
TDDE05: Lab 2: Navigation

Cyrille Berger

February 22, 2021

The goal of this lab is to build a map of the environment and to use the map to plan
a path for your robot.

On a side note, you should not expect your robot to perfectly avoid the obstacles
and perfectly follow the motion plan, but the plan you generate should be avoiding the
obstacles.

1 Get the code for lab2

Get the updated skeleton code for lab2 from gitlab:

1 cd ~/TDDE05/catkin_ws/src/air_labs/

2 git pull --allow-unrelated-histories \

3 https://gitlab.ida.liu.se/tdde05/air_labs.git master

2 Simulator with obstacles

You now should run the simulator with obstacles:

1 rosrun air_simple_sim simple_sim.py _world:=world_1 __ns:=/husky0

You can update your screen file, if needed. On a side note, the simulator does not
simulate colision, so your robot will go through the obstacles.

3 TF

TF1 is a package that allow to handle multiple coordinate frames over time, and their
relationship. There is usually a root frame, corresponding to the origin of the world. In
our labs, it is called odom (it can be sometime called world or map). All other frames
need to express a transformation to odom, directly or indirectly.

On a robot, you usually have multiple frames:

• husky0/base_footprint corresponding to the center of all the contact points
of the robot with the ground

• husky0/base_link corresponding to the center of gravity of the robot

1http://wiki.ros.org/tf

1

• And one frame for each sensor:

– husky0/velodyne corresponding to the velodyne laser

– husky0/imu corresponding to the IMU sensor

– ...

In ROS, the transformations are broadcasted on the /tf topic.
The morse simulator publishes the transformation from husky0/base_link to the

sensor frames. It also publishes a transformation from husky0/base_footprint to
odom. However, by default no transformation between husky0/base_link and
husky0/base_footprint is published.

The TF tree can be shown using, and you should see something similar to figure ??:

1 rosrun rqt_tf_tree rqt_tf_tree

It can also be shown as a plugin in rqt.

Figure 1: TF shown in rqt

If you want to access TF information from your code, in C++, you can use a
tf::TransformListener. This class will listen on /tf topic and allows you to lookup
for transformation between two frames:

1 // Declare this as a class member! It needs to stay alive while

2 // your program is running

3 tf::TransformListener m_tfListener;

4

5 // In one of your callback or elsewhere:

6 // We want to know the transformation from source_frame_id to

7 // destination_frame_id at time time_stamp

8

9 tf::StampedTransform transform;

10 try

11 {

2

12 // Define a 1s timeout

13 ros::Duration timeout(1.0);

14 // First, lets wait a bit to make synchronize our TF tree and

15 // make sure we have received the transform

16 m_tfListener.waitForTransform(destination_frame_id,

17 source_frame_id, time_stamp,

18 timeout);

19 // Then lets get the transformation

20 m_tfListener.lookupTransform(destination_frame_id,

21 source_frame_id, time_stamp,

22 transform);

23 } catch(tf::TransformException& ex)

24 {

25 ROS_ERROR_STREAM("Failed to get the transformation: "

26 << ex.what() << ", quitting callback");

27 return;

28 }

You can transform the coordinate of a point using:

1 tf::Vector3 v = transform * tf::Vector3(x, y, z);

For python usage, you can see an example in air_lab2/src/move_to_point.py.

4 Lidar scan message

The robot is equipped with a simulated 2D lidar sensor, which generates a message on
the /husky0/lidar topic using the sensor_msgs/LaserScan2 message. That mes-
sage contains some meta information about the scan, which are traced from the sensor
from angle_min to angle_max in increment of angle_increment. The ranges field
contains the distance between the sensor and an obstacle. A NAN value indicates that the
lidar didn’t detect an obstacle. range_max indicates the maximum distance at which
the lidar can detect obstacles. Figure 2 shows the most important value.

angle_maxangle_min

angle_increment

ranges[0]
O

Figure 2: Laser scan, red lines indicate laser ray.

You can use RViz to visualize the lidar scan like in figure 3. You can add a LaserScan
display and set the topic to /husky0/lidar. You can increase the value for Decay Time

to see multiple frames at the same time. And size (m) to view bigger points.

2http://docs.ros.org/en/api/sensor_msgs/html/msg/LaserScan.html

3

Figure 3: Lidar scan shown in RViz

5 General architecture

The general architecture of the motion planning system that we will develop in this lab
is presented in figure 4.

Fusion /
Symbol extraction

Local / Global
Maps

Sensor

lidar/simple_sim laser scan callback

get map service
lls_to_occ

Motion
Planner

Actuators

husky/simple_sim

Path
Execution

husky_control (lab1)
state machine

sensor_msgs/LaserScan

/husky0/lidar

nav_msgs/GetMap

map_request

Plan to Control

move_to_point.py

map_requestnavs_msgs/GetPlan

get plan service
motion_planner

destination_callback

/husky0/waypointsnav_msgs/Path

geometry_msgs/Twist

/husky0/veloctity_cmd

geometry_msgs/PoseStamped

/husky0/destination

std_msgs/Empty

/husky0/to_waypoint_control

S
en

se-Thin
k-Act-

Figure 4: Architecture of the motion planning system, from sensing, to building a map,
to planning, to execution

In this lab you will develop two new ROS nodes and use the state machine node you
have developed during lab1:

• ls_to_occ a node that takes a lidar scan from a sensor and build an occupancy
mapo. This node will also provide a service that return the map.

• motion_planner a node that provide as a service a motion plan from a point of
origin to a specified destination. This node will use the occupancy map to compute
the motion plan.

We provide you with three programs that will help you developing the functionalities
for this lab, to get it into your project, run:

4

• occ_to_display a program that allows to display the occupancy map in Rviz.

• traversability_to_display a programm that will transform the occupancy
grid into a traversability map that will be published as message of type nav_msgs/OccupancyGrid
which can be display in Rviz.

• move_to_point.py a program that will conveniently trigger the computation of
a motion plan every time you select a destination in Rviz. It takes as input topic
a destination of type geometry_msgs.msg.PoseStamped and it will call the
planner to get a path that is then output on the planned_path topic. It uses a
parameter called robot_frame which correspond to the robot frame in the TF
tree.

6 Generate Occupancy Grid

A OCC class is provided in air_lab2/occ.h, it contains functions for updating the OCC
and for filling the nav_msgs/GetMap service answer. Some documentation is provided
in the header.

You should create a new ROS node called ls_to_occ (called ls_to_occ.cpp file.
You cann use the following base structure for your node:

1 #include "air_lab2/occ.h"

2

3 #include <ros/node_handle.h>

4 #include <ros/service.h>

5 #include <ros/subscriber.h>

6

7 #include <atomic>

8

9 #include <sensor_msgs/LaserScan.h>

10

11 class LStoOCC {

12 public:

13 LStoOCC(const ros::NodeHandle& _nodeHandle)

14 : m_nodeHandle(_nodeHandle), m_occ(nullptr),

15 m_cell_size(0.1), m_robot_size(0.0)

16 {

17 // Fill in

18 }

19

20

21 void laserScanCallback(const sensor_msgs::LaserScanPtr& _message)

22 {

23 // Fill in

24 }

25 private:

5

26 ros::NodeHandle m_nodeHandle;

27 OCC* m_occ;

28 double m_cell_size, m_robot_size;

29 // Fill in

30 };

31

32 int main(int argc, char** argv)

33 {

34 ros::init(argc, argv, "ls_to_occ");

35 ros::NodeHandle n;

36

37 LStoOCC ptd(n);

38

39 ros::spin();

40 return 0;

41

42 }

Add the node in CMakeLists.txt, where there are other add_executable, near
the bottom of the file:

add_executable(ls_to_occ src/ls_to_occ.cpp)

target_link_libraries(ls_to_occ

${catkin_LIBRARIES}

)

Do not forget to run catkin build every time you make a change to your C++!

6.1 Params

The OCC class requires two arguments, the best is to make them configurable on the
command line, you can do so using the parameters system of ROS, you can access pa-
rameters in C++ this way:

1 double grid_cell_size = 0.1;

2 ros::NodeHandle private_nodehandle("~");

3 private_nodehandle.getParam("grid_cell_size", grid_cell_size);

Do the same for the robot size (you can reuse private_nodehandle), then you
can change the parameters from the command line the same way you did in lab1 to set
the parameters of the PID controller.

6.2 OCC generation algorithm

In the constructor of LStoOCC you need to subscribe to the topic in the constructor
(check lecture 02 fore more details):

6

1 m_lsSub = m_nodeHandle.subscribe("scan", 1,

2 &LStoOCC::laserScanCallback, this);

In a callback triggered everytime a new point cloud S is received, follow those steps
to generate a OCC:

1. Get the transformationT from the sensor frame (given by msg.header.frame_id)
to odom using the TF listener (see section 3)

2. Call the ensureInitialise function of the OCC class with T as arguement.

3. For all direction of the laser, compute the origin of the ray, as O = T ∗ {0,0, 0},
the direction of the ray as Di = (T ∗ {cos(αi), sin(αi), 0} − O) (make sure Di is
normalised, you can use the normalize function from a tf::Vector3). Look at
figure 2.

Then call the function rayTrace of OCC where _skip is the size of the robot,
_length is the range and _obstacle indicate if the ray has hit an obstacle. If
the range of the current ray is NAN3 give range_max as argument to ray_trace
and _obstacle should be false.

6.3 OCC request service

Now you need to give access the OCC through service calls. We will use a ROS ser-
vice call (named map_request) for that purpose using the nav_msgs/GetMap service
definition.

You will create a callback for the service function that looks like:

1 bool mapService(nav_msgs::GetMapRequest& _req,

2 nav_msgs::GetMapResponse& _resp)

3 {

4 // Fill in

5 }

You can use the requestMap function of the OCC class to fill the response. You can
create a service the following way (check lecture 02 fore more details):

1 m_mapRequest = m_nodeHandle.advertiseService("map_request",

2 &LStoOCC::mapService, this);

6.4 Run the OCC generation and display

You can run the OCC:

1 rosrun air_lab2 ls_to_occ __ns:=/husky0 scan:=lidar

To display it:

3You should use the std::isnan(x) function and not comparison to NAN

7

1 rosrun air_lab2 occ_to_display __ns:=/husky0

Then in Rviz add a display for map and set it to the topic /husky0/map_display.
You should see something like on figure 5.

Figure 5: Rviz with a map. The grey part shows no obstacle, the greenbluish color
represent unknown area, and black obstacles.

6.5 Initialisation

If on figure 5, there is an unknown area around the robot, this is because the laser cannot
see close. This will cause problem for the motion planning, to work around the problem,
make sure that the initial_size of your robot is correctly set (you can use a value of
1.0).

7 Path planning

In the second part of the lab you should create a program that will plan motion path using
the OMPL4 library. To do this you should create a new ROS node called motion_planner
(you can use motion_planner.cpp file and don’t forget to update CMakeLists.txt).c
Follow a similar model as you did for ls_to_occ.cpp.

In CMakeLists.txt, you should link with the OMPL library, using the following
line:

1 target_link_libraries(motion_planner

2 ${catkin_LIBRARIES} ${OMPL_LIBRARIES}

3)

A MotionPlannerInterface class is provided for you in air_lab2/motion_

planner_interface.h, it contains a function that generate a path based on a start
and end position. You should call it like this:

4http://ompl.kavrakilab.org/

8

Figure 6: Compute the orientation around Pi to be parallel to the vector Pi−1, Pi+1

... = motion_planner_interface->planPath<nav_msgs::GetMap>(...);

In your motion_planner node, you should create a service call plan_path of type
nav_msgs/GetPlan and then call the function planPath of motion_planner. You
then need to convert the list of points returned to that function into a list of geometry_msgs/PoseStamped.

You will need to compute the orientation of the pose around each point of the path,
to do so follow figure 6 (for the first and last point, follow the direction of the path).

A few C++ tips:

• To access elements of a std::pair, you can use first and second:

1 std::pair<double, double> coord(4,3);

2 std::cout << "x= " << coord.first

3 << " y= " << coord.second << std::endl;

• To add elements to a vector, the best is to use push_back:

1 geometry_msgs::PoseStamped p;

2 ...

3 poses.push_back(p);

• The geometry_msgs/PoseStampedmessage needs quaternion, you are going to
compute the angle as euler, you can use the tf::Quaternion class to compute
the quaternion value:

1 tf::Quaternion orientation;

2 orientation.setRPY(0, 0, yaw_angle);

3

4 geometry_msgs::PoseStamped p;

5 p.pose.orientation.x = orientation.getX();

6 ...

8 Running the motion planner

To run the motion planner you need to run two ROS nodes:

9

1 rosrun air_lab2 motion_planner __ns:=/husky0

2 rosrun air_lab2 move_to_point.py __ns:=/husky0 \

3 _robot_frame:=husky0/base_footprint planned_path:=waypoints

You can then use Rviz to select the point (on topic /husky0/destination), dis-
play the path (on topic waypoints). Do not forget to put your Husky controller in
waypoints control to see it move.

To help you debug, you can use the traversability_to_display programm to
display a map of which cells are considered traversable (that program is really slow).

9 Launch file

Update your launch file to include ls_to_occ, occ_to_display, motion_planner
and move_to_point.py!

10

