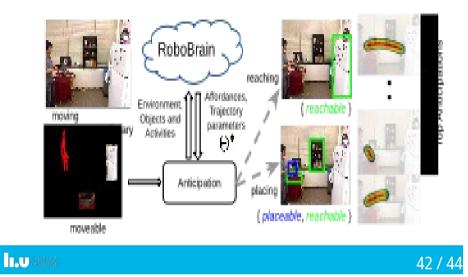
37 / 44

How to get help with making pancakes? (1/2)


Ontologies for Robotics

How to get help with making pancakes? (2/2)

- Where is located the object?
- How to grab the object?


Where is located a cooking ingredient?

Knowledge database

- Grounded in Description Logic
- Represented as a RDF graph
- Queried with SPARQL
- OWL Ontologies

Predict the future

Conclusion

- Storing symbolic data in a graph
- Querying the graph
- Structuring the knowledge